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When multiple imperfect dichotomous diagnostic tests are applied to an

individual, it is possible that some or all of their results remain dependent even

after conditioning on the true disease status. The estimates could be biased if this

conditional dependence is ignored when using the test results to infer about the

prevalence of a disease or the accuracies of the diagnostic tests. However,

statistical methods correcting for this bias by modelling higher‐order

conditional dependence terms between multiple diagnostic tests are not well

addressed in the literature. This paper extends a Bayesian fixed effects model

for 2 diagnostic tests with pairwise correlation to cases with 3 or more diagnostic

tests with higher order correlations. Simulation results show that the proposed

fixed effects model works well both in the case when the tests are highly

correlated and in the case when the tests are truly conditionally independent,

provided adequate external information is available in the form of fixed

constraints or prior distributions. A data set on the diagnosis of childhood

pulmonary tuberculosis is used to illustrate the proposed model.

KEYWORDS

Bayesian inference, childhood pulmonary tuberculosis, correlations, fixed effects model, higher‐order

conditional dependence, latent class model
1 | INTRODUCTION

When multiple imperfect dichotomous diagnostic tests are applied to an individual in a medical study, it is possible that
some or all of their results remain dependent even after conditioning on the dichotomous latent disease status. For
example, diagnosis of childhood pulmonary tuberculosis (CPTB) relies on different microbiological, immune response,
and imaging tests, as there is no single perfect test for this disease. In 1 data set, 749 hospitalized children suspected
of CPTB from South Africa were tested by culture, smear microscopy, Xpert MTB/RIF (Xpert), tuberculin skin test
(TST), and chest X‐Ray (CXR).13 It is of interest to estimate not only the prevalence of TB in this cohort, but also the
diagnostic properties (rate of false positive and false negative results) for each test. With no perfect test, this problem
is non‐trivial and is typically handled using a latent class model that assumes that the observed data are a mixture of
Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/sim 1
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disease positive and disease negative groups. The model would also need to consider the possible inter‐dependence
between these tests, 4 of which are influenced by the unknown bacterial load.

A variety of approaches for incorporating conditional dependence between imperfect tests have been proposed.
These different approaches typically extend the conditional independence model (CIM) with 2 latent classes,10,17

either by adding covariance terms or by sub‐dividing the disease positive and disease negative latent classes. For
example, Vacek16 extended the CIM of Hui and Walter9 by adding covariance terms between a pair of tests, within
each of the disease positive and disease negative groups. Espeland and Handelman5 increased the number of latent
classes by 2 by adding unequivocally negative and unequivocally positive categories. Dendukuri et al2 showed how
the increase in the number of latent classes can be determined by the types of tests observed, recognizing that tests
based on different biological mechanisms may be detecting different targets. Qu et al12 proposed a random effects
approach, accounting for conditional dependence by modeling the sensitivities and specificities of tests as functions
of subject‐specific Gaussian random variables. In other words, their model potentially included as many latent classes
as the sample size. This was extended by Xu and Craig19 who proposed a probit latent class model with a general
correlation matrix structure for modeling the pairwise correlation between multiple tests. Dendukuri and Joseph3

proposed Bayesian versions of the fixed effects model (FEM) described by Vacek16 and the random effects model
of Qu et al.12

Amongst all of these models, the one described by Vacek16 and its variants are especially attractive because the
pairwise correlation terms are easy to interpret. However, these models are limited in considering only pairwise corre-
lations and hence are unsuitable for our motivating CPTB dataset. Though higher‐order correlations may be modeled
using random effects,2 these models are computationally more complex as they substantially increase the number of
unknown parameters to be estimated. Further, several assumptions are required about the distribution of the random
effects and the magnitude of their association with different tests.

The literature to date has not devoted much attention to models that include higher‐order covariance terms. Some
authors have modeled only pairwise correlations reasoning that higher order dependence terms are less likely to occur
in practice,15 some have relied on a series of conditional probabilities which avoids specification of higher order corre-
lation terms,1 while others have entirely ignored these terms resulting in an overly simplistic specification of the likeli-
hood.11 In this paper, we will extend the FEM proposed by Vacek16 to cases with 3 or more diagnostic tests with higher
order correlations.

In Section 2, we introduce a general FEM for multiple diagnostic tests, with accompanying notation. In
Section 3, we describe Bayesian inference for the FEM. Section 4 presents some simulation results, and we apply
the FEM to the CPTB data set in Section 5. In Section 6, we summarize and discuss the main contributions of the
new model.
2 | MODEL AND NOTATION

2.1 | Fixed effects model for conditional dependence among multiple tests

Assume K dichotomous diagnostic tests, Ti, i = 1, 2, …, K, are applied to an individual to ascertain the presence or
absence of a disease or condition D. Let Ti = 0 for a negative diagnosis and Ti = 1 for a positive diagnosis, and
D = 0 for truly non‐diseased subjects, otherwise D = 1. Denote the sensitivity and specificity of test Ti as Si and
Ci, respectively. Si = P(Ti = 1|D = 1) is the sensitivity of test i, with P(Ti = 0|D = 1) the false negative rate. Similarly,
Ci = P(Ti = 0|D = 0) is the specificity of test i, with corresponding false positive rate given by P(Ti = 1|D = 0). The
joint conditional probability of the K tests on an individual given true disease status D = d can be written in the
form

P T1 ¼ t1;T2 ¼ t2;…TK ¼ tK jD ¼ dð Þ ¼ ∏
K

i¼1
P Ti ¼ tijD ¼ dð Þ þ φt1;t2;…;tK ∣d; (1)

where the parameter φt1;t2;…;tK ∣d is a conditional dependence term, which can be considered as the difference between

the true joint probability and the joint probability under the conditional independence assumption.
Denote the prevalence of the disease as π = P(D = 1). Then, the joint probability of test results (T1 = t1, T2 = t2, …,

TK = tK) is given by
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pt1…tK ¼ P T1 ¼ t1;T2 ¼ t2;…TK ¼ tKð Þ

¼ ∑
1

d¼0
P T1 ¼ t1;T2 ¼ t2;…TK ¼ tK jD ¼ dð ÞP D ¼ dð Þf g

¼ π ∏
K

i¼1
P Ti ¼ tijD ¼ 1ð Þ þ φt1;t2;…;tK ∣1

� �
þ 1−πð Þ ∏

K

i¼1
P Ti ¼ tijD ¼ 0ð Þ þ φt1;t2;…;tK ∣0

� �
:

Given a sample of N subjects, a multinomial distribution can be used to represent the likelihood function. Denote the
number of subjects with test results (t1, t2, …, tK) by nt1;…;tK . Then

n0…0;…;n1;…;1
� �emultinomial N ; p0…0; p1…1ð Þð Þ:

