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Abstract: Recently, there has been great interest in estimating the decline in cognitive ability in patients

with Alzheimer’s disease. Measuring decline is not straightforward, since one must consider the choice

of scale to measure cognitive ability, possible floor and ceiling effects, between-patient variability, and

the unobserved age-of-onset. The authors demonstrate how to account for the above features by modeling

decline in scores on the Mini-Mental State Exam in two different data sets. To this end, they use hierarchical

Bayesian models with change-points, for which posterior distributions are calculated using the Gibbs

sampler. They make comparisons between several such models using both prior and posterior Bayes

factors, and compare the results from the models suggested by these two model selection criteria.

Estimation bayésienne du déclin cognitif de patients atteints de la maladie d’Alzheimer

Résumé : On s’est beaucoup intéressé ces derniers temps à l’estimation du déclin des fonctions cognitives

des personnes atteintes de la maladie d’Alzheimer. Il n’est pas facile de quantifier ce déclin, qui dépend de

l’échelle utilisée pour mesurer les fonctions cognitives, mais aussi de la variabilité entre les individus, de

l’incertitude entourant le moment exact du début de leur maladie et d’éventuels effets plancher et plafond.

Les auteurs montrent comment il est possible de tenir compte de ces différents éléments en modélisant le

déclin observé dans les résultats obtenus par deux groupes de patients au mini-examen de l’état mental.

Ils utilisent pour ce faire des modèles bayésiens hiérarchiques avec points de jonction, pour lesquels ils

calculent les lois a posteriori au moyen de l’échantillonneur de Gibbs. Ils comparent plusieurs modèles

de ce type au moyen de facteurs de Bayes a priori et a posteriori ; ils comparent ensuite les résultats des

modèles suggérés par ces deux critères de sélection.

1. INTRODUCTION

Alzheimer’s Disease (AD) is a senile dementia that is characterized by progressive cognitive im-
pairment, culminating in death (CSHA 1994). Much of the epidemiologic literature has focused on
the pattern of cognitive deterioration in patients with AD. One of the most commonly used scales
of cognitive impairment is the Mini-Mental State Scale (Folstein, Folstein & McHugh 1975).

Assessment of the pattern of cognitive decline in AD patients is important for several reasons.
First, the design and analysis of clinical trials of treatments for AD depend on correctly modeling
how a cohort of patients can be expected to decline. Models of decline can also be used to examine
the role played by covariates such as age-of-onset, gender, and years of education in influencing the
rapidity of decline (Katzman, Brown, Thal, Fuld, Aronson, Butters, Klauber, Wiederholt, Pay &
Xiong 1988; Teri, McCurry, Edland, Kukull & Larson 1995). Finally, by using a regression model,
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it would be possible to predict the disease course of Alzheimer’s patients, thereby anticipating
future care that may be needed.

Here, a hierarchical modeling approach will be presented to describe longitudinal decline in
Mini-Mental State Exam (MMSE) scores based on data collected from two separate groups of
patients. The maximum score is 30 and the minimum score is 0. Scores below 24 are taken to be
indicative of some type of cognitive impairment. We introduce a change-point regression model
to account for commonly observed patterns of decline. Five random-effect regression models of
varying complexity are compared using both prior and posterior Bayes factors. Included amongst
these is a linear random-effect model, a special case of what is known as mixed models. A non-linear
(biphasic) change-point regression model is assessed to be superior to a linear mixed model.

The preponderance of the literature on modeling decline in AD has focussed on fixed-effect
models (Katzman et al. 1988; Teri et al. 1995, Yesavage, Poulsen, Sheikh & Tanke 1988; Mortimer,
Ebbitt, Jun & Finch 1992; Haxby, Raffaele, Gillette, Schapiro & Rapoport 1992), including fixed-
effect growth curves (Liu, Tsai & Stern 1996) and a tri-phasic regression model proposed by Brooks,
Kraemer, Tanke & Yesavage (1993). More recently, the well recognized between patient variability
has led to the consideration of the linear mixed models of Laird & Ware (1982) by researchers
in the field of AD (Maltby Broe, Creasy, Jorm, Christensen & Brooks 1994; Jacqmin-Gadda,
Fabrigoule, Commenges & Dartigues 1997). Their use stems, to some extent, from the availability
of software packages such as “PROC MIXED” from SAS, that easily handle such models. As will
be seen below, however, these models have serious drawbacks, as they fail to take into account
simultaneously four important features: both inter- and intra-patient variability, and plateaus in
the decline rates arising from insensitivity of the MMSE and other scales to cognitive changes late
in the disease course. In particular, standard mixed effects models, which can be used when the
point at which the slope changes is a fixed constant, are not applicable here. That is, we introduce
the point of change as a random effect and thereby are led to a mixture model which is non-linear.
In fact, Liu et al. (1996) state in their concluding remarks that it would be very difficult to allow
their regression and curve parameters to vary from subject to subject.

We assume, realistically, that conditional on the subject specific parameters, within-patient
scores are independent, being separated by relatively long periods of time. There seems to be little
advantage in using a smooth curve in place of a simple linear biphasic regression. An important
use for models of decline is in the comparison of the rates of decline between different groups of
subjects with AD. For parametrically defined smooth curves, the rate of decline, defined as the
derivative, will vary with time. A reporting problem then arises as to which time point to choose
in order to best summarize the rate of decline, especially as each subject changes at a different
rate. Moreover, it has been well documented in the AD literature that decline in MMSE scores is
nearly linear (Mortimer et al. 1992; Haxby et al. 1992; Brooks et al. 1993; Ashford, Shan, Butler,
Rajasekar & Schmidt 1995), apart from the plateaus.

