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Taking Account of Between-Patient Variability When Modeling Decline in

Alzheimer’s Disease

L. Joseph,'? D. B. Wolfson,® P. Bélisle," J. 0. Brooks, Ill,* J. A. Mortimer,® J. R. Tinklenberg,® and J. A. Yesavage®

The pattern of deterioration in patients with Alzheimer’s disease is highly variable within a given population.
With recent speculation that the apolipoprotein E allele may influence rate of decline and claims that certain
drugs may slow the course of the disease, there is a compelling need for sound statistical methodology to
address these questions. Current statistical methods for describing decline do not adequately take into account
between-patient variability and possible floor and/or ceiling effects in the scale measuring decline, and they fail
to allow for uncertainty in disease onset. In this paper, the authors analyze longitudinal Mini-Mental State
Examination scores from two groups of Alzheimers disease subjects from Palo Alto, California, and
Minneapolis, Minnesota, in 1981-1993 and 1986-1988, respectively. A Bayesian hierarchical model is
introduced as an elegant means of simultaneously overcoming all of the difficuities referred to above. Am J

Epidemiol 1999;149:963-73.
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With increasing life expectancy, Alzheimer’s disease
has become a health issue of major concern, prompting
much research on different aspects of this disease. In
particular, Yesavage and Brooks (1) discuss the impor-
tance of longitudinal studies in Alzheimer’s disease.
Recently, the discovery of the apolipoprotein E (apoE)
€4 allele as a possible risk factor for Alzheimer’s dis-
ease, as well as its promise as a prognostic indicator of
disease course, has provided further motivation for
carefully collected longitudinal data on disease pro-
gression and sound methods of analysis of these data
2, 3).

There have been many articles on the assessment of
decline in Alzheimer’s disease (4-9). By introducing
statistical models, researchers have attempted to
describe the natural history of Alzheimer’s disease and
to ascertain which factors influence the disease course.
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Carefully constructed models that describe decline are
indispensable for several reasons. First, by anticipating
how a group of subjects might be expected to decline,
one may better design clinical trials to evaluate the
effect of treatments for Alzheimer’s disease. For exam-
ple, models provide the framework for deciding how
many and which patients should participate in a study,
how often they should be evaluated, and how long a
study should continue. Once the data are collected,
such models must then be used to evaluate any effect,
for “effect” may only meaningfully be interpreted as a
model characteristic. Even ad hoc comparisons have
hidden model assumptions. Models can also be used to
examine the role of covariates, such as age of onset,
gender, years of education, and the apoE gene profile,
on decline (5, 9). Finally, prediction by means of some
form of regression model, say, may not only be useful
for anticipating the disease course of individual
patients and, consequently, future care that may be
needed, but also for planning on a larger scale. In
Canada, for example, roughly 50 percent of demented
individuals live in the community (10).

Since progressive cognitive impairment is the hall-
mark of Alzheimer’s disease, the natural history has
often been studied by following patients longitudinally
while noting their scores on one or more scales of cog-
nitive impairment. These examinations are usually
administered at regular time intervals. Examples of
commonly used scales are the Brief Cognitive Rating
Scale (11), the Global Deterioration Scale (12), the
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Dementia Rating Scale (13), and the Mini-Mental
State Examination (MMSE) (14).

