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Summary. A common problem in medical research is to estimate the prevalence of a disease, i.e.
to determine the propartion of individuals with the disease in a given population at a particular paint
in time. This can be accomplished by applying a diagnostic test to a sampie of subjects from the
target papulation. When an error-free test is not availabie, one must take into account the potential
for misciassification errors to avoid misieading results. In this paper we suggest a new adjustment
to the standard maximum likelihood estimator (MLE) of the prevalence, useful in the commaon
situation when the MLE equais 0. Results of simulations are presented to compare the new
estimator with the standard MLE. We also camment on canfidence intervals and sample size
deterrination for these situations.
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1. Introduction

In public health, it is often important to estimate the proportion: of individuals with a given disease
in a given population at a particular point in time, known as the disease prevalence. One way to
estimate disease prevalence is to obtain a random sample from the target population, and to test
each individual in the sample for the disease. If the test used is error free, often referred to as a gold
standard test, then the number of diseased individuals in the sample is the same as the number of
positive test results, and estimating the prevalence is the classical problem of estimating a binomiat
preportien. Gold standard tests rarely if ever exist, however, since even a theoretically perfect test
can be rendered less perfect by human, laboratory or other errors. Even when they exist, gold
standard tests may be difficult to perform, highly invasive, very costly or time consuming, so that
alternative tests are often considered. In developing alternative tests, their performance must be
evaluated. In particular, the sensitivity of a test is the probability that a truly diseased individual
will correctly register a positive test, whereas the specificity of a test is the probability of a negative
test in a truly disease-free individual. When the sensitivity and the specificity of a diagnostic test
are known, many researchers including Rogan and Gtaden (1987) and Taragin et al. (1993) have
proposed the use of a maximum likelihood estimator (MLE) to estimate the prevalence. See Walter
and Irwig (1988) for a comprehensive review of methads related to this problem.
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The MLE performs well under mast circumstances. When the prevalence of the disease is low,
however, as for many diseases, the MLE is quite often 0, even when the unobserved number of
truly diseased subjects in the sample may not be 0. For example, consider the case where 16
positive results are observed in 100 tests. With a perfect test, the obvious point estimate of the
prevalence is 16%. However, if the specificity of the test is 80%, then at least 20 positive tests
would be expected, even if the prevalence is 0. To correct for this, Lew and Levy (1989)
considered a Bayesian approach. They proposed the use of the posterior mean from a uniform
prior distribution as an estimator of disease prevalence. The choice of a non-informative priot
distribution, however, can have a substantial effect on the point estimate of the prevalence when
the disease is rare. In particular, point estimates arising from a uniform prior density may differ
from the peint estimate suggested by other reasonable ‘non-informative’ choices, such as the
standard feffreys prior density (Gelman et al., 1995). In addition, calculating the posterior mean
involves numerical integration and can therefore be difficult to calculate quickly. Here we shall
present a simple adjustment ta the MLE that is useful for rare diseases. We also provide formulae
to calculate confidence intervals, and we discuss the sample sizes required for these confidence
intervals to be smaller than a given width.

2. Maximum likelihood estimation

Suppose that the sensitivity and the specificity of a diagnostic test are known and equal to s < |
and ¢ < 1 respectively. Since the accuracy of diagnostic tests that have the sum of their sensitivity
and specificity below 1 can be improved by reversing what is considered to be a positive test,
without loss of generality we shall assume that s + ¢ > 1. Consider a random sample of size »
from the population under study, and let p denote the probability of testing positive, which
includes both true and false positive results. Denote by X the number of individuals from the
sample who test positively, and let 8 denote the true prevalence of the disease in that papulation.
We have

p=0s+ (1 —8)1—¢), (1)

since each positive test either arises as a true positive, with probability s, or as a false positive,
with probability (1 — &)(1 — ¢). Since 6, s and ¢ must all lie in the interval [0, 1], equation (1)
implies that p must lie in the interval [{ — ¢, s]. One commeon estimator of p is its MLE. As
discussed in Rohatgi {1984),

X/n, ifl-—c<X/n<s,
MLE(p)=¢ 1 —¢, ifX/n=1-g¢,
s, if X/n=s.