The outline of the paper is as follows. The two data sets of MMSE scores collected longitudinally
on different groups of patients are introduced in Section 2. In Section 3, we show that by using a
hierarchical Bayesian regression model with a change in slope, all of the important features common
to longitudinal AD data as described above can be elegantly accommodated. The model we use
here is similar to that proposed by Lange, Carlin & Gelfand (1992) in the context of following CD4
counts over time in patients with HIV. Carlin, Gelfand & Smith (1992) also present a variety of
examples where Bayesian hierarchical change-point models can be used. The various alternative
models are fitted and compared using the two data sets of MMSE scores in Section 4. In Section 4.3,
we show how our model can be extended in a straightforward fashion to allow the rates of decline
to depend on one or more covariates, without compromising the random-effect component of the
model. In Section 5 we conclude with a discussion.
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2. DESCRIPTION OF THE DATA SETS

Two independently collected data sets from different parts of the United States were analysed in
this study. These will be referred to as the Minneapolis data and Palo Alto data, respectively.
Although these data were not collected with a comparative study in mind, as will be seen in
Section 4, the parameter estimates from each data set seem to be similar.

2.1 The Minneapolis Data Set

The Minneapolis data set consists of subjects who were recruited by Mortimer et al. (1992) from
the Minneapolis VA Medical Center and from the community, to participate in a prospective
longitudinal study of primary degenerative dementia. Ninety three subjects were initially screened,
and after the imposition of various inclusion/exclusion criteria, sixty five subjects with probable
or definite AD remained for the analysis.

Following acceptance into the study, subjects were assessed at 6-month intervals until death
or loss due to other reasons. No subject contributed more than 8 data points; that is, a baseline
measurement and three and one half years of follow-up. Data collected consisted of the approximate
age-of-onset, age at entry into the study, gender and years of education. Age-of-onset was provided
by the family and as such is probably inaccurate, because of the vague initial symptoms of AD.
We discuss this point further in Section 3.4.

2.2 The Palo Alto Data Set

Subjects for the Palo Alto data set were identified and recruited from the Stanford Alzheimer’s
Disease Diagnostic and Treatment Center to participate in a longitudinal study of dementia (Brooks
et al. 1993). Patients with less than three MMSE data points were excluded. Data on 55 subjects,
again assessed at 6-month intervals, were available after various inclusion/exclusion criteria were
applied. The maximum follow-up time was 7.5 years.

Refer to Table 1 for a summary of the main features of these two data sets. Figure 4 includes
the data from eight typical subjects, four from each data set. Time = 0 on these plots refers to
the time each patient entered the study.

Table 1: Demographic characteristics for study subjects. ∗ indicates six subjects with missing
information. † indicates four subjects with missing information. ‡ indicates one subject with
missing information. Family history data were not available for the Palo Alto data.

Palo Alto Minneapolis

Number of subjects 55 65
Mean (sd) age at entry into the study 64.1 (9.0)∗ 67.6 (8.7)
Mean (sd) age of AD onset 60.3 (9.7)∗ 63.7 (8.5)†

Number (%) of males 32 (65%) 47 (72%)
Family history of dementia NA 26 (41%)‡

Mean (sd) follow-up years 5.1 (2.7) 2.3 (0.85)
Mean (sd) number of visits 6.7 (3.1) 5.5 (1.7)
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3. THE MODEL

3.1 Notation and Likelihood Function

In general, one may expect that three distinct periods could be identified in MMSE trajectories
for dementia patients from disease onset to the final stages of disease: an initial period of stability,
followed by a period of relatively steady decline ending most often with a MMSE score below 10,
and a final stable period, where either decline truly stops, or, more likely, the MMSE becomes
insensitive to further decline. Because of limited data early on in the disease, modeling here will
take into account the latter plateau and decline periods only.

Let N be the total number of subjects in each data set, so that N = 65 and 55 for the
Minneapolis and Palo Alto data sets, respectively. Let M be the largest possible number of
MMSE tests across all individuals in the study, where M = 8 (3.5 years) for Minneapolis, while
M = 16 (7.5 years) for Palo Alto.

Let mi be the total number of evaluations (decline and plateau periods combined) for subject
i, and let ni(τi) ≤ mi be the total number of MMSE scores for each subject during the decline
period. While mi is known, ni is a function of the latent change-point, and must be estimated.
Let τi be the unobserved change-point representing the index at which the decline period ends and
the plateau period begins for each subject i. This latent change-point is permitted to occur after
the period of observation for subject i has ended, up to a maximum of 2M time periods. The
extension of τi to times past mi avoids problems of truncation in estimating the time from disease
onset to the end of decline. The vast majority of patients should have entered their final plateau
phases by time period 2M .

Let θi be the slope (rate of decline) during the decline period. In particular, θi is the expected
decline in MMSE score per six-month period (the interval between MMSE tests), for subject i.
Thus the annual expected decline for subject i is 2θi.