The FEM described by Vacek16 is a special case of this likelihood, when K = 2. In this case, Equation 1 becomes

P T1 ¼ t1;T2 ¼ t2jD ¼ dð Þ ¼ ∏
2

i¼1
P Ti ¼ tijD ¼ dð Þ þ φt1;t2∣d;

and the joint probability for an observed test result reduces to

pt1t2 ¼ π ∏
2

i¼1
P Ti ¼ tijD ¼ 1ð Þ þ φt1;t2∣1

� �
þ 1−πð Þ ∏

2

i¼1
P Ti ¼ tijD ¼ 0ð Þ þ φt1;t2∣0

� �
:

When K = 3, Equation 1 becomes

P T1 ¼ t1;T2 ¼ t2;T3 ¼ t3jD ¼ dð Þ ¼ ∏
3

i¼1
P Ti ¼ tijD ¼ dð Þ þ φt1;t2;t3∣d;

and the joint probability is

pt1t2t3 ¼ π ∏
3

i¼1
P Ti ¼ tijD ¼ 1ð Þ þ φt1;t2;t3∣1

� �
þ 1−πð Þ ∏

3

i¼1
P Ti ¼ tijD ¼ 0ð Þ þ φt1;t2;t3∣0

� �
:

Of course, similar expressions can be written for K > 3. As the number of tests increases, the number of conditional
dependence terms increases substantially. With 2 tests, the number of dependence terms is 8, and with 3 tests, it
increases to 16. In general, we have 2K+1 dependence terms for K tests.
2.2 | Equality constraints

In total, there are 2K+1 + 2 K + 1 parameters in the model, including 2K+1 dependence terms, K sensitivities, K
specificities, and the disease prevalence. As we will show later, this large number of parameters to be estimated
can be reduced by considering a series of equality constraints relating the conditional dependence terms. Under
the parameterization introduced in Section 2.1, it can be shown that the conditional dependence term among a
subset of the K tests, say, T1, T2, …, Tk, where k < K, with testing results [t1, t2, …, tk], is the marginal sum of
φt1;t2;…;tK ∣d across the remaining tests, ie, Tk+1, Tk+2, …, TK. For example, when K = 3, the joint conditional probability

of the first 2 tests can be written as

P T1 ¼ t1;T2 ¼ t2jD ¼ dð Þ ¼ ∏
2

i¼1
P Ti ¼ tijD ¼ dð Þ þ φt1;t2∣d; (2)
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However, it can also be written as

P T1 ¼ t1;T2 ¼ t2jD ¼ dð Þ ¼ ∑
1

t3¼0
P T1 ¼ t1;T2 ¼ t2;T3 ¼ t3jD ¼ dð Þ

¼ ∑
1

t3¼0
∏
3

i¼1
P Ti ¼ tijD ¼ dð Þ þ φt1;t2;t3∣d

� �
¼ ∏

2

i¼1
P Ti ¼ tijD ¼ dð Þ þ φt1;t2;0∣d þ φt1;t2;1∣d:

(3)

Equating 2 and 3, we have φt1;t2∣d ¼ φt1;t2;0∣d þ φt1;t2;1∣d. The pairwise conditional dependence between any 2 of the K
tests can be expressed similarly.
Further, the marginal conditional probability P(Ti = ti|D = d) can be written as

P Ti ¼ tijD ¼ dð Þ ¼ ∑
1

t1¼0
… ∑

1

ti−1¼0
∑
1

tiþ1¼0
… ∑

1

tK¼0
P T1 ¼ t1;…;Ti ¼ ti; ::;TK ¼ tK jD ¼ dð Þ

¼ ∑
1

t1¼0
… ∑

1

ti−1¼0
∑
1

tiþ1¼0
… ∑

1

tK¼0
∏
K

j¼1
P Tj ¼ tjjD ¼ d
� �þ φt1;t2;…;tK ∣d

" #
¼ P Ti ¼ tijD ¼ dð Þ þ ∑

1

t1¼0
… ∑

1

ti−1¼0
∑
1

tiþ1¼0
… ∑

1

tK¼0
φt1;t2;…;tK ∣d:

Then, it must follow that

∑
1

t1¼0
… ∑

1

ti−1¼0
∑
1

tiþ1¼0
… ∑

1

tK¼0
φt1;t2;…;tK ∣d ¼ φ•;⋯ti;⋯;•∣d ¼ 0; (4)

where • means summing over all possible results of the corresponding test.
In addition, by summing the left and right‐hand sides of Equation 1 across all possible test results for a given disease

status d, we can derive 1 more constraint,

∑
1

t1¼0
… ∑

1

tK¼0
φt1;t2;…;tK ∣d ¼ φ•;⋯;•∣d ¼ 0; (5)

In Equation 4, because Ti can be any of the K tests and ti could equal 0 or 1, we have a total of 2 K constraints under
true disease status D = d. However, from (5) we know that the term φ• , ⋯ , •∣d can be written as the sum of φ•;⋯ti;⋯;•∣d

across over ti = 0 and ti = 1. Because the sum of the 2 terms must be zero, any of the terms being zero implies that
the other is also zero. Therefore, K of the 2 K constraints from (4) are redundant, reducing the number of independent
constraints to K + 1 for each disease status, that is, 2 K + 2 overall.

When K = 2, we have 2 K + 2 = 6 constraints, 2 for each disease status following from Equation 4 and 1 for each
disease status following from Equation 5:

φ0 , 0∣d+φ0 , 1∣d=0 or φ1 , 0∣d+φ1 , 1∣d=0,
φ0 , 0∣d+φ1 , 0∣d=0 or φ0 , 1∣d+φ1 , 1∣d=0,

and

φ0;0∣d þ φ0;1∣d þ φ1;0∣d þ φ1;1∣d ¼ 0:

These constraints can be re‐expressed as φ1 , 1∣d= −φ0 , 1∣d= −φ1 , 0∣d=φ0 , 0∣d, leaving us with only 2 dependence
terms to be estimated, one for each disease status.3

When K = 3, we have 8 independent constraints, 4 for each disease status, including:

φ0;0;0∣d þ φ0;1;0∣d þ φ1;0;0∣d þ φ1;1;0∣d ¼ 0 or φ0;0;1∣d þ φ0;1;1∣d þ φ1;0;1∣d þ φ1;1;1∣d ¼ 0;

φ0;0;0∣d þ φ0;0;1∣d þ φ1;0;0∣d þ φ1;0;1∣d ¼ 0 or φ0;1;0∣d þ φ0;1;1∣d þ φ1;1;0∣d þ φ1;1;1∣d ¼ 0;
φ0;0;0∣d þ φ0;0;1∣d þ φ0;1;0∣d þ φ0;1;1∣d ¼ 0 or φ1;0;0∣d þ φ1;0;1∣d þ φ1;1;0∣d þ φ1;1;1∣d ¼ 0;
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following from Equation 4, and

