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Evaluation of tests for the diagnosis of childhood pulmonary tuberculosis (CPTB) is complicated by the
absence of an accurate reference test. We present a Bayesian latent class analysis in which we evaluated the
accuracy of 5 diagnostic tests for CPTB. We used data from a study of 749 hospitalized South African children
suspected to have CPTB from 2009 to 2014. The following tests were used: mycobacterial culture, smear
microscopy, Xpert MTB/RIF (Cepheid Inc.), tuberculin skin test (TST), and chest radiography. We estimated the
prevalence of CPTB to be 27% (95% credible interval (CrI): 21, 35). The sensitivities of culture, Xpert, and
smear microscopy were estimated to be 60% (95% CrI: 46, 76), 49% (95% CrI: 38, 62), and 22% (95% CrI: 16,
30), respectively; specificities of these tests were estimated in accordance with prior information and were close
to 100%. Chest radiography was estimated to have a sensitivity of 64% (95% CrI: 55, 73) and a specificity of
78% (95% CrI: 73, 83). Sensitivity of the TST was estimated to be 75% (95% CrI: 61, 84), and it decreased sub-
stantially among children who were malnourished and infected with human immunodeficiency virus (56%). The
specificity of the TST was 69% (95% CrI: 63%, 76%). Furthermore, it was estimated that 46% (95% CrI: 42, 49)
of CPTB-negative cases and 93% (95% CrI: 82; 98) of CPTB-positive cases received antituberculosis treatment,
which indicates substantial overtreatment and limited undertreatment.

childhood pulmonary tuberculosis; diagnosis; latent class analysis; overtreatment; sensitivity; specificity

Abbreviations: CPTB, childhood pulmonary tuberculosis; CrI, credible interval; HIV, human immunodeficiency virus; PTB,
pulmonary tuberculosis; TST, tuberculin skin test.

Tuberculosis in children is an important global health
problem. There are an estimated 0.5 to 1 million new cases
each year (1, 2), with childhood pulmonary tuberculosis
(CPTB) being the most common form. One of the major
challenges in diagnosing CPTB is the lack of sensitive
diagnostic tests (3–6). In clinical practice, the diagnosis of
CPTB therefore relies on a combination of imperfect tests,
which gives rise to unknown degrees of under- or over-
treatment (7, 8).

In recent years, new tests for CPTB have been devel-
oped, and their accuracy has been evaluated using myco-
bacterial culture as a reference standard (4, 9). Although

culture is currently considered the best available reference
standard, its sensitivity for detecting CPTB is acknowledged
to be imperfect (