Let hi be the mean level at the final plateau period for subject i. Let Yij be the MMSE score for
subject i in the jth time period, j = 1, . . . , M , measured from entry into the study. The value Yij

is, therefore, the score of the test administered 6× (j − 1) months after entry into the study. This
value is considered missing if the test was not administered during a given period for a particular
subject. Therefore, also denote

δij =
{

1 if Yij is not missing, and
0 if Yij is missing

for i = 1, 2, . . . , N , and j = 1, 2, . . . , M . Let Yi be the vector of MMSE scores for subject i,
Yi = (Yi1, . . . , YiM ). Note that ni =

∑
j≤τi

δij . Finally, let σ2
1i and σ2

2i denote the variance of the
MMSE measurements during the decline and plateau periods, respectively, for subject i.

With this notation, conditional on τi, θi, hi, σ2
1i, and σ2

2i, we assumed Yij ∼ N(hi+θi(j−τi), σ2
1i)

for j ≤ τi, and Yij ∼ N(hi, σ
2
2i) for j > τi, for all subjects i = 1, . . . , N . The conditional likelihood

for patient i given (τi, θi, hi, σ
2
1i, σ

2
2i) under Model 1 is therefore

f(Yi | τi, θi, hi, σ
2
1i, σ

2
2i) =

∏
j≤τi

(
1√

2πσ1i

)
e
− 1

2σ2
1i

{Yij−hi−θi(j−τi)}2 ∏
j>τi

(
1√

2πσ2i

)
e
− 1

2σ2
2i

(Yij−hi)
2

∝
(

1
σ1i

)ni(τi)

exp


− 1

2σ2
1i

τi∑
j=1

δij {Yij − hi − θi(j − τi)}2


 ×

(
1

σ2i

)mi(τi)−ni(τi)

exp


− 1

2σ2
2i

M∑
j=τi+1

δij (Yij − hi)
2


 , (1)
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where the second term in the last line of equation (1) is set to 1 if τi ≥ M , and ni(τi) and
mi(τi)− ni(τi) are the numbers of observations before and after τi for patient i, respectively. The
full likelihood is obtained by taking the product of these individual subject contributions over all
subjects.

Conditional on the subject specific parameters, therefore, we assume independence for both
between- and within-patient data. While it is still possible to have correlated errors within patients
in a random-effect model, accurate estimation of the correlation structure would be difficult owing
to the small number of observations in each of the decline and plateau phases from each subject.
Furthermore, it is difficult to distinguish between non-linearities such as those induced by change-
point models and correlated errors within a linear structure. This is because departures from
linearity of the type seen in biphasic regression can, over short sequences of data, be incorrectly
interpreted as linearity with positively correlated errors. We therefore assume a parsimonious
model with independent errors within subjects.

The model we described above, which we label as Model 1, is the most general model we
investigated, but various simplifications are also of interest. A preliminary examination of the
data via scatter plots indicated that many subjects may not yet have reached their plateau; that
is, they were still in their period of decline when the study ended. This suggested that a simple
linear mixed model without change-points may fit the data almost as well as the biphasic model,
but with many fewer parameters. The likelihood function here is similar to that described above,
but with the change-point fixed at τ = 2M , that is, no change. It is also possible that a model
with a common variance for all subjects within the decline and/or plateaus periods would fit the
data almost as well, but with considerably fewer parameters, that is, setting σ2

i1 = σ2
1 and/or

σ2
i2 = σ2

2 . Therefore, five different models were fit to each of the two data sets. The main features
of these models, henceforth referred to as Model 1 through Model 5 in order of decreasing numbers
of parameters, are summarized in Table 2.

Table 2: Summary of the features of the five models fitted and compared in this study. N/A
indicates “non-applicable.”

Model Model type Individual variances Individual variances
for decline period for plateau period

1 biphasic yes yes
2 biphasic yes no
3 biphasic no no
4 linear yes N/A
5 linear no N/A

The above likelihood specification assumes missingness at random for the missing data. Even
patients with very low MMSE scores (below 10) tended to come in at regular intervals, and there
was a roughly constant proportion of missing data items across times. It is unlikely that missing
values “between” other observed values would introduce bias, as subsequent observed scores would
continue along the same straight line.

Let αi represent the true age of onset for patient i. Estimated times of onset, ai, are typically
provided by a family member, but are subject to error. We assumed that ai = αi + εi, where εi

are independent and identically distributed N(0, η2) variables. Combining the information from
our main model for decline described above with this “mini-model” for the times of AD onset, we
are able to estimate the time from disease onset to the end of the decline period.

3.2 Prior Distributions

The overall strategy was to create diffuse but still informative prior distributions, in the sense that
parameter values for the prior distributions were selected to cover a somewhat wider interval than
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the available prior information might suggest. In this way, potential differences between this and
past studies are accommodated.

We assumed the variates for the slope, the timing of the end of the decline period, and MMSE
level of the post-decline plateau period to be a priori independent, both within and between
subjects. While these parameters are related, our use of diffuse prior distributions, and the relation
between these parameters built into the likelihood function, means that it is not important that
this correlation be included in the prior distribution. Specifically, a uniform prior distribution
was assumed for each τi, so that R(τi = k) = 1/(2M), k = 1, . . . , 2M . For the prior distribution
on hi, it was assumed that P(hi = 0) = · · · = P(hi = 8) = 0.1026, P(hi = 9) = 0.0773,
P(hi = 10) = 0.0519, P(hi = 11) = 0.0265, and P(hi = 12) = · · · = P(hi = 30) = 0.0012. These
probabilities were derived by assuming a “piecewise linear” prior on these discrete points, with
P(hi ≤ 10) = 0.95.