Using equation (1) and the invariance property of MLEs (see Casella and Berger (1990), p. 294),
the MLE of 8 is

5/5:(1——_16), if 1 —c<X/n<s,

— c—

MLE =1, it X/n<1~c, @)
L it X/n>s.

The MLE performs reasonably well for most values of 4. When 8 is small, however, the MLE is
quite often 0, even when the unobserved number of truly diseased subjects in the sample, ¥, is not
0. In general, P(Y = 0} = (1 — 6)", whereas POMLE = 0) = P(X/n < | — ¢), and the latter can
be much larger than the former,
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Table 1. Probability of na positive subjects in a
sample of size n, (Y= 0}, versus the probability
that the MLE of the prevalence, @, is Of

8 n P(Y=10) P(MLE) = 0
0050 100 0.006 0.205
0040 100 0.017 0.252
0.030 100 0.048 0.306
0.020 100 0.133 0.366
0010 100 0.366 0.431
0010 500 0.007 0.350
0.005 500 0.082 0.423

1The calculations shown are for the case when the
sensitivity is 0.9, and the specificity is 0.8.

Table 1 illustrates this for various values of # and », when s = 0.9 and ¢ = 0.8. Far Table 1 we
used the normal approximation to the binonual distribution to calculate P(X /r = 1 — ¢). Since

X/in—p L V—e-p }
V{pQ = py/n}p  /{p(l — p)/n}]

PX/n=1-¢)= P{
we have

N l—c—p
PMLE =0 =% [\/{P(l - p)/n}]’
where $(r) denotes the standard normal cumulative distribution functien evaluated at ¢ and
where p is given by equation (1).

Table 1 shows that PIMLE) = Q can occur more than 50 times as often as P(Y = 0). Although
here the sensitivity and specificity were set to 0.9 and 0.8 respectively, similar results occur for
other sensitivity and specificity values. When it is likely that there is one or more positive subjects
in the sample, it is obviously preferable not to use 0 as the point estimate of the prevalence. In the
next section, we present an adjustment to the standard MLE that produces a positive estimate.

3. Adiustment to the maximum likelihood estimator

The numerator of equation {(2) is X/n~ {1 —¢) when 1 —~c<X/n<s, which produces a
negative estimate when X /n = 1 — ¢. We shall develop an adjusted estimator that will subtract a
quantity less than 1 — ¢ when X/n = | — ¢, resulting in an estimate that remains greater than 0
even in this case.

Suppose that we have a sample of size n. Let Z be the unobserved latent data representing the
number of truly positive subjects out of X positively testing subjects, and let ¥ be the unobserved
total number of truly positive subjects in the sample. See Table 2.

By definition, E(X/n) = p, E(Y/n} =8, E(Z/YY=sand E{{(X — Z}/(n—¥)} =1 — ¢, 50
that, for example, the relationship p = 8s + (1 — 8)(1 — ¢) is equivalent to

E(X[/ny = E(Y/n) E(Z]Y) + {1 ~ E(Y/n)} E{(X ~ Z)/(n - Y)}. )

Let X = x denote the observed number of positive tests in a given study. To motivate the definition
of an adjusted maximum likelihood estimator (AMLE) when the MLE =40, i.e. when
x/n=1— ¢, assume that equation (3) remains true when x is given. Then (x — Z)/(n — ¥)
would be the point estimate of 1 — ¢ from the sample, but this is not directly observable. We
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Table 2. Observed and latent data when a diagnostic test is given to a
sample of nindividualst

Test result
+ _
True disease status + Z Y-z ¥
- X-Z n—X-Y+ 2 -
X n—X n

{The variable X represents the number of subjects observed to test positively, and ¥
represents the unobserved number of truly diseased subjects. The number of correctly
identified positive subjects, Z, is also not abserved.

suggest the expected value of (x — Z)/(n — Y), given x and n, as an estimate of | — ¢. When the
number of diseased individuals in the sample is small with respect to n, {(x — Z)/(n — ¥} will
be approximately normally distributed with mean | — ¢ and variance ¢(l — ¢)/n. Letting H =
(x — Z)/(n — ¥), we then need to calculate £¢H|x). According to Table 2,

X/n=/n)(Z/¥}+ (1 ~Y/a)(X ~ Z}/(n~T),
so that
X-2)/(n-Y)=sX/n=s2Z/Y.
This follows, since we assume that s> 1 — ¢, and p is a convex combination of s and 1 — ¢
according to equation (1).