φ0;0;0∣d þ φ0;0;1∣d þ φ0;1;0∣d þ φ0;1;1∣d þ φ1;0;0∣d þ φ1;0;1∣d þ φ1;1;0∣d þ φ1;1;1∣d ¼ 0;

following from Equation 5. This implies that, for each disease status, any 4 of the conditional dependence terms can be
expressed as a function of the other 4 conditional dependence terms, such that

φ1;0;0∣d ¼ φ0;1;1∣d þ φ1;1;1∣d−φ0;0;0∣d;

φ1;0;1∣d ¼ −φ0;0;1∣d−φ0;1;1∣d−φ1;1;1∣d;

φ1;1;0∣d ¼ −φ0;0;0∣d þ φ0;0;1∣d−φ0;1;1∣d;

φ0;1;0∣d ¼ −φ0;0;0∣d−φ0;0;1∣d−φ0;1;1∣d:

(6)

This leaves us with 8 conditional dependence terms to be estimated, 4 for each disease status.
When there are K tests, the FEM includes 2K dependence terms for each disease status, with K + 1 constraints on

these dependence terms. Therefore, in total, 2K+1 − (2 K + 2) dependence terms in the model need to be estimated, while
the remaining (2 K + 2) dependence terms can be deterministically calculated from equations arising from the con-
straints. For example, when K = 3, we can estimate φ0,0,0∣d, φ0,0,1∣d, φ0,1,1∣d, and φ1,1,1∣d, and then calculate the other 4
dependence terms using the equations in 6. The choice of which terms are to be estimated and which terms are to be
calculated is arbitrary.

In addition to the dependence terms to be estimated, the FEM also includes K sensitivities, K specificities, and 1 prev-
alence. Thus, in total, there are 2K+1 − (2 K + 2) + 2 K + 1 = 2K+1 − 1 parameters to be estimated. However, for K imper-
fect tests, the degrees of freedom provided by the observed data set is only 2K − 1. Therefore, informative priors are
required for at least 2K parameters in order to reasonably estimate all parameters.6

The FEM we have described is flexible in allowing for the addition of further equality constraints into the model. For
example, in some cases where the specificities of some tests are close to 1, the conditional dependence of these specific-
ities will necessarily be very small and can in practice be assumed to be zero. These additional equality constraints can
further decrease the number of parameters to be estimated in the model, as we will illustrate in both our simulated data
and real example applied to TB data.
2.3 | Inequality constraints

The dependence terms in the FEM also have to satisfy some inequalities. Because test results are discrete, the joint prob-
ability is always bounded by any of the corresponding marginal probabilities. So, we have

0≤P T1 ¼ t1;T2 ¼ t2;…TK ¼ tK jD ¼ dð Þ≤ min
i¼i to K

P Ti ¼ tijD ¼ dð Þ:

By substituting the joint probability from Equation 1, we have

0≤∏
K

i¼1
P Ti ¼ tijD ¼ dð Þ þ φt1;t2;…;tK ∣d≤ min

i¼i to K
P Ti ¼ tijD ¼ dð Þ:

Therefore,

−∏
K

i¼1
P Ti ¼ tijD ¼ dð Þ≤φt1;t2;…;tK ∣d≤ min

i¼i to K
P Ti ¼ tijD ¼ dð Þ−∏

K

i¼1
P Ti ¼ tijD ¼ dð Þ: (7)

To illustrate, when K = 2, after considering the relationships between the dependence terms, the inequalities become

−S1S2 þ max 0; S1 þ S2−1ð Þ≤φ1;1∣1≤min S1; S2ð Þ−S1S2; and

−C1C2 þ max 0;C þ C2−1ð Þ≤φ0;0∣0≤min C1;C2ð Þ−C1C2:

The above bounds on the conditional dependence terms are the same as those previously derived in Vacek16 and
Dendukuri and Joseph.3
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The inequalities in (7) can be applied similarly when K ≥ 3, but they cannot be as easily expressed in terms of indi-
vidual dependence parameters. These inequalities define the support regions of the dependence parameters in the FEM.
3 | BAYESIAN INFERENCE

Let the unobserved latent variable Yt1;⋯;tK be the number of true positive subjects out of the observed number of subjects,
nt1⋯tK , who have testing results [t1, …, tK]. Then, the likelihood function of the observed and latent data is given

L ¼ l Y0;⋯;0;⋯;Y1;⋯;1jπ; S1;C1;⋯; SK ;CK ;φ0;⋯;0∣0;⋯;φ1;⋯;1∣1
� �

¼ ∏
1

t1¼0

⋯∏
1

tK¼0

I φt1;⋯;tK ∣1
� �

π ∏
K

i¼1
P Ti ¼ tijD ¼ 1ð Þ þ φt1;t2;…;tK ∣1

� �� �Yt1 ;⋯;tK

I φt1;⋯;tK ∣0
� �

1−πð Þ ∏
K

i¼1
P Ti ¼ tijD ¼ 0ð Þ þ φt1;t2;…;tK ∣0

� �� �nt1 ;⋯;tK−Yt1 ;⋯;tK

; (8)

where I φt1;⋯;tK ∣d
� �

is an indicator function which equals 1 when φt1;⋯;tK ∣d is within its domain shown in (7), and 0

otherwise.
Prior information in the form of Beta densities will be assumed for π, Si and Ci, I = 1, …, K. Let απ and βπ represent the

Beta prior distribution parameters for π. Let (αSi , βSi) and (αCi , βCi
) represent the parameters of the Beta prior distribution

for Si and Ci, respectively. RStan (Version 2.9.0‐3)14 is used to generate random samples from the joint posterior density
via an MCMC algorithm. In Stan, all of the conditional dependence terms are declared as constrained variables with the
support ranges shown in (7). If a separate prior distribution is not defined for the conditional dependence terms, uniform
prior distributions are used over the support ranges for the conditional dependence terms. The support ranges for the
constrained conditional dependence terms are automatically respected by rejecting values outside of the support ranges
in (7) during Stan's MCMC sampling process. By Bayes' theorem, over the region of support, the joint posterior distribu-
tion is proportional to

L×παπ−1 1−πð Þβπ−1 ∏
K

i¼1
Si

αSi−1 1−Sið ÞβSi−1Ci
αCi−1 1−Cið ÞβCi−1

h i
; (9)

where L is given by (8).
No closed‐form solutions for the marginal posterior distributions of the parameters are available, and inferences will

be drawn by applying the No‐U‐Turn sampler (NUTS)7,8 in Stan. For each model fit, 5 chains with random initial values
were used, and each chain consisted of at least 50 000 iterations with half used as burn‐in.
4 | SIMULATIONS