A normal hierarchical model was assumed for the prior distribution for the slopes, where the
θi were independently and identically distributed as

θi|µ, φ2 ∼ N(µ, φ2), i = 1, . . . , N.

The normal assumption was visually checked via a histogram of slope estimates across individuals in
a preliminary analysis, which appeared close to normal. To estimate the slopes, we first graphically
inspected the scatter plots of individual patient MMSE data over time, and removed the points
which were clearly from the plateau phase. We next fit a simple (non-hierarchical) regression model
without a change-point to estimate the slopes for each patient.

We used the normal/chi-square family of conjugate prior distributions for µ and φ2, so that a
priori,

φ2 ∼ s0χ
−2
ν0

and µ|φ2 ∼ N

(
µ0,

φ2

`0

)
.

Similarly, the prior distributions for the variances of the observations in both the decline and
plateau periods, for each patient, were assumed to be inverse chi-square, so that

σ2
1i ∼ s01χ

−2
ν01

and σ2
2i ∼ s02χ

−2
ν02

.

Previous literature (Katzman et al. 1988; Yesavage et al. 1988) suggests that the mean annual
change is in the range from −2 to −7. In keeping with our prior distribution selection strategy, we
desired the average annual rates of change to be in the slightly wider range from about 0 to −8. We
chose E(µ) = µ0 = −2 so that the prior mean average annual rate of change would be −4. Since
we would like the standard deviation about this mean to be approximately 2, and since the inverse
chi-square distribution has mean 1/(ν − 2) and variance 2/{(ν − 2)2(ν − 4)}, we set E(φ2) = 4 and
var(φ2) = 25. We chose `0 = 3, ν0 = 5.28 and s0 = 13.12, so that 95% of the prior probability for
the mean of the hierarchical distribution for the slopes was in the range (−3.9,−0.08), calculated
from the marginal tν0=5.28 distribution for µ. This corresponds to (−7.8,−0.16) on an annual basis.
Similarly, we selected s01 = 8, ν01 = 6, s02 = 2.5 and ν01 = 4.5, so that E(σ2

1i) = 2, var(σ2
1i) = 4,

E(σ2
2i) = 1 and var(σ2

2i) = 4. This was based on our belief that the variability of the MMSE
scores would be higher during the decline phase than in the final plateau phase. The prior 95%
probability intervals for σ2

1i and σ2
2i were (0.35, 4.9) and (0.12, 2.7), respectively.

For the age-of-onset, we assumed a priori that (α1, . . . , αN ) and η2 are independent with
respective marginal densities

f(α1, . . . , αN) =
{

1/(ri − c1), for c1 ≤ αi ≤ ri

0, otherwise

and

f
(
η2

)
=

{
1/c2, for η2 ∈ (0, c2]
0, otherwise.
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The lower limit for the true age at disease onset was chosen from the literature to be c1 = 40
years, and we right-truncated the age of onset for each subject to be less than their age at entry
into the study, denoted by ri. Of course, we also have ai ≤ ri across all subjects. The prior
upper bound for the standard deviation of onset time in the population was set to be

√
c2 = 4

years. Therefore, the a priori range of the observed age of onset around the true (latent) value
is (−8, +8). Since virtually all caregivers should report an observed onset time within 8 years
of the true value, a uniform prior distribution for η2 was preferred to the usual conjugate but
unbounded non-informative prior distribution for variances. Since the date at time 0 (first MMSE
measurement) for each patient is known, the αi’s are easily converted to onset times, to be used
later for the estimation of the latent duration from onset to entry into the plateau phase.

The prior distributions we selected are somewhat arbitrary, in the sense that other AD re-
searchers may have different appreciations of the past literature. Nevertheless, our prior distribu-
tions were expected to have little influence on the posterior distributions of the parameters, since
the information in the data is much larger than that contained in the prior distribution. Never-
theless, a limited robustness study was carried out using sampling importance resampling (SIR)
as discussed by Rubin (1987) and Smith & Roberts (1993). For example, doubling the mean of
the prior distribution for mean slope (setting µ0 = −4 in Equation 2) had only a negligible effect
on the posterior distributions of all parameters, as did reversing the direction of the slope (setting
µ0 = +2 rather than µ0 = −2). With such extreme changes in prior parameter values for the slope
having no impact on posterior densities, we concluded that our prior distributions were sufficiently
diffuse so that an exhaustive robustness analysis was not necessary.

3.3 Implementation

The biphasic regression model described above is an example of a multi-path (panel data) change-
point problem. The Gibbs sampler is ideally suited for estimation in the change-point model
used here, since considering the latent data τi, i = 1, . . . , N , to be an additional set of unknown
parameters allows standard results on conjugate distributions to be used throughout, considerably
simplifying the analysis. In order to use the Gibbs sampler, the “full conditional distribution” for
each unknown parameter must be specified. These are given in the Appendix.

In order to estimate the required number of iterations (cycles) to carry out in the Gibbs sampler,
we used the method suggested by Raftery & Lewis (1992). Using the Gibbsit program available
from these authors, and specifying that the 95% posterior credible intervals should have actual
posterior coverage between 0.925 and 0.975 with high probability, we decided to run 5000 iterations
with a burn-in of 100 iterations. This choice was verified by following the procedure suggested by
Raftery and Lewis. We also ran the sampler several times for each model by using different starting
values, with similar results each time (Gelman & Rubin 1992 statistic near 1). The Gibbs sampler
was implemented using Splus (version 3.3) functions written specifically for these data sets. Bayes
factors were calculated using a different algorithm programmed in BUGS (version 0.6), and in fact,
BUGS could have been used for the entire Gibbs sampler as well. The calculation of the Bayes
factor was less stable than sampling from the posterior density, so that up to 100,000 iterations
were required for accurate estimation.