If we can calculate E(H|x), the following approximation to the term E(¥ /n|x), which can be
used as an estimator of 6 given data x, can then be derived {(see Appendix A):
x/n— E(H|x)
Y e
E(Ynl) =g

where, as indicated above, H|x follows a truncated normal density with mean | — ¢ and variance
e(l — ¢)/n, but with the constraint that H < x/n. A detailed derivation of E(H|x) is given in
Appendix A, where it is shown that

st =1 e - {2 e LECCTA [a[ ]

An AMLE of 8 can then be defined as

M, if | —e<x/n<s,
s+c—1
AMLE = { x/n— E(H|x) ) -
s E(HD) if x/n=1—c¢,
1 if x/n=s.

The AMLE is equivalent to the MLE given by equations (2) except when x/n =< 1 — ¢, when the
latter produces a point estimate of (. For example, if s = 0.9, ¢ = 0.8 and 16 positive results are
abserved in 100 tests, AMLE = 0.028, whereas from equations (2) the MLE is 0. This estimate is
easier to calculate than the Bayvesian posterior mean as suggested by Lew and Levy (1989), since
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Table 3. Examples comparing the AMLE with Bayesian posterior mean estimates of disease
prevalencet

Examplie " x g e AMLE Uniform Jeffieys
| 100 16 .9 0.8 (028 0.032 ¢.018
2 483619 704 3.9930 0.9982 1 10°? 5§ 107 Fx10-®
3 773 2799 0.55 0.63 0.055 0.063 0.036
4 96 3 .89 0.74 ¢.0[25 00176 (0089

TA sample size of » subjects results in x pasitive test results. The test is assumed to have sensitivity s
and prevalence ¢. The column labelled AMLE provides the adjusted maximum likelihood estimate of
the prevalence, whereas the last two columns pravide the Bayesian posterior means from uniform and
Jeffreys prior densities respectively.

we only need a table of the standard normal distnibution aleng with a band calculator with square
root and exponential functions. Nevertheless, using numerical integration, the posterior mean for
8 based on a uniform prior density is 0.032. In contrast, the standard Jeffreys non-informative
prior density for 8, which in this case is a beta density with shape and scale parameters both equal
to 0.5 (Gelman ef al., 1995), gives a posterier mean of 0.018, almost half the size of the estimate
hased on the uniform prior density. The AMLE estimate is in this case lacated between the two
Bayesian point estimates.

Table 3 summarizes the above example and three additional published examptes. Example 2 is
from Johnson and Gastwirth (1991), which discussed tests for the detection of the human
immunodeficiency virus that have very high sensitivity and specificity. In contrast, example 3,
from Centor (1992), discussed the use of serum creatine kinase for the diagnosis of myocardial
infarction, a test which has relatively poor sensitivity and specificity. For illustration, we used a
specificity of 0.63, rather than the 0.65 value suggested by Centor (1992), since with ¢ = 0.65 the
AMLE equals the usuat MLE. The results are similar, however, whichever value of ¢ is used.
Finally, example 4 comes from Lew and Levy (1989), where chest radiographs were used for the
diagnosis of pulmonary hypertension. In all four examples, and over the broad range of sensitivity
and specificity values encountered, the peoint estimate from the AMLE fell between the two
Bayesian estimates. Although for rare diseases the posterior mean from the uniform prior density
will always give higher estimates than the posteriar mean from the Jeffreys prior density, it seems
difficult to prove that the AMLE will always fall between the two Bayesian estimates. Therefore, it
may be possible to find a counter-example, although we did not find any in these or other examples
that we investigated.