A review of the literature reveals both a wide variety
of methods of modeling decline and inconsistency in
the findings on the role played by different covariates
on disease course. The disparate statistical methods
applied to different data sets make comparisons diffi-
cult. For instance, Yesavage et al. (4) and Katzman et
al. (5) use the difference between first and last scores
divided by the time between these evaluations to esti-
mate the rate of decline. On the other hand, Haxby et
al. (6) take a more sophisticated approach by consider-
ing three different regression models with MMSE
scores regressed on time. In the first, a simple linear
regression is fit to each patient, and in the second, a
common regression is assumed for all patients, while
the third allows for an initial plateau in the regression
line followed by a period of decline. A similar, step-
wise weighted least-squares regression with several
covariates (in addition to time) is fitted by Mortimer et
al. (7). Brooks et al. (8) also propose a model with
plateaus, specifically the model of Haxby et al., by
introducing a trilinear regression with plateaus at dis-
ease onset and in the final stages. Teri et al. (9) and
Growdon et al. (15) model disease progression by
regressing rate of decline on several demographic
variables and on level of dementia, but not on time,
while Stern at al. (16) take a similar route by using a
growth curve model. The latter investigators model the
expected change in score over a 6-month time period,
given the score at the beginning of the time period, and
also examine the effect of the appearance of extra
pyramidal signs on the rate of decline by introducing a
time-dependent covariate. In assessing the effect of
ApoE on cognitive change, Hyman et al. (17) are
forced, by their limited data, to quantify decline as the
difference between scores taken at two different points
in time. Maltby et al. (18) examine the efficacy of
tacrine on slowing the disease course by using a
repeated-measures analysis of variance, allowing the
treatment effects to vary randomly. Jacqmin-Gadda et
al. (19) also used a random effects linear model to
quantify decline in MMSE scores in nondemented
elderly subjects, but their model did not include the
plateau in MMSE scores that is expected to be present
in more rapidly declining Alzheimer’s disease patients.
As will be detailed below, we also pursue the general
idea of a random effects model, but add several new
features.

An additional difficulty with Alzheimer’s disease is
that since initial symptoms are often nonspecific, age
of onset has been avoided as a time origin.
Consequently, authors have used other assorted time
origins for their models, making interpretation and

cross-comparisons difficult. Despite the range of mod-
els used on a diversity of data sets, there are some
points of agreement. There is marked between-patient
variability in the rate of decline of cognitive scores.
MMSE (and other) scores show little change early on,
fall in an approximately linear fashion, and then level
off late in the disease. These plateaus are probably due
to the insensitivity of these scales to small changes that
might occur very early or very late in the disease rather
than to true periods of no change.

In this paper, we introduce a method, new to
Alzheimer’s disease research, that allows for precise
description of the pattern of decline in patients with
Alzheimer’s disease. Our model simuitaneously
allows for between-patient variability via a random
effects model, while also including plateau effects and
adjusting for imperfect age of onset estimates.
Estimation of the effects of covariates on the decline
rates can be accomplished through a simple extension
of the model. We next apply our model to longitudinal
MMSE data from patients with Alzheimer’s disease
recruited for prognostic studies in Palo Alto,
California, and Minneapolis, Minnesota.

MATERIALS AND METHODS

Two independently collected data sets from different
parts of the United States were analyzed in this study.
These will be referred to as the Minneapolis data set
and Palo Alto data set, respectively. Although subjects
in the Palo Alto data set were followed for a longer
period of time, table 1 shows that the patient charac-
teristics were similar.

The Minneapolis data set

The Minneapolis data set consists of subjects who
were recruited between August 1986 and December
1988 from the Minneapolis Veterans Affairs Medical
Center and from the community to participate in a
prospective longitudinal study of primary degenerative
dementia (7). Ninety-three subjects were initially
screened for primary degenerative dementia using
the Diagnostic and Statistical Manual of Mental
Disorders, Third Edition (20) criteria. Of these, 76
were retrospectively found to satisfy the National
Institute of Neurological and Communicative
Disorders and Stroke criteria (21), which were pub-
lished after the Minneapolis study had started. Family
histories were also recorded. Those subjects who were
deemed to have primary degenerative dementia were
included in the cohort. Patients with a possible cere-
brovascular etiology for their dementia were excluded.
Eleven patients were retrospectively excluded either
because it was ascertained that they probably did not
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TABLE 1. Demographic characteristics for study subjects
No. Age at entry Age at AD* Males Famity history Length of MMSE* score
of into study onset of dementia follow-up (years) at entry
subjects Mean (SD)* Mean (SD) No. % No. % Mean (SD) Mean (SD)
Palo Atto, California 55 64.11 (9.0) 60.3t1 (9.7) 32 65 NAt 5.1 (2.7) 18.4 (7.7)
Minneapolis, Minnesota 65 67.6 8.7) 63.7§ (8.5) 47 72 26 41 2.3 (0.85) 17.3 (4.66)

* AD, Alzheimer's disease; MMSE, Mini-Mental State Examination; SD, standard deviation.

t Four subjects had missing information.

$ Family history data not available for the Palo Alto data.
§ Six subjects had missing information.