3.4 Bayes Factors

Competing models, Mi and Mj, i, j = 1, . . . , 5, i 6= j, were compared at data x by computing the
Bayes factor (Kass & Raftery 1995),

Bij =
p(x|Mi)
p(x|Mj)

=
p(Mi|x)/p(Mj |x)

p(Mi)/p(Mj)
,

where p(x|Mj) =
∫

pj(x|γj)pj(γj)dγj , and γj represents the vector of all unknown parameters in
Model Mj, j = 1, . . . , 5. We assumed a priori that p(Mi) = p(Mj). Since no improper prior
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distributions were used, approximate Bayes factors were calculated from the output of the Gibbs
sampler, following the method of Chib (1995), Section 2.1.3. We called this the prior Bayes factor,
to distinguish it from the posterior Bayes factor (Aitkin 1991). Posterior Bayes factors are defined
as above, except that now p(x|Mj) =

∫
pj(x|γj)pj(γj |x)dγj , so that the likelihood function of the

data is mixed over the posterior distribution of the unknown parameters γj , rather than the prior
distribution of γj . The posterior Bayes factor is computationally simpler to estimate than the
prior Bayes factor, since one may more directly use the output of the Gibbs sampler. In particular,
using the notation of Section 3, we calculated

p(Y |Mj) =
N∏

i=1

T∑
z=1

p(Yi|Mj , γiz)/T ,

where T is the total number of iterations of the Gibbs sampler (after convergence), and γiz is
the vector of parameter values for (τi, θi, hi, σ

2
1i, σ

2
2i) at the zth iteration for the ith patient. The

densities p(Yi|Mj, γiz) were calculated from the likelihood functions discussed in Section 3.
There has been considerable discussion in the literature about the relative merits of prior versus

posterior Bayes factors. Aitkin (1991), Kass (1993), and Conigliani & O’Hagan (2000) all point
out that the prior Bayes factor is more sensitive to the choice of prior distribution compared
to the posterior Bayes factor. Kass (1993) provides illustrations of this fact, and also mentions
that hypothesis testing through Bayes factors is more sensitive to the prior inputs than posterior
estimation of parameters. In other words, it is often the case that parameter estimation remains
robust across a range of prior specifications, while the Bayes factor substantially changes across
these same prior choices. The posterior Bayes factor is robust to changes in the prior distribution
except in small sample sizes, and also avoids the Lindley paradox (Aitkin 1991). On the other
hand, posterior Bayes factors have been criticized for making double use of the data, and for not
being a strictly Bayesian approach (see the discussions by Lindley and Cuzick in Aitkin 1991).
While a full discussion of these issues is beyond the scope of this article, we calculate and compare
results from both the prior and posterior Bayes factors here. See Key, Pericchi & Smith (1999),
Bayarri & Berger (1999), and De Santis & Spezzaferri (1997) for other alternatives to prior and
posterior Bayes factors in model selection.

4. RESULTS

The results from the model selection procedure described in Section 3.6 are first discussed, followed
by detailed descriptions of the inferences from the best fitting model. In all cases, posterior means
for a given parameter are calculated as the mean of the samples across iterations of the Gibbs
sampler. Similarly, 95% credible intervals are calculated from the 2.5% and 97.5% quantiles of the
Gibbs iterates.

4.1 Model Selection

Table 3 lists the prior and posterior Bayes factors for both data sets for all possible model com-
parisons. In both data sets, the best supported model using posterior Bayes factors was Model 2
(biphasic with individual variances during the decline period but a common variance across all
subjects during the plateau period). For the data set from Palo Alto, support for this model
was substantial, but in the Minneapolis data set, a close competitor was the biphasic model with
common variances in both periods. The Bayes factor was 2.34. Converting the odds given by the
Bayes factor to a probability gives 2.34/(2.34 + 1) = 0.7, so that the posterior probability that
Model 2 is superior to Model 3 is 0.70. For the Palo Alto data set, Model 2 had a Bayes factor of
approximately 1027 compared to Model 1, indicating virtual certainty of the superiority of Model 2.
While this and other Bayes F factors in Table 3 are large, these are not unexpected given the large
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total number of data points. This superiority of Model 2 over Model 1 indicates that there is little
evidence of individual variability post-decline period, so that a single variance parameter suffices
here.

Table 3: Prior and Posterior Bayes factors for all model comparisons in both the Palo Alto and
Minneapolis data sets. Row and column numbers refer to the model numbers from Table 2. The
entry in row i, column j refers to the Bayes factor for Model i compared to Model j. For example,
the i = 1 and j = 2 entry in the top table, 1029.7, represents the Bayes factor for Model 1 compared
to Model 2, with Model 1 superior to Model 2.