Given the large number of parameters in our models, it is clearly not possible to run exhaustive simulations covering all
situations of potential interest. We carried out a series of illustrative simulations with the goal of showing that the FEM
generally works well and to provide practical guidelines for applying these models. We considered 2 scenarios, one based
on 3 tests and the other on 5 tests with settings motivated by our real‐life example. In the 3‐test scenario, we assessed
how the FEM performs both when the tests are actually conditionally independent and when there is high conditional
dependence among the tests. In order to carry out a typical simulation study, data can be simulated by random sampling
from the appropriate multinomial distributions. However, sampling variations in the data can affect the parameter esti-
mates in the latent class models, making it difficult to separate the effects of conditional dependence from random var-
iation. Therefore, in addition to a series of randomly sampled data sets, we also considered the expected data set, or
“mean data set”, which eliminates the effect of random sampling variation. For simulations involving 5 tests, only the
expected data set was considered.
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4.1 | 3‐test scenario

In the 3‐test scenario, we considered 3 settings. These settings are motivated by the problem of modeling results from 3
microbiological tests for childhood TB with only moderate sensitivity but high specificity. For each setting, 500 random
data sets were generated with the following specifications. In the first setting, we assumed the 3 tests T1, T2, and T3 to be
conditionally independent, with S1 = 0.6, S2 = 0.7, S3 = 0.8, and C1 = C2 = C3 = 0.99. We also assume the prevalence of
the disease is π = 0.4 and the sample size is 1000. In this case, the expected test results are (n111, n110, …, n000) = (134, 34,
58, 20, 90, 28, 44, 592).

In the second setting, all the parameters are the same as in the first setting except that the 3 tests are now
assumed to be highly conditionally dependent. To select the values of the dependence terms amongst the sensitiv-
ities for our simulation, we first calculated the inequality constraints, based on (7) in Section 2.3, for all depen-
dence terms. We then enumerated all possible combinations of the dependence terms φ1,1,1∣1, φ0,1,1∣1, φ0,0,1∣1,
and φ0,0,0∣1. For each possible combination, we calculated the values of the other 5 dependence terms, as discussed
in Section 2.2, and checked if they satisfied their inequality constraints. Among all the valid combinations, we
selected a combination which produced high dependencies amongst sensitivities. The selected values for our sim-
ulation were φ1,1,1∣1 = 0.25, φ0,1,1∣1 = −0.12, φ0,0,1∣1 = 0.01, and φ0,0,0∣1 = 0.16. The pairwise conditional dependen-
cies between S1 and S2, S1 and S3, and S2 and S3 are 0.17, 0.11, and 0.13, respectively, and the relative
dependencies between each pair of tests (ie, the ratio of the pairwise covariance to the maximum possible covari-
ance) among the true disease positives are 0.94, 0.92, and 0.93, respectively. Because all of the specificities are very
high, the maximum possible conditional dependencies among the specificities are trivially small and
are thus assumed to be zero.18 In this setting, the expected test results are (n111, n110, …, n000) = (234, 2, 2, 8,
42, 8, 48, 656).

In the third setting, we modified the dependence terms among the sensitivities to be φ1,1,1∣1 = 0.14, φ0,1,1∣1 = −0.01,
φ0,0,1∣1 = 0.01, and φ0,0,0∣1 = 0.05, such that the covariance between S1 and S2 is 0.06 and the covariance between S2
and S3 is 0.13, but S1 and S3 are independent. The relative dependencies between S1 and S2, and S2 and S3 are 0.33
and 0.93, respectively. In this setting, the expected test results are (n111, n110, …, n000) = (190, 2, 2, 52, 86, 8, 48, 612).

For each setting, each of the 500 random data sets and the “expected” data set were fit by both a CIM and a FEM. In
the FEM, we modeled all possible dependence terms among the sensitivities but set the conditional dependence amongst
specificities to be zero, leaving 23 + 1 − 1 − 4 = 11 parameters to be estimated. Because data on 3 tests can be classified
into 8 possible cells and thus 7 degrees of freedom once the sample size is fixed, there is a need for informative prior dis-
tributions on a minimum of 4 parameters in order to obtain reasonable inferences. For both the CIM and FEM models,
we used informative Beta(113.25,0.42) priors, with 95% coverage range of (0.98, 0.9999), for C1, C2, and C3, and a Beta
(54.53,36.03) prior, with 95% coverage range of (0.5, 0.7) for S1. Non‐informative Beta(1,1) priors were used for π, S2,
and S3. As mentioned in Section 3, in Stan, all of the conditional dependence terms were declared as constrained
variables with domains given by (7). The lower and upper limit constraints for φ1,1,1∣1, φ0,1,1∣1, φ0,0,1∣1, and φ0,0,0∣1

were recursively used to define a uniform prior over their range.
Results comparing the conditional independence and FEMs across all 3 scenarios are listed in Tables 1 and 2. When

the tests are conditionally independent, posterior median estimates for the prevalence and accuracy provided by the CIM
are very close to their true values and the 95% credible intervals (CrIs) are reasonably narrow, as expected. By contrast,
the prevalence and sensitivity estimates under the FEM are slightly removed from their true values (Table 1), although
with wide 95% CrIs that contain the true values. The quantiles of the 500 medians of the parameters and the 95% CrI
coverage are listed in Web Table A‐1 in the Appendix. The distributions of the medians of the prevalence and test prop-
erties, as well as the coverage probabilities of the 95% CrIs are similar for both the conditional independence and FEMs.
It should be noted that because the FEM is non‐identifiable, there is no guarantee that the coverage of individual
parameters will be close to 95% as the joint posterior distribution will not converge to a point even with an infinite
sample size.4,6 Nonetheless, we find the coverage is high, exceeding 80% for all parameters and exceeding 95% for some
parameters.