11 One subject had missing information.

have Alzheimer’s disease or because they had con-
tributed fewer than three data points by the end of the
study. Sixty-five subjects remained for the analysis.
Detailed inclusion and exclusion criteria are given by
Mortimer et al. (7).

After acceptance into the study, subjects were
assessed at 6-month intervals until death or loss due to
other reasons. No subject contributed more than eight
data points. That is, there was a maximum of a base-
line measurement and three and one-half years of
follow-up. Data used for this analysis included the
approximate age of onset, age at entry into the study,
gender, and years of education. Age of onset was pro-
vided by the family and, as such, is probably interval
censored because of the vague initial symptoms of
Alzheimer’s disease. Other data not relevant to the pre-
sent analysis were also collected (7).

Figure 1 provides the trajectories of the MMSE his-
tories (as a function of time) of a sample of three sub-
jects from the Minneapolis data set. Note that not all

The Palo Alto data set

Subjects for the Palo Alto data set were identified and
followed between January 1981 and April 1993 at the
Stanford Alzheimer’s Disease Diagnostic and
Treatment Center to participate in a longitudinal study
of dementia (22). As with the Minneapolis data, subjects
were carefully evaluated at entry and were excluded if it
was suspected that their cognitive impairment was not
caused by Alzheimer’s disease. Subjects were included
if they satisfied National Institute of Neurological and
Communicative Disorders and Stroke Alzheimer’s
Disease and Related Disorders Association criteria (21)
for definite or probable Alzheimer’s disease. Patients
with fewer than three MMSE data points were excluded
from the analysis but continued to be followed as part of
the study. Data on 55 subjects were available. Figure 2
provides the trajectories of the MMSE histories of a rep-
resentative sample of subjects from the Palo Alto data
set. The time axis is, again, in units of 6-month periods

subjects were followed for the full eight periods. from the initial MMSE score.
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FIGURE 1. MMSE scores over time for three subjects from the Minneapolis data set, Minneapolis Veterans Affairs Medical Center, 1986—1988.

The time axis is in units of 6-month periods.
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FIGURE 2. MMSE scores over time for three subjects from the Palo Alto data set, Stanford Alzheimer's Disease Diagnostic and Treatment

Center, 1981-1993. The time axis is in units of 6-month periods.

Statistical methods

Overview. Longitudinal MMSE scores may be
regarded as repeated measures data with highly vari-
able paths. Frequently, as is pointed out by Crowder
and Hand (23), large between-subject variability is
best dealt with by random effects models. While our
model allows for random effects, we use a flexible
Bayesian hierarchical approach that is quite different
from the methods commonly described under the
heading “random effects models” (23, pp. 98, 105, and
112). Figures 3-5 illustrate the advantages of including
hierarchical random effects in a model that describes
data with widely varying parameters.

In figure 3, all subjects are shown to have different
“true” rates of decline, but there is no common statis-
tical model assumed for these rates. Figure 3 repre-
sents the decline phases of patients from two popula-
tions. There are two problems with using simple
(nonhierarchical) linear regressions to estimate each
patient slope. First, if there are relatively few observa-
tions from each patient, as is common in Alzheimer’s
disease research, estimates of patient-specific regres-
sion parameters can be highly unreliable. Second,
comparisons between the two populations are difficult
to make, since no concise summary of the disparate
slopes from each population is available, especially
one that takes into account the uncertainty in the indi-
vidually estimated slopes.

Figure 4 depicts the case in which all subjects within
a population are assumed to have identical rates of
decline. Estimates of parameters are reliable, since
data from all patients contribute toward estimating a
single slope, and comparison between populations is

standard. The model is unrealistically restrictive, how-
ever, since it assumes a single rate of decline for all
patients in a given population, known not to be the
case for Alzheimer’s disease patients.