Prior Bayes factors
Data set from Palo Alto

1 2 3 4 5 Model rank
1 1 1029.7 1040.8 10119.2 1096.5 1
2 10−29.7 1 1011.1 1089.4 1066.7 2
3 1040.8 10−11.1 1 1078.4 1055.6 3
4 10−119.2 10−89.4 10−78.4 1 10−22.7 5
5 10−96.5 10−66.7 10−55.6 1022.7 1 4

Data set from Minneapolis
1 2 3 4 5 Model rank

1 1 1059.8 10103.3 10191.6 10179.6 1
2 10−59.8 1 1043.6 10131.9 10119.9 2
3 10−103.3 10−43.6 1 1088.3 1076.3 3
4 10−191.6 10−131.9 10−88.3 1 10−12.0 5
5 10−179.6 10−119.9 10−76.3 1012.0 1 4

Posterior Bayes factors
Data set from Palo Alto

1 2 3 4 5 Model rank
1 1 10−15.8 1011.3 1078.1 1051.6 2
2 1015.8 1 1027.1 1093.8 1067.3 1
3 10−11.3 10−27.1 1 1066.8 1040.3 3
4 10−78.1 10−93.8 10−66.8 1 10−26.5 5
5 10−51.6 10−67.3 10−40.3 1026.5 1 4

Data set from Minneapolis
1 2 3 4 5 Model rank

1 1 10−25.4 10−25.0 1016.6 100.3 3
2 1025.4 1 100.37 1042.0 1025.7 1
3 1025.0 10−0.4 1 1041.7 1025.3 2
4 10−16.6 10−42.0 10−41.7 1 10−16.3 5
5 10−0.3 10−25.7 10−25.3 1016.3 1 4

The prior Bayes factor largely agrees with the posterior Bayes factor, in that the relative
ordering of Models 3, 4, and 5 are similar, and both criteria agree that a change-point model is
superior to a linear mixed model. In both data sets, however, the prior Bayes factor prefers Model 1,
with individual variances in both the decline and plateau phases, over Model 2 which has a single
variance parameter for the plateau phase. As discussed in Section 3.4, both the prior and posterior
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Bayes factors calculate the average likelihood with respect to a distribution over the unknown
parameters, the only difference being whether this distribution is the prior or the posterior. In this
case it seems that averaging over the wider prior distribution leads to higher average likelihoods in
the model with individual variances in the plateau phase. However, once more accurate estimates of
the variance parameters are available, the posterior Bayes factor suggests that individual variance
parameters are not needed.

While the debate over which Bayes factor to use (if any) continues, detailed discussion of this
issue is beyond the scope of the present article. For both of our data sets, the posterior distributions
of the main parameters were very similar for Model 1 and Model 2. Therefore, the decision as to
whether to base our model choice on prior or posterior Bayes factors is of little practical importance,
as far as main parameter estimation is concerned. This agrees with the results of Kass (1993). We
have somewhat arbitrarily chosen to present below the results from Model 2, which was supported
by the posterior Bayes factor for both data sets.

4.2 Main Results

Figure 1 displays the prior distribution for the mean slope, µ, and the posterior densities for µ from
the Palo Alto and Minneapolis data sets. The posterior distributions displayed here are obtained
from “Rao-Blackwell” estimates (see Gelfand & Smith 1990) of Equation (2), using the output
of the Gibbs sampler. The prior mean for µ was −2.0, and the posterior mean of −1.90 from
the Palo Alto data set agreed closely with this value. The posterior mean slope calculated from
the Minneapolis data set was slightly steeper, at −2.4. While this could be indicative of a small
difference in the decline rates in the two populations, it could also have arisen by chance, or as an
artifact of the longer follow-up times in the Palo Alto data set. A slight decrease in mean decline
rate could occur if, occasionally, subjects with observations in the plateau phase are estimated not
to have had a change-point, and therefore have for that iteration a less negative slope estimate.

Decline in MMSE score per six month period
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Figure 1: Prior distribution and posterior distributions for both Palo Alto and Minneapolis data
sets for the mean decline slope µ.

Our hierarchical model assumes that the slope of a randomly selected individual in the popu-
lation will follow a N(µ, φ2) distribution. This applies to patients selected from either Palo Alto
or Minneapolis, although the two posterior distributions will be different since we analyse the two
data sets separately. The prior distributions discussed in Section 3.4 are updated by the data
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to posterior distributions, summarizing the information now known about µ and φ2 at each site.
For each site, we calculate marginal posterior distributions for these parameters obtained by “Rao-
Blackwellization” (Gelfand & Smith 1990). Figure 2 displays each of these normal densities, and as
such represents the densities of randomly selected slopes from each of these populations. Figure 2
can be interpreted as presenting the distribution of the slope for the “(n + 1)th” subject drawn
from each of the two updated distributions. The original prior density for this same quantity is also
given. While Figure 1 displays prior and posterior distributions for the mean slope of a population
of subjects, the more widely dispersed distributions of Figure 2 display the individual-to-individual
variations about the mean slopes in Figure 1.

Decline in MMSE score per six month period
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Figure 2: Prior distribution and posterior distributions for both Palo Alto and Minneapolis data
sets for the decline slopes across individuals. Thus, this figure displays the posterior distributions
of the slopes of the next randomly selected subject drawn from each of the two populations, along
with this same distribution prior to the consideration of the current data sets.