In the scenarios where there is conditional dependence, the estimates based on the CIM depart considerably from the
true values, with 95% CrIs that do not contain the true values. For example, for the expected data set simulated under
high conditional dependence between all 3 tests, the median (95% CrI) of π is 0.2817 (0.2541, 0.3104) although its true
value is 0.4. In addition, although an informative prior was used for C3, its estimate is also far from the true value, at
0.9424 (0.925, 0.9573). In comparison, the estimates provided by the FEM are closer to the true values. Similar results
are obtained for the conditional dependence setting where only 2 pairs of tests are conditionally dependent. Table 2



TABLE 2 Posterior median (95% credible intervals) for the conditional dependence parameters obtained when fitting the conditional

independence model (CIM) and fixed effects model (FEM) model to the expected data set for scenarios involving 3 tests

Parameter

Scenario 1: Data simulated under
conditional independence

Scenario 2: Data simulated
under conditional dependence
between all 3 tests

Scenario 3: Data simulated
under conditional dependence
between 2 pairs of tests

True
value CIM FEM

True
value CIM FEM

True
value CIM FEM

Φ111|1 0 ‐ 0.021 (−0.023, 0.087) 0.25 ‐ 0.218 (0.128, 0.281) 0.14 ‐ 0.133 (0.088, 0.195)

Φ011|1 0 ‐ −0.005 (−0.031, 0.024) −0.12 ‐ −0.115 (−0.135, −0.091) −0.01 ‐ −0.012 (−0.041, 0.019)

Φ001|1 0 ‐ −0.009 (−0.057, 0.023) 0.01 ‐ 0.032 (−0.034, 0.093) 0.01 ‐ 0.014 (−0.041, 0.052)

Φ000|1 0 ‐ 0.017 (−0.022, 0.107) 0.16 ‐ 0.113 (0.012, 0.215) 0.05 ‐ 0.038 (−0.013, 0.134)

Φ100|1 0 ‐ −0.003 (−0.037, 0.023) −0.03 ‐ −0.012 (−0.049, 0.017) 0.08 ‐ 0.082 (0.034, 0.117)

Φ101|1 0 ‐ −0.009 (−0.035, 0.019) −0.14 ‐ −0.133 (−0.15, −0.104) −0.14 ‐ −0.136 (−0.154, −0.114)

Φ110|1 0 ‐ −0.012 (−0.037, 0.016) −0.08 ‐ −0.072 (−0.099, −0.027) −0.08 ‐ −0.081 (−0.103, −0.056)

Φ010|1 0 ‐ −0.007 (−0.048, 0.022) −0.05 ‐ −0.03 (−0.074, 0.009) −0.05 ‐ −0.042 (−0.079, −0.017)

ΦT1T2
11|1 0 ‐ 0.011 (−0.023, 0.058) 0.17 ‐ 0.146 (0.095, 0.186) 0.06 ‐ 0.054 (0.017, 0.101)

ΦT1T3
11|1 0 ‐ 0.013 (−0.021, 0.065) 0.11 ‐ 0.084 (0.017, 0.144) 0 ‐ −0.003 (−0.042, 0.059)

ΦT1T3
11|1 0 ‐ 0.017 (−0.02, 0.076) 0.13 ‐ 0.101 (0.023, 0.169) 0.13 ‐ 0.122 (0.079, 0.176)

TABLE 1 Posterior median (95% credible intervals) for the prevalence and test accuracy parameters obtained when fitting the conditional

independence model (CIM) and fixed effects model (FEM) to the expected data set for scenarios involving 3 tests

True
value

Scenario 1: Data simulated
under conditional independence

Scenario 2: Data simulated
under conditional dependence
between all 3 tests

Scenario 3: Data simulated
under conditional dependence
between 2 pairs of tests

CIM FEM CIM FEM CIM FEM

π 0.4 0.414 (0.380, 0.448) 0.425 (0.380, 0.495) 0.282 (0.254, 0.310) 0.391 (0.334, 0.470) 0.282 (0.254, 0.311) 0.410 (0.363, 0.485)

S1 0.6 0.592 (0.547, 0.637) 0.578 (0.505, 0.634) 0.786 (0.741, 0.826) 0.62 (0.528, 0.700) 0.664 (0.613, 0.711) 0.595 (0.514, 0.656)

S2 0.7 0.686 (0.637, 0.734) 0.666 (0.573, 0.731) 0.989 (0.967, 0.999) 0.722 (0.611, 0.821) 0.992 (0.966, 0.9997) 0.693 (0.589, 0.766)

S3 0.8 0.782 (0.736, 0.827) 0.760 (0.655, 0.825) 0.987 (0.964, 0.997) 0.823 (0.690, 0.935) 0.984 (0.955, 0.998) 0.787 (0.669, 0.861)

C1 0.99 0.998 (0.985, 1) 0.999 (0.981, 1) 0.990 (0.981, 0.995) 0.999 (0.988, 1) 0.936 (0.917, 0.951) 0.999 (0.979, 1)

C2 0.99 0.999 (0.985, 1) 0.998 (0.978, 1) 0.991 (0.983, 0.997) 0.999 (0.988, 1) 0.992 (0.982, 0.9997) 0.999 (0.987, 1)

C3 0.99 0.999 (0.983, 1) 0.998 (0.977, 1) 0.942 (0.925, 0.957) 0.999 (0.980, 1) 0.942 (0.924, 0.957) 0.999 (0.978, 1)
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shows that for both conditional dependence settings, the various dependence parameters are well estimated by the 2
FEMs.

The quantiles of the 500 medians of the parameter and the 95% CrI coverage are listed in Web Tables A‐2 and A‐3 in
the Appendix, respectively. As we would expect, the FEM performs better than the CIM in these settings. When there is
high conditional dependence between all 3 sensitivities, the medians of π and C3 are underestimated, and all of the sen-
sitivities are overestimated under the CIM, and the 95% CrI coverage probabilities for all of these parameters are zero.
However, the medians of these parameters under the FEM are distributed near the true values, and the 95% CrI coverage
probabilities for them are close to 1 for most parameters. These simulations suggest that the FEM successfully corrects
for the bias observed when ignoring conditional dependence.
4.2 | 5‐test scenario

We consider 3 settings for simulating and analyzing data for 5 tests, now using only the expected datasets. In the first
setting, we assume the 5 tests T1, T2, …, T5 are conditionally independent. In the second and third settings, we considered
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2 alternative dependence structures inspired by our applied example. We considered these 2 structures to enable study of
the possible impact of the mis‐specification of the conditional dependence structure. The prevalence, sample size, and
the accuracies of the first 3 tests are the same as in the 3‐test scenario of Section 4.1 in all 3 settings. Tests T4 and T5

are assumed to have S4 = 0.65; C4 = 0.75, and S5 = 0.68; C5 = 0.65, ie, these tests have moderate sensitivity and speci-
ficity. The expected dataset under conditional independence is (n11111, n11110, …, n00000) = (59, 28, 32, 15, 15, 7, 8, 4,
25, 12, 14, 6, 7, 4, 5, 4, 40, 19, 21, 10, 10, 6, 7, 5, 17, 9, 11, 7, 55, 97, 155, 285). The counts are rounded to the nearest integer
so that the total is 999 rather than 1000.

In the second setting, we assume that the sensitivities of the first 4 tests are correlated similar to our CPTB example.