Consider again the situation in figure 3, in which the
rates of decline for individual patients differ. Focus on
a single group, say that of figure 3a. Instead of regard-
ing the patient slopes simply as a collection of differ-
ent numbers, think of them as having been randomly
selected from some population of slopes (i.e., from
randomly selected patients with Alzheimer’s disease,
each of whom is associated with a decline slope). This
population of slopes is described by means of a proba-
bility density function, for example, a normal density
in which the mean represents the average slope in the
population and where the between-subject variability
in that population is represented by the normal vari-
ance. The two probability density functions in figure 5
may be thought of as being the densities that generated
the slopes of figures 3a and 3b, respectively, and may
be compared. Each possible value for the MMSE slope
is associated with its relative likelihood (height of the
probability density curve), so that the two curves in
figure 5 present the ranges and relative likelihoods of
each possible decline rate in the two populations. Not
only do we then have a convenient summarization of
the slopes of any single group (through the group den-
sity), but we also have a convenient means of compar-
ing two or more groups by comparing their probability
density functions. Further, reliable estimation of all
patient slopes is made possible by the “borrowing of
strength” from the ensemble of slopes to aid in the esti-
mation of each individual slope; these slopes are
linked through the hierarchical distribution.

Am J Epidemiol Vol. 149, No. 10, 1999
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FIGURE 3. Prototypic decline slopes from two hypothetical populations when each patient may have different rates of decline within each

population.
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FIGURE 4. Prototypic decline slopes from two hypothetical populations when all patients are assumed to have identical rates of decline within
each population.
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FIGURE 5. Distributions that summarize the decline rates in each of two populations.

For the MMSE data analyzed here, a modification of
the situation depicted in figure 3 is made to accommo-
date the plateau expected in the observed MMSE
scores, so that only data from the decline period con-
tribute to the estimates of the slopes. The allowance we
make for the inclusion of plateaus that vary randomly
among subjects precludes the application of mixed lin-
ear models (24); our mixture model is nonlinear.
Nevertheless, the basic analytic strategy as presented
above remains unchanged.

The model. In view of the discussion in the intro-
duction to this paper, one may expect that at least two
distinct periods could be identified in MMSE trajecto-
ries for dementia patients, from disease onset to the
final plateau. These are a period of relatively steady
decline, which ends in a final stable period, most often
with an MMSE score below 10, where either decline
truly stops or, more likely, the MMSE becomes insen-
sitive to further decline.

Although Brooks et al. (8) fitted a trilinear model to
the Palo Alto data, after careful reexamination of the
two data sets, it was decided to fit only linear and bilin-
ear models because of the lack of sufficient data from
the early stages of the disease. Bilinear models were
also considered by Brooks and Yesavage (25). A linear
model was considered since it was a priori believed
that by the end of the respective studies some subjects
may not have reached the final plateau stage. The
bilinear model presented here was ascertained through

the use of Bayes factors (26) to have by far the best fit
among five models that were considered. Included
among these models were linear models with a single
residual variance parameter across all subjects, a simi-
lar linear model with individual residual variance para-
meters across patients, and bilinear models with vari-
ous different combinations of individual and common
variance parameters for the decline and plateau phases.
The model presented below was independently select-
ed as the best for both data sets. Full details are con-
tained in the report by Bélisle et al. (27).

The model has three levels specified in a hierarchy.
At the first level is the joint density of the data, com-
monly called the likelihood function. The bilinear
model is depicted in figure 6, where it is seen that for
each patient, five parameters are needed to determine
the sloping regression line that changes at some point
to become horizontal in the plateau stage. Ignoring the
patient label, for convenience, these parameters are: b,
the slope of the regression line; v, the variance of the
MMSE scores during the decline period; v,, the vari-
ance of the MMSE scores during the plateau period; A,
the value of the regression line at entry into the plateau
phase; and c, the time at which the regression line
enters the plateau stage. At the second level, each of
the first-level parameters, b, v, v,, b, and ¢, is assigned
a probability distribution on the basis of experience
and past studies, but not on the current data. In our
analysis, we used “low-information” prior distribu-

Am J Epidemiol Vol. 149, No. 10, 1999
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MMSE Score

FIGURE 6. The bilinear model with parameters of the model.

Time

tions, where the entire range of plausible values is cov-
ered by a roughly “flat” prior distribution over the
range of most likely values. Therefore, all likely values
are approximately equally likely a priori. This allowed
the data to dominate the prior distributions. Therefore,
while the prior distributions retain their importance as
a starting point in the modeling process, they con-
tribute little (compared with the data) to the final
numerical estimates of the parameters of the model.
Future use of the model may, of course, include less
diffuse prior distributions that reflect greater experi-
ence with longitudinal Alzheimer’s disease data. At
this level, all of the prior distributions are specified
exactly except for b, which is assumed to have a nor-
mal distribution with unspecified mean and standard
deviation, m and s, respectively. A third level in the
hierarchy is therefore required, where prior probabil-
ity distributions for m and s are specified. The prior
distribution for m was taken to be a normal distribu-
tion, while the prior distribution for s?> was the inverse
chi-square distribution (so that 1/s, often called the
precision, would be chi-square).