4. Comparison of the adjusted maximum likelihood estimator with the
maximum likelihood estimator

Although the above example suggests that the AMLE may improve on the usual MLE when the
latter is 0, we performed a simulation to quantify the improvement. We considered several
prototypic situations, where the specificity is 0.8, the sensitivity is either 0.9 or 0.8 and the
prevalence runs from 1% to 5%, in increments of 1%. For each of these 10 situations, we ran
10000 simulations with sample sizes of n = 100 and » = 500, for 20 different cases.

For each simulation, we calculated the number of times that the MLE was 0, and the mean
AMLE conditional on the MLE being 0. The mean-squared ecror (MSE) is defined as the average
of the squared deviations between the estimator and the true parameter value in each simulation,
We calculated the square root of the MSE of the MLE, denoted by RMSE(MLE), so that



154 E. Aahme and L. Joseph

10000
RMSE(MLE) = \/ { > (MLE — 6)* / 10000
i=1
We used the square root so that it would be on the same scale as the estimators. Similarly,

10000
RMSE(AMLE) = \/ S (AMLE — 6’ / 10000}.
i=I

Since we are interested in the cases where the MLE and the AMLE differ, we defined the con-
ditional RMSE to be the RMSE conditional on MLE = 0. We denote the square root of the
conditional MSE of the AMLE by CRMSE{AMLE), i.e.

CRMSE(AMLE) \/ S° (AMLE — 6y / k.
MLE=(]

CRMSE(AMLE) = 8, since

CRMSE(MLE) = \/ 3 (MLE — 6Y k} = \/{ S (0~ 6)’/;%} =6.

Table 4 containg the results of these simulations. Although bath estimators are biased, in most
of the cases the RMSE of the AMLE is smaller than that of the MLE. For examnle, for 8 = 0.03,

Table 4. Square root of the MSEs for the MLE and AMLE®

8 n s POMLE=0) meanfAMLE) RMSE(MLE} RMSE(AMLE} CRMSE(AMLE)
1 0.05 100 0.9 0.2286 0.035 0.051 0.046 0.016
2 0.05 100 0.8 0.2495 0.040 0.059 0.054 0.012
3 0.04 100 0.9 0.2843 0.035 0.050 0.045 0.009
4 0.04 100 08 03129 0.040 0.056 0.051 0.009
5 0.03 100 0.9 0.3328 0.034 0.047 0.044 0.009
6 0.03 100 0.8 0.3581 0.039 0.054 0.051 0.013
7 0.02 100 0.9 0.3636 0.027 0.037 0.035 0.008
8 0.02 100 0.8 0.4130 0.039 0.051 0.051 0.021
9 0.01 100 0.9 0.4719 0.033 0.043 0.045 0,024
10 0.01 100 08 04774 0.038 0.050 0.054 0.030
1 0.05 500 0.9 0.0315 0.017 0.026 0.025 0.033
12 0.05 500 0.8 0.0573 0.019 0.030 0.028 0.030
13 0.04 500 0.9 0.0706 0.017 0.025 0.024 0.023
14 0.04 500 0.8 0.1058 0.019 0.029 0.027 0.021
15 0.03 500 0.9 0.1299 0.017 0.024 0.022 0.014
16 0.03 500 0.8 0.1780 0.019 0.027 0.024 0.012
17 0.02  ~500 0.9 02319 0.016 0.022 0.020 0.005
(8 0.02 500 0.8 0.2685 0.018 0.024 0.022 0.004
19 0.01 500 0.9 0.3598 0.016 0.020 0.019 0.006
20 0.01 500 0.8 0.3834 0.017 0.023 0.023 0.008