We assume the vector Φ has components φT1T2T3T4
1111∣1 = 0.1, φT1T2T3T4

0111∣1 = −0.1, φT1T2T3T4
1011∣1 = 0.06, φT1T2T3T4

1101∣1 = −0.05,

φT1T2T3T4
1110∣1 = −0.1, φT1T2T3T4

0011∣1 = 0, φT1T2T3T4
0101∣1 = 0, φT1T2T3T4

0110∣1 = 0.11, φT1T2T3T4
1001∣1 = 0, φT1T2T3T4

1010∣1 = −0.05, and φT1T2T3T4
1100∣1 = 0.03,

but the sensitivity of T5 is independent of the other tests. The pairwise conditional dependencies between S1 and S2,
S1 and S3, S1 and S4, S2 and S3, S2 and S4, and S3 and S4 are −0.02, 0.01, 0.11, 0.01, −0.05, and 0.06, respectively, and
pairwise relative conditional dependencies of these values are 0.17, 0.08, 0.53, 0.07, 0.48, and 0.46. When the pairwise
conditional dependence is negative, the corresponding relative conditional dependence is defined as the ratio of the
pairwise covariance to the lower limit of the possible covariance. Specificities between all 5 tests are assumed to be con-
ditionally independent. The expected dataset is (n11111, n11110, …, n00000) = (87, 41, 5, 2, 1, 1, 16, 8, 42, 20, 0, 0, 7, 4, 8, 6, 12,
6, 51, 24, 10, 6, 10, 7, 17, 9, 5, 5, 52, 95, 158, 286). In the third setting, the true values of the prevalence and accuracy
parameters remain the same as in the first 2 settings. We assume additionally that the sensitivities of T1, T2, and T3

are correlated, with φT1T2T3
111∣1 = 0.25, φT1T2T3

011∣1 = 0.12, φT1T2T3
001∣1 = 0.01, and φT1T2T3

000∣1 = 0.16, and that the sensitivities of T4

and T5 as well as their specificities are correlated, with φT4T5
11∣1 = 0.1 and φT4T5

00∣1 = 0.05, with the relative conditional depen-

dencies of 0.48 and 0.31, respectively. The pairwise conditional dependencies between S1 and S2, S1 and S3, and S2 and S3
are 0.17, 0.11, and 0.13, respectively, and the pairwise relative conditional dependencies of these values are 0.94, 0.92,
and 0.93, respectively. The expected data set is now (n11111, n11110, …, n00000) = (127, 25, 32, 50, 1, 0, 0, 0, 1, 0, 0, 0, 2,
1, 2, 4, 23, 4, 6, 9, 2, 1, 2, 4, 24, 5, 7, 12, 120, 73, 134, 329).

The first FEM (FEM1) that was fit to the data sets above allows dependence between 2 clusters of tests—(T1, T2, and
T3) which have a high specificity and (T4, T5) which do not. This model allows for dependencies among S1, S2, and S3,
among C1, C2, and C3, between S4 and S5, and between C4 and C5. The conditional joint probability can then be
simplified to

P T1 ¼ t1;⋯;T5 ¼ t5jDð Þ ¼ P T1 ¼ t1;⋯;T3 ¼ t3jDð ÞP T4 ¼ t4;T5 ¼ t5jDð Þ

¼ ∏
3

i¼1
P Ti ¼ tijDð Þ þ φT1T2T3

t1t2t3∣D

� �
∏
5

j¼4
P Tj ¼ tjjD
� �þ φT4T5

t4t5∣D

" #
:

The second FEM (FEM2) allows for dependence among sensitivities of the first 4 tests. The conditional joint
probability of FEM2 can be written as

P T1 ¼ t1;⋯;T5 ¼ t5jDð Þ ¼ P T1 ¼ t1;⋯;T4 ¼ t4jDð ÞP T5 ¼ t5jDð Þ ¼ ∏
4

i¼1
P Ti ¼ tijDð Þ þ φT1T2T3T4

t1t2t3t4∣D

� �
P T5 ¼ t5jDð Þ;

where φT1T2T3T4
t1t2t3t4∣1 = 0 for any value of t1, t2, t3, and t4. There are 11, 21, and 22 parameters to be estimated in the CIM,

FEM1, and FEM2 models, respectively. With 5 tests, there are 25 − 1 = 31 degrees of freedom in the data sets. Therefore,
all of the models are identifiable. The same Beta(113.25,0.42) prior was used for C1, C2, and C3 and uniform priors were
used for all the other parameters across all 3 models.

Results of fitting these 3 models to the expected data sets under conditional independence and under conditional
dependence among the first 4 tests are listed in Tables 3 and 4. As with 3 tests, the best performance was observed when
the true model was fit to the data. When the tests were truly conditionally independent, most estimates provided by both
FEMs are close to the true values, and all of the 95% CrIs contain the true values, although the lengths of the 95% CrIs are
larger than under the CIM. Only the estimate of S3 provided by FEM2 is an underestimate by 0.08 with the 95% CrI not
covering the true value. For the data set generated under the assumption that the sensitivities of the first 4 tests are
dependent, the main parameters are well estimated by the CIM and the model that specifies the conditional dependence
structure correctly (FEM2). However, π, S2, S4, and all the specificities are biased under the mis‐specified conditional
dependence structure (FEM1), highlighting the importance of specifying the conditional dependence structure correctly.
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The better performance of the CIM compared with FEM2 may be attributed to the fact that the pairwise correlation
between T1 and T4 was high, but all other pairwise correlations were negligible conditional on the true disease status.
We should not conclude that the conditional independence will generally perform better than a mis‐specified depen-
dence model in other datasets. In a simulated dataset of course the true dependence structure is known. In a real data
analysis, it may not be possible to distinguish between 2 models using statistical criteria alone.2 The results obtained
in these simulations highlight the need for expert opinion regarding which tests may be correlated as well as robustness
checks across plausible correlation structures. We illustrate both of these issues in our TB example in Section 5. Results
obtained under the simulation based on the second conditional dependence structure were similar and are provided in
Web Table A‐4.
5 | ANALYSIS OF THE CHILDHOOD PULMONARY TB DATA

Based on the opinion of clinical experts, among the 5 childhood diagnostic tests for TB, the sensitivities of culture, smear,
Xpert, and TST tests are all functions of the severity of CPTB.13 The conditional dependence between the image‐based
CXR and the remaining tests can reasonably be assumed to be negligible as they are based on different biological mech-
anisms. The culture, Xpert, and smear tests are all microbiological tests based on the same induced sputum sample.
These tests are therefore likely to be positively correlated because children with a higher bacillary load are more likely
to test positive. The correlation between TST and the microbiological tests is expected to be negative among children who
have a very severe infection, but positive otherwise. In an earlier analysis of these data, the conditional dependence
between the 4 tests was modeled using a normally distributed random effect to represent the bacterial load, which acts
as a proxy for the severity of infection.13 In other words, the random effect created the dependence between tests. The
sensitivities of culture, Xpert, and smear were assumed to be linear functions of the random effect, while the sensitivity
of TST was assumed to be a quadratic function. The assumptions regarding the probability distribution of the random
effect and its association with the sensitivities of the individual tests cannot be verified from the data. It is therefore of
interest to compare these earlier results with those from a FEM that does not impose these distributional assumptions.