Note that since interest here is focused primarily on
the rate of decline, the inclusion of a third level was
restricted to describing the variation in the slope para-
meter b (via m and s). This third level is needed to
summarize the distribution of the rates of decline in a
population, given the observed MMSE scores, as in
figure 5.

Am J Epidemiol Vol. 148, No. 10, 1999

The essence of the model is that the widely varying
rates of decline in a given population may initially be
summarized by their prior probability distribution,
given by information at level 2 when there are no hier-
archical random effects and by levels 2 and 3 when
there are hierarchical random effects. The data of the
current study, represented by the likelihood function
(first level), are used to update this distribution via
Bayes’ theorem to give a posterior distribution from
which all inferences are made. The posterior distribu-
tion summarizes the knowledge about the parameter
values contributed by both past studies and the present
trial. Technically, the updating is carried out through
the Gibbs sampler, the use of which is becoming
increasingly popular for complex medical modeling
(28).

RESULTS

In a preliminary analysis, we verified the appropri-
ateness of using normal distributions to summarize the
ensemble of slopes from each data set by plotting his-
tograms of the individual decline rates given by crude
linear regressions. A separate hierarchical model was
then fitted to the Minneapolis and Palo Alto data sets,
respectively. The summarization achieved by these
models facilitated a comparison between the two loca-
tions. The two populations from which the
Minneapolis and Palo Alto data sets were obtained
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seem to have similar, although not identical, rates of
decline, plateau heights when decline ceases, and
intervals from disease onset to the end of decline. The
observed differences were not substantial from a clini-
cal point of view. For example, there is little clinical
difference between MMSE values that fall below
about 8 points on the scale. Nevertheless, the observed
variation between centers could be true differences or
could be due to sampling variation from relatively
small sample sizes. They could also result from the
slightly different entry criteria of the Minneapolis data
compared with the Palo Alto data set.

We assumed, in the absence of contradictory evi-
dence from past studies, that the prior distributions for
the different parameters were unaffected by group
membership (i.e., Palo Alto or Minneapolis). Figure 7
displays the common prior density for a “randomly
selected” slope along with the posterior densities of
this slope computed from Minneapolis and Palo Alto
data sets. The prior density in figure 7 reflects our
assessment, prior to seeing the current data, that the
slopes would be normally distributed with mean -2,
indicative of an average drop of two points per 6-
month period, but that individual slopes as low as -7
or as high as +3 were not impossible. We allowed for
the possibility of positive scores since, over a short
period of time, it is plausible that the scores of a few

patients might slightly increase. By updating the prior
density using the information contained in each of the
two data sets, we obtained the two posterior densities.
The Minneapolis and Palo Alto posterior slopes are
each again approximately centered around -2 (the
mean for Palo Alto was -1.9, and the mean for
Minneapolis was —2.4), but with smaller variances
than that of the prior density. For example, the slopes
for the vast majority of Palo Alto subjects are expect-
ed to be in the range from —4 to 0, in contrast to the
prior range of -7 to +3. To assess the sensitivity of the
results to the choice of -2 for the prior mean slope, we
repeated the analysis with a prior mean slope of —1.
The results were almost identical and are also similar
to those previously reported in the literature (4, 7, 29).

To quantify this comparison further, we estimated
the probability that a randomly selected rate of decline
from the Minneapolis population is greater than that
from the Palo Alto population. If the two populations
were identical, the probability would be 0.5. This prob-
ability was estimated to be 0.618, which is not sub-
stantially different from 0.5, although it suggests the
possibility that slopes from Minneapolis may be slight-
ly higher.