1The sensitivity of the test is denoted by s, while the specificity is held constant at ¢ = 0.8. The column labelled
P(MLE = 0) presents the proportion of times that MLE = ¢ in 10000 simulations, and mean{AMLE) is the average of
the AMLE for these cases. The sample size is denoted by ». RMSE(MLE]} is the square root of the MSE of thé MLE,
RMSE(AMLE) is the square root of the MSE of the AMLE and CRMSE(AMLE) is the squate root of the MSE of the
AMLE conditional on MLE = 0. The square raet of the MSE of the MLE when it equals 0 is equal to 8 (see text).
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n =100, s = 0.9 and ¢ = 0.8, the number of times that the MLLE was 0 out of 10000 simulations
was 2286, or about 23% of the time. The conditional RMSE of the AMLE 1s 0.016, whereas the
conditional RMSE of the MLE is much larger, 0.05. If we increase the sample size to 500, the
number of times that the MLE is 0 out of 10000 simulations drops to 315. This is because, when
the sample size is increased, x/n becomes closer to the true value p > 1 — ¢, so the probability of
observing x/n =< | — ¢ decreases. We note that the performance of the AMLE is poorer than that
of the MLE only in rows §-10 of Table 4, when both the sample size and the prevalence are
relatively small. When the prevalence is near 0, we would usually wish to have-a sample size that
is much larger than 100, since small values of 8 are usually paired with small values of o (see
equation (4) in Section 6). For example, to estimate a prevalence of @ = 0.02 to an accuracy of
£d4 = 0.01 with a 95% confidence interval requires a sample size of n = 753, even with a perfect
diagnostic test (s = ¢ = 1}. Hence, situations like those in rows 8—10 of Table 4 should not
frequently arise in practice. With appropriate sample sizes, the RMSE of the AMLE appears
always to be smaller than the RMSE of the MLE, and in particular the conditional RMSE of the
AMLE (s substantially lower than that of the usual MLE.

5. Confidence intervals

Using the normal approximation to the binomual distribution, an approximate confidence interval
for p 1s given by the intersection of the interval

(X/n— ZopS/{p(h — p)/ny, X/n+ Zop/{p(L — p)/n})

with the interval {1 — ¢, 5], where Z,, is the usual standard normal upper 100(1 — a/2)%
quantile. Since p is unknown, it is usually approximated by x/n. In the current context, however,
p Is restricted to the interval {1 — ¢, s]. Therefore, we approximate p by x/n only when
| —ec<tx/n<s and by | — ¢ when x/n = 1 — ¢. Straightforward algebra then shows that the
interval

(X/??+C—1—Za/z\/{p(l_}’)/”} X/”+C_1+Zaf2\/{P(l_P}/”})
s+e—1 ’ s+ec—1

intersected with the interval [0, 1] is an approximate 100(]1 — )% confidence interval for the
prevalence 8. The interval contains both the MLE and the AMLE.

Since the above derivation is based on a normal approximation, we performed additional
simulations, again of size 10000, to estimate the proportion of times that the 95% confidence
intervals capture the true prevalence. Using a sample size of # = 100, we let § vary between 1%
and 5% by increments of 1%, whereas the sensitivity s varied between 0.7 and 0.9, and the
specificity ¢ was either 0.8 or 0.9. See Table 5. In each case that we considered, the coverage was
very close to 95% and was often slightly higher than 95%, perhaps indicating a slight conservative
bias, The bias decreases with increasing sample size and most probably arises from the use of the
normal approximation to the binomial distribution. Similar results occur for other sensitivity and
specificity values.

6. Sample size for estimating the prevalence

In planning a prevalence survey, an investigator may wish to determine the sample size that is
needed to estimate the prevalence to within an accuracy of +4 using a 100{1 — )% confidence
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Table 5. Propoartion of times {prop) out of 10000 that the 95%
confidence intervals captured 81

) § ¢ prop 8 $ ¢ prop
005 09 08 0.953 0oy 08 09 0948
005 07 08 0.959 403 47 09 0969
005 0.8 09 0953 002 09 08 0360
0.0 07 0% 0933 002 07 08 09847
004 09 08§ 0.958 002 08 09 0965
004 @7 08 0.957 002 07 09 (952
¢04 0B 09 0960 00l 09 G8 (964
004 07 (49 0958 001 07 O0R 0962
¢03 09 08 0.956 001 08 09 (0976
¢03 07 08 ¢.962 001 07 49 09Nl

+The sample size is 100 for all simulations, s is the sensitivity and ¢ is
the specificity.