Our primary objective was to fit a FEM assuming the sensitivities of culture, smear, Xpert, and TST are dependent,
but CXR is conditionally independent of the remaining tests. Because the specificities of culture, smear, and Xpert are all
close to 100%, it is also reasonable to assume that the dependence amongst the test specificities are small and can be
ignored in the modelling. The observed data were as follows (n11111, n11110, …, n00000) = ((7, 5, 21, 8, 27, 17, 4, 1, 0, 0,
0, 0, 20, 8, 1, 3, 0, 0, 0, 0, 2, 7, 2, 5, 0, 1, 0, 0, 78, 149, 87, 296)), where T1 = Culture, T2 = Xpert, T3 = Smear,
T4 = TST, and T5 = CXR.

For comparison, we also report the results of fitting 3 alternative models, 2 of which are mis‐specified based on the
expert opinion:

1. A CIM assuming the 5 tests are all conditionally independent.
2. An alternative FEM assuming culture, smear, and Xpert to have dependencies on both sensitivities and specificities,

and TST and CXR are also dependent on both sensitivities and specificities.
3. A normal random effects model with conditional dependence structure proposed by the experts as in the earlier

analysis.13

Across these 4 models, informative Beta(238.178,0.457) priors, with 95% prior CrIs of (0.99, 0.999999), were used for
the specificity of culture, and a Beta(113.249,0.419) prior, with 95% prior CrI of (0.98, 0.999999), was used for the spec-
ificity of Xpert, matching Schumacher et al's analysis. Uniform priors were used for all remaining parameters. The pos-
terior estimates of these parameters from all models are listed in Tables 5 and 6.

The model that is in keeping with expert opinion gives similar results to those reported earlier by Schumacher et al.13

Of note, the point estimates of the sensitivity of culture, Xpert, and smear are higher under the new model, while the
point estimate for TST sensitivity is lower. This suggests that the shrinkage of the sensitivities is greater when using a
normal random effects model than with our new model that does not impose any distributional assumptions on the ran-
dom effects. The 95% CrIs from both models overlap considerably. Interestingly, Table 6 shows that there is a strong
pairwise dependence between the 3 microbiological tests.

The models that are not in keeping with expert opinion would lead us to noticeably different results. Both the CIM
and the model assuming an alternative fixed effects structure estimate that prevalence is considerably lower and culture



TABLE 5 Posterior median and 95% credible intervals for the prevalence and accuracy parameters for the childhood pulmonary tubercu-

losis tests dataset

Parameter

Conditional
independence
model

Fixed effects model with
alternative dependence
structure

Fixed effects model with
dependence structure
based on expert opinion

Random effects model with
dependence structure based
on expert opiniona

CPTB prevalence 0.166 (0.139, 0.196) 0.192 (0.142, 0.318) 0.227 (0.167, 0.316) 0.25 (0.193, 0.341)

Sensitivity of culture 0.971 (0.89, 0.999) 0.785 (0.485, 0.943) 0.689 (0.507, 0.875) 0.641 (0.482, 0.788)

Specificity of culture 0.999 (0.989, 1) 0.989 (0.972, 0.997) 0.997 (0.986, 1) 0.996 (0.987, 1)

Sensitivity of Xpert 0.744 (0.659, 0.823) 0.619 (0.386, 0.766) 0.572 (0.42, 0.731) 0.519 (0.391, 0.64)

Specificity of Xpert 0.982 (0.969, 0.992) 0.977 (0.956, 0.992) 0.988 (0.973, 1) 0.984 (0.971, 0.994)

Sensitivity of smear 0.335 (0.254, 0.424) 0.256 (0.145, 0.367) 0.267 (0.182, 0.376) 0.238 (0.166, 0.317)

Specificity of smear 0.998 (0.992, 0.9998) 0.989 (0.976, 0.997) 1 (0.995, 1) 0.997 (0.99, 1)

Sensitivity of TST 0.69 (0.604, 0.768) 0.714 (0.62, 0.811) 0.707 (0.599, 0.798) 0.739 (0.592, 0.827)

Specificity of TST 0.623 (0.585, 0.662) 0.642 (0.598, 0.708) 0.659 (0.603, 0.726) 0.678 (0.621, 0.734)

Sensitivity of CXR 0.655 (0.566, 0.739) 0.658 (0.565, 0.752) 0.647 (0.559, 0.733) 0.661 (0.574, 0.743)

Specificity of CXR 0.731 (0.696, 0.765) 0.747 (0.704, 0.823) 0.76 (0.713, 0.815) 0.777 (0.731, 0.839)

aWe did not include any covariates as was previously done in the work of Schumacher et al (2016). The results are nonetheless very similar.
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sensitivity is considerably higher. This suggests that these models place greater weight on culture, which is strongly in
agreement with Xpert and Smear, and they place less weight on the complementary information available from TST.

Web Table A‐5 in the Appendix presents the predicted test results given by each model. We report the sum of squared
errors (SSE) as a guide to how closely the predictions under each model match the observed data. The CIM has the larg-
est SSE value, the alternative FEM has the smallest SSE value, and the other 2 models have similar SSE values, although
the differences among the last 3 models are not large. These figures should be interpreted keeping in mind that models
with more parameters will in general have smaller SSE values. This explains in part why the model based on expert opin-
ion has a larger SSE than the so‐called “mis‐specified” model as the latter has 2 additional parameters.
6 | DISCUSSION

This paper introduces a general FEM for multiple diagnostic tests with higher order correlations, an extension of the
FEM for 2 tests originally introduced by Vacek.16 In this more general FEM, the conditional dependence terms among
multiple tests is defined as the departure of the observed conditional joint probability from the expected conditional joint
probability under the assumption of conditional independence. In the special case when 2 tests are considered, this con-
ditional dependence term becomes the covariance between the sensitivities or the specificities of the 2 tests. Although the
conditional dependence terms among multiple tests may not have a straightforward meaning, we can use them to cal-
culate and draw inferences about the pairwise covariance between any pair of tests. Although it was previously hypoth-
esized15 that higher order terms may be small in magnitude and therefore ignored, our simulations and real‐life
application suggest otherwise.

This FEM is very flexible in incorporating additional assumptions about the dependence structure. For example, as
our applied example illustrates, some covariance terms can be fixed a priori to be 0. It is also possible to model a clustered
conditional dependence structure among different sets of tests. The simulations show that the fixed effect model provides
better inferences compared with the CIM when higher‐order conditional dependencies truly exist in the data. In addi-
tion, when the tests are truly conditionally independent, the fixed effect model can still provide reasonable estimates,
although it will result in wider credible results from the need to estimate a larger number of parameters from the same
data.