A histogram of the estimated intervals between onset
and the end of decline is shown in figure 8. Most of the
intervals in both data sets were less than 10 years,

0.4

Probability density
0.2

0.1

0.0

Prior distribution
uuuuu Posterfor distribution - Palo Alto "

8 6 -4 -2

0 2 4 6

Decline in MMSE score per six month period

FIGURE 7. Prior and posterior distributions for the decline slopes in the Palo Alto and Minneapolis data sets, Stanford Alzheimer's Disease
Diagnostic and Treatment Center, 1981-1993, and the Minneapolis Veterans Affairs Medical Center, 1986—1988.
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although they were somewhat higher in the Palo Alto
data set. Again, these differences may be an artefact of
the different lengths of follow-up in the two data sets or
may arise from inherent differences in the two popula-
tions. For example, the Palo Alto patients had some-
what higher education levels and socioeconomic sta-
tuses on average than did patients from Minneapolis.

Figure 9 displays histograms of the plateau heights, h,
for the two locations. Essentially all MMSE scores level
off at 10 points or lower. The plateau heights for Palo
Alto are slightly more concentrated around lower values,
which might be explained by sampling variability and
differences in follow-up times between the two data sets.

Results from goodness-of-fit criteria were examined
for each of the two data sets studied, and the model
was found to fit the data well (27).

CONCLUSION

The work presented in this paper provides an elegant
means to model Alzheimer’s disease by accounting for
the well-documented wide variability in patterns of
decline among Alzheimer’s disease patients. Our
model goes beyond a linear random (mixed) effects
regression model to include a slope that changes at
some fixed, but unknown, time point, commonly

0.20

0.15

0.10

0.05

0.0

0 5 10 15 20 25 30
Time from onset to end of decline (years)
Palo Alto

called two-phase regression. A drawback of standard
two-phase regression models is that they do not allow
for the inclusion, as part of the modeling process, of
prior knowledge one might have about the parameters.
They also do not allow for the change to vary random-
ly in the population. Our Bayesian approach explicitly
allows for the combination of prior knowledge from
past studies with the information in the current trial or
trials and also accommodates the random change
points.

Our model is ideally suited to the comparison of other
populations of Alzheimer’s disease patients, such as
those defined by their apoE status or treatment regimen.
Inspecting curves such as those presented in figure 7 in
treated and untreated groups can graphically demon-
strate treatment effects and lead directly to the proba-
bility that a randomly selected slope from the treatment
group will show less decline than one randomly
selected from the control group. Similarly, our method
should be broadly applicable to the study of the natural
histories and comparison of treatment groups in other
chronic diseases. Indeed, as part of a recent review of
the status of current research in amyotrophic lateral scle-
rosis, Brooks emphasizes the importance of describing
progression by referring to the World Federation of
Neurology Research Group in Neuromuscular Disease

0.20
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FIGURE 8. Histograms of the time from disease onset to end of the decline period in the Palo Alto and Minneapolis data sets, Stanford
Alzheimer's Disease Diagnostic and Treatment Center, 1981-1993, and the Minneapolis Veterans Affairs Medical Center, 1986—1988.
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FIGURE 9. Histograms of the final plateau heights in the Palo Alto and Minneapolis data sets, Stanford Alzheimer’s Disease Diagnostic and
Treatment Center, 1981-1993, and Minneapolis Veterans Affairs Medical Center, 1986-1988.

Subcommittee on Motor Neuron Diseases, one of whose
main areas of concern is “. . . to describe the course of
the disease in individual patients, which would allow for
statistical simplicity...” (30, p. S27).

Although the main purpose of this study was not to
investigate the effect of covariates, by stratifying, we
carried out a preliminary examination of the influ-
ence of age at onset and gender on rate of decline.
Scatterplots of estimated slopes and decline durations
showed neither gender nor age at onset effects, and
with relatively small numbers of subjects, a full
investigation of covariates appeared unwarranted.
Our model, however, could easily be extended to
include covariates. For example, the second-level
hierarchical slope could be allowed to depend on one
or more regression parameters (27). Further, accom-
modating the first plateau, to which Brooks et al. (8)
refer, is also straightforward, although for accurate
estimation there is a need to collect data from the
early stages of Alzheimer’s disease. Our model can
also be extended to accommodate multivariate out-
comes, although at the expense of additional com-
plexity that may be caused by the correlations among
the different measures. The model could also easily
be adapted to estimate decline rates in other measures
of cognitive ability that may have ceiling and floor
effects.
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