While prior slopes ranged from approximately −7 to +3 points on the MMSE per six-month
period, this narrowed to approximately −4 to 0 within the Palo Alto subjects. The range was
similar but slightly wider for the Minneapolis data set. Again, this difference may be due to
genuine differences between patients in the two different regions. It may also be due at least in
part to the shorter follow-up times and to less information about the slopes (despite the slightly
larger sample size), leading to a posterior density slightly closer to the prior density. Support for
the first explanation comes from Figure 3, which displays histograms of the posterior means of
the subject-specific marginal densities for the slopes during decline, plateau heights and duration
from disease onset to end of the decline period. These were calculated as the sample means of the
appropriate output from the Gibbs sampler. The top pair of histograms suggest that two subjects
had evidence of a steep slope in the range of −5 to −6 MMSE points per six-month period. As
expected, most plateau scores were below 10, with the majority below 5. Overall, the plateau
period scores were lower in the Palo Alto data set, again likely due to the longer follow-up times,
which also lead to the longer duration from onset to the end of the decline period.

Approximately 75% of the Palo Alto subjects were classified to have changed (probability that
τi is less than the time of last follow-up exceeds 0.9) or not to have changed (probability that τi is
less than the time of last follow-up is less than 0.1) from their decline period to the plateau period
by the end of the study, while fewer than half could be as clearly classified in the Minneapolis
data set. This is almost surely due to the difference in follow-up times between the two groups
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of patients. The average true age-of-onset in the Palo Alto data was estimated to be 60.2 (95%
credible interval = 57.5, 63.0) years, while it was 63.7 (95% credible interval = 61.5, 65.8) for the
Minneapolis data set. The 95% range of age-of-onset was estimated to be 41.1 to 79.3 in the Palo
Alto data set and 47.0 to 80.3 in the Minneapolis data set.
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Figure 3: Histograms of the means of the subject specific posterior marginal densities for the
decline slopes, plateau heights, and duration from disease onset to the end of the decline period,
for both Palo Alto and Minneapolis data sets.

An exploratory analysis that plotted estimated slopes and decline durations versus age and
gender in both data sets did not reveal any interesting patterns (data not shown). With rela-
tively small data sets, however, we could not adequately investigate the effects of these and other
potentially interesting covariates. This issue deserves further study in a larger data set.

4.3 Modeling Covariates

There is a very natural way to include covariates in our model. Referring to Section 3.4, suppose
that subject i is associated with the covariate vector z′i = (zi1, zi2, . . . , zir). Suppose that the
decline slope, θi, for patient i is such that

θi

∣∣ [
µ

(
β′zi

)
, φ2

] ∼ N
(
µ

(
β′zi

)
, φ2

)
,
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where β′ = (β1, . . . , βr)′ is a vector of r regression coefficients. A standard choice for µ(·) would
be µ(β′zi) = β′zi. Given a choice of reference prior, say f(β, φ2) ∝ φ−2, it then follows (Gelman,
Carlin, Stern & Rubin 1995, p. 236) that

β
∣∣ [

z, φ2, θ
] ∼ Multivariate Normal,

with mean vector β̂ = (z′z)−1z′θ, and covariance matrix z′z, where z = (z1, . . . , zN ), θ =
(θ1, . . . ,θN ), and φ2|z, θ ∼ s2χ−2

N−r, where

s2 =
1

N − r

(
θ − β̂

′
z
)′ (

θ − β̂
′
z
)

.

Because these two distributions are standard, their inclusion in the Gibbs sampler is straightfor-
ward. In the case where a proper (conjugate) prior is used, one may apply the methods described
in Gelman et al. (1995), Section 8.9.

The introduction of covariates allows the distribution from which the slopes θi are sampled
to depend on these covariates. In this way, the realized individual slopes are tailored to their
accompanying covariates. Moreover, because the slopes are sampled independently, even individ-
uals with the same covariate values will have different slopes, thus reflecting the well documented
variability in decline among ostensibly similar subjects. The random effects feature of the model
is thus maintained.

5. DISCUSSION

The types of models and methods of inference employed here provide powerful alternatives to the
limitations of linear mixed models in the analysis of clinical trials of drugs that may slow the
progression of Alzheimer’s Disease (AD). In particular, by including random change points that
are allowed to differ from subject to subject, we allow for non-linearity in the slopes. Indeed, any
model not specifically taking the plateau phase into account will lead to underestimation of the
decline rate. The hierarchical parameters for the slopes means that decline rates in the treatment
and control group may be compared. Thus, the models do not represent simple extensions of linear
mixed models, but by incorporating features specific to AD (and certain other chronic diseases)
one is led to non-linear mixture models.

The prior and posterior Bayes factors differed somewhat in their choice of final model. This is
not too surprising, given that our two leading models, Models 1 and 2, were non-nested. Never-
theless, both criteria agreed that a change-point is needed. Furthermore, our results for the slope
were robust to the choice of whether variance parameters were constant or not across individuals.
Therefore, our results showed that the mean annual decline in MMSE scores in AD patients is in
the range from 4 to 5 points, with most individual slopes in the range from 0 to 8 points per year.
The time from disease onset to the end of the decline period, for the subjects of the two centres
analyzed, is usually between 5 to 12 years. Hence an “average patient” will decline by about 4
points per year over a 5- or 6-year period, assuming an initial period of no measurable decline in
the early stages of the disease, although there is great variability in these trajectories. Figure 4
presents a sample of trajectories.

The information provided by the model presented here could be helpful to clinicians advising
patients and their families as to what to expect as the disease progresses, as well as helping in
the planning of future clinical trials. In addition to posterior density plots like those in Figures 1
and 2, one can estimate the posterior probability that the mean slope in one group is greater than
that in another group. This allows for simple quantitative between group comparisons, such as
between two competing treatments in a clinical trial.