There is no easy way to check the dependence structure in these complex and non‐identifiable models. Therefore,
discussions with subject matter experts to understand the source and likely form of dependence is important, as is
checking the robustness of estimates across a series of plausible models, as we have done in our analysis of the CPTB



TABLE 6 Posterior median and 95% credible intervals for the conditional dependence parameters for the childhood pulmonary tuberculosis

dataset

Parameter
Conditional
independence model

Fixed effects model with alternative
dependence structure

Fixed effects model with dependence
structure based on expert opinion

ΦCulture,Xpert,Smear
111|1 ‐ 0.105 (0.056, 0.153)

ΦCulture,Xpert,Smear
111|0 ‐ 0.006 (0.0002, 0.019)

ΦCulture,Xpert,Smear
110|1 ‐ −0.029 (−0.098, 0.057)

ΦCulture,Xpert,Smear
110|0 ‐ 0.001 (−0.0004, 0.006)

ΦCulture,Xpert,Smear
101|1 ‐ −0.066 (−0.096, −0.037)

ΦCulture,Xpert,Smear
101|0 ‐ 0.001 (−0.0003, 0.004)

ΦCulture,Xpert,Smear
100|1 ‐ −0.007 (−0.123, 0.08)

ΦCulture,Xpert,Smear
100|0 ‐ −0.008 (−0.021, −0.001)

ΦCulture,Xpert,Smear
011|1 ‐ −0.026 (−0.046, −0.001)

ΦCulture,Xpert,Smear
011|0 ‐ 0.001 (−0.001, 0.004)

ΦCulture,Xpert,Smear
010|1 ‐ −0.051 (−0.138, 0.026)

ΦCulture,Xpert,Smear
010|0 ‐ −0.008 (−0.021, −0.001)

ΦCulture,Xpert,Smear
001|1 ‐ −0.012 (−0.048, 0.018)

ΦCulture,Xpert,Smear
001|0 ‐ −0.008 (−0.02, −0.001)

ΦCulture,Xpert,Smear
000|1 ‐ 0.089 (−0.01, 0.213)

ΦCulture,Xpert,Smear
000|0 ‐ 0.015 (0.003, 0.04)

ΦCXR,TST
11|1 ‐ −0.025 (−0.066, 0.022)

ΦCXR,TST
11|0 ‐ 0.021 (−0.002, 0.042)

ΦCulture,Xpert,Smear,TST
1111|1 ‐ ‐ −0.005 (−0.064, 0.034)

ΦCulture,Xpert,Smear,TST
0111|1 ‐ ‐ −0.027 (−0.04, −0.009)

ΦCulture,Xpert,Smear,TST
1011|1 ‐ ‐ −0.049 (−0.067, −0.03)

ΦCulture,Xpert,Smear,TST
1101|1 ‐ ‐ 0.039 (−0.004, 0.085)

ΦCulture,Xpert,Smear,TST
1110|1 ‐ ‐ 0.127 (0.086, 0.175)

ΦCulture,Xpert,Smear,TST
0011|1 ‐ ‐ −0.016 (−0.036, 0.011)

ΦCulture,Xpert,Smear,TST
0101|1 ‐ ‐ −0.057 (−0.101, 0.001)

ΦCulture,Xpert,Smear,TST
0110|1 ‐ ‐ −0.009 (−0.018, 0.007)

ΦCulture,Xpert,Smear,TST
1001|1 ‐ ‐ 0 (−0.065, 0.088)

ΦCulture,Xpert,Smear,TST
1010|1 ‐ ‐ −0.017 (−0.032, −0.003)

ΦCulture,Xpert,Smear,TST
1100|1 ‐ ‐ −0.052 (−0.107, −0.012)

ΦCulture,Xpert,Smear,TST
0001|1 ‐ ‐ 0.115 (−0.003, 0.207)

ΦCulture,Xpert,Smear,TST
0010|1 ‐ ‐ −0.006 (−0.016, 0.011)

ΦCulture,Xpert,Smear,TST
0100|1 ‐ ‐ −0.018 (−0.045, 0.017)

ΦCulture,Xpert,Smear,TST
1000|1 ‐ ‐ −0.043 (−0.072, −0.015)

ΦCulture,Xpert,Smear,TST
0000|1 ‐ ‐ 0.008 (−0.027, 0.096)

ΦCulture,Xpert
11|1 ‐ 0.072 (−0.01, 0.17) 0.112 (0.021, 0.166)

ΦCulture,Xpert
11|0 ‐ 0.007 (0.001, 0.02) ‐

ΦCulture,Smear
11|1 ‐ 0.039 (−0.007, 0.085) 0.056 (0.006, 0.09)

ΦCulture,Smear
11|0 ‐ 0.007 (0.001, 0.02) ‐

ΦSmear,Xpert
11|1 ‐ 0.08 (0.043, 0.114) 0.087 (0.052, 0.117)

(Continues)
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TABLE 6 (Continued)

Parameter
Conditional
independence model

Fixed effects model with alternative
dependence structure

Fixed effects model with dependence
structure based on expert opinion

ΦSmear,Xpert
11|0 ‐ 0.007 (0.001, 0.02) ‐

ΦCulture,TST
11|1 ‐ ‐ −0.016 (−0.061, 0.047)

ΦXpert,TST
11|1 ‐ ‐ −0.052 (−0.091, 0.004)

ΦSmear,TST
11|1 ‐ ‐ −0.098 (−0.139, −0.057)
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data. Examination of the posterior predicted values has also been shown to be useful for comparison with experts' prior
beliefs to determine the appropriateness of the dependence structure.2

The analysis of the childhood TB data shows that when the model is based on experts' opinion, the pairwise depen-
dencies between the sensitivities of any 2 of culture, Xpert, and smear are positive. When the dependence terms among
these tests are not included in the model, the estimates of some parameters change greatly. The dependence conditioning
on disease negative between culture, smear, and Xpert was small and negligible.

An important practical limitation to our model is that the number of estimated parameters in the full FEM increases
exponentially with the number of diagnostic tests. Therefore, considerable prior information is needed to draw reason-
able inferences. This is not a deficiency of the model itself, but rather reflects the difficulty of the problem. In the appli-
cation of the proposed model, close consultation with clinicians familiar with the test properties becomes increasingly
important in order to gather sufficient prior information for reasonable estimation. For example, the prior knowledge
that 1 test is conditionally independent of the remaining tests in a data set could reduce the number of parameters dra-
matically. In our application, we found that the number of parameters being estimated and the number of informative
priors required could be reduced by making appropriate assumptions based on experts' opinions on the dependence
structure.
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