interval. Again using the normal approximation to the binomial distribution, it can be easily shown
that the sample size required is

u = Zi;zp(l - p)

di(s +c— 1)’
where s and ¢ are the sensitivity and specificity of the test respectively and p is given by equation
(1), based on a given value for 8. ln practice 8 is unknown, so that one may wish to select a final
sample size after examining the sizes suggested by a range of 8-values. Equation (4) demonstrates
that the sum of the sensitivity and the specificity has a very large influence on sample size
requirements. As expected, when s = ¢ = 1, the test is error free, p = 6 and equation (4) reduces
to the standard binomial sample size formula. At the ather extreme, an infinite sample size results
if s+ ¢ = 1, i.e. the test is completely uninformative no matter how large the sample size. Most
situations should fall between these extremes.

(4)

7. Discussion

We have presented a simple adjustment to the MLE of the prevalence of a disease in a given
population, which improves on the standard MLE when it is 0. We have also provided formulae
for confidence intervals and sample size determination. These methods should be useful for
estimating the prevalence of rare diseases and, unlike Bayesian methods, do not require a choice
of a non-informative prior density. Similarly, an adjustment to the MLE can be defined for very
common conditions, i.e. when the MLE is 1. This can be done using the above results by reversing
both what is considered to be a positive test and what is considered to be the disease state.

Throughout this paper, we have assumed that the sensitivity and specificity of the diagnostic
test are exactly known. For well-established diagnostic tests, this may often be a reasanable
assumption, and indeed most diagnostic test Kits include suggested values for the test properties.
In other cases, the test properties are not exactly known, so the sensitivity and specificity must be
estimated from the sample along with the prevalence of the disease. With three parameters to
estimate, but only 1 degree of freedom in the observed data, maximum likelihood approaches
cannot be used without imposing constraints (Walter and Irwig, 1988). Bayesian approaches,
however, that provide the joint posterior density of all unknown parameters have been developed.
See Joseph et af. (1995} for details.
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Appendix A

A.1.. Approximating E(Y/nx) when xn=< 1—-¢

For large sample sizes, (X — Z)/(»# — ¥) is approximately normally distributed with mean | ~ ¢ and
variance ¢(1 — ¢)/n. Therefore, to approximate E{(X — Z)/(n — ¥)[x}, we consider a random variable
H that is normally distributed with mean | — ¢ and variance (1 — ¢)/n, but with the added constraint
that H = x/n. The expected value E(H|x) then approximates E{(X — Z)/(n — ¥)|x}. Substituting
these approximations into equation (3} while considering x as fixed gives

xfnz= E(Y/nlx)s + {1 — ECY/nlx)} E(H|x),
and selving for £(¥ /n|x) gives
x/n— E(H|x)

E(¥/n|x) = s~ ECH)

A.2. Calculating E(H|x)
E(H|x) is defined by
xfn
E(H|I) = J h.fhru'(h[x] dh,

where [y x(h|x) denotes the conditional density function of H given X = x. Let f,(h) denote the
density function of H, Fyu(#) denote the distribution function of H and F 4, (#|x) denote the conditional
distribution function of H given X = x. We then have

Fyp(hlx) = ch‘ﬂf*ﬂ,\r(h“1 = x/n)

Fulh) N
_ ) Ry ifh=xfn
0, otherwise,
and therefore
Ju(h) .
fh<x/n,
Fre(hlx) = Fy(x/ny’ l o
0, otherwise.
Hence
_ (" I {h-(1—op
BN Rl = | = e {_ 21 — )/ ] o
Let
_ h—(1—¢) )
© el = e)/n}’
then
{xfn=Cl—ck}f (el - cif n} 1 — &Vn _ .
E(H|xy Fi(x/n) = J_ AL f}é}i}u ! Cexp(—?) du
_ [l —o) _H{chn—(l—c]}2 B x/n—(1—¢)
- \/{ 27n }“"[ 21 — o)/ ] ¢ C”)L/{cu = c)/n}}’
50 that

B = tmes i/{%} P [’ {Q—JEL;T)L} / ® W[fa_ Elc;/i)}]'
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