The two data sets showed remarkable similarity, for example in the choice of best fitting model
and range of values for the slope. Hierarchical modeling was useful in obtaining more stable
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estimates of the slopes for each subject, as well as for describing the distribution of the ensemble
of slopes across subjects. We did not use hierarchical modeling for the variances or change-points
across subjects, but this may be useful for some problems or data sets. Few data sets currently exist
with sufficient follow-up time of AD patients for stable estimation of individual patient parameters
based on the data from the individual alone. Our model may be applied to larger longitudinal
data sets with data collected closer to AD onset times, which would allow for examination of the
effects of covariates on decline rates as well as investigation of the early phase of the disease. This
would also allow for better estimation of age-of-onset, since estimation of the first change-point in
a tri-phasic model would add an earlier lower limit to the onset time. While we have assumed that
decline levels off after a sufficiently low score is reached, it would be a simple matter to extend
our model to allow for a non-zero slope beyond the change point. In all cases, estimation could
proceed by Markov chain Monte Carlo methods similar to those presented here. With applicability
in mind, we chose to use an easily interpreted, biphasic though non-standard mixture model for
decline. Its use is clearly not restricted to the analysis of MMSE scores, as it may be applied to
other measures of decline that depend on tests insensitive to change early or late in the disease, as
well as to longitudinal data from other diseases.
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Figure 4: Scatter plots of the fitted Model 2 versus observed data for 4 representative subjects
in each of the Palo Alto and Minneapolis data sets.
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There have been attempts to use simple Markov models to describe decline in patients with
AD (Jönsson, Lindgren, Wimo, Jönsson & Winblad 1999; Sonnenberg & Leventhal 1998), with
the main goal of assessing the cost effectiveness of proposed treatments. In some cases, categories
of cognitive function have been used to define the states of the Markov chain. While perhaps
suitable as a tool for an economic analysis, this approach has the disadvantage that the collection
of transition probabilities is not as easily interpreted as, say, the slope of a regression line. In
addition, the hierarchical Bayesian approach that we believe succinctly accounts for the salient
features of decline in AD, would be considerably more difficult to implement, particularly for a
random change-point.

APPENDIX

Below we list the full conditional distributions required to implement the Gibbs sampler algorithm
discussed in Section 3. We also provide the full conditional distributions needed to obtain the
marginal posterior distribution of the ages-of-onset, αi. Owing to the presence of change points, it
is possible that some parameters are not present in each iteration of the Gibbs sampler. We used
the pseudo prior method of Carlin & Chib (1995) to accommodate this feature of our model. The
full conditional distributions are:

P
(
τi = k|Yi, θi, hi, µ, φ2, σ2

1i, σ
2
2i

) ∝ f
(
Yi|τi = k, θi, hi, σ

2
1i, σ

2
2i

)
,

where the right-hand side is given by (1) with k substituted for τi, for any k ∈ {1, . . . , 2M};
P

(
hi = h|Yi, Xi, θi, τi, µ, φ2, σ2

1i, σ
2
2i

) ∝ f
(
Yi|hi = h, θi, τi, σ

2
1i, σ

2
2i

)
f(h)

for all h ∈ {0, 1, . . . , 30}, and where f(h) is the prior density for h given in Section 3.4;

f
(
θi|Yi, hi, τi, µ, φ2, σ2

1i, σ
2
2i

) ∝ N(µ∗
i , σ

2∗
i ),

where

µ∗
i =

∑τi

j=1
δij(Yij−hi)(j−τi)

σ2
1i

+ µ
φ2∑τi

j=1
δij(j−τi)2

σ2
1i

+ 1
φ2

and
σ2∗

i =
1∑τi

j=1
δij(j−τi)2

σ2
1i

+ 1
φ2

,

σ2
1i|Yi, θi, τi, hi, µ, φ2, σ2

2i ∼ s11iχ
−2
ν11i

,

where s11i = s01 +
∑

j∈Di
δij{Yij − hi − θi(j − τi)}2, and ν11i = ni + ν01;

σ2
2i|Yi, θi, τi, hi, µ, φ2, σ2

1i ∼ s12iχ
−2
ν12i

,

where s12i = s02 +
∑

j∈Pi
δij(Yij − hi)2, and ν12i = mi − ni + ν02;

φ2 | Y, θ, τ, h, σ2
1 , σ

2
2 ∼ s1χ

−2
ν1

(2)

µ | φ2, Y, θ, τ, h, σ2
1 , σ2

2 ∼ N(µ1, φ
2/n1), (3)

where n1 = `0 + N ,

s1 = s0 +
`0N

`0 + N
(µ0 − θ̄)2 +

N∑
i=1

(θi − θ̄)2

= s0 + `0µ
2
0 + Nθ̄2 − n1µ

2
1 +

N∑
i=1

(θi − θ̄)2,
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µ1 = (`0µ0 + Nθ̄)/n1, and ν1 = ν0 + N . The subscript i has been dropped in equations (2) and
(3) to indicate conditioning on the values across all subjects. To obtain the posterior density of
the age-of-onset,

α1, . . . , αN | a1, . . . , aN , η2 ∼
n∏

i=1

N
(
ai, η

2
)
δ{[c1,ri)}(αi)

η2 | a1, . . . , aN , α1, . . . , αN ∼ Sχ−2
N−2,T ,

where ri is the age at study onset for subject i, S =
∑N

i=1(ai −αi)2, and χ−2
N−2,T is an inverse chi-

square random variable with N −2 degrees of freedom, and truncated to the interval T = [0, c2/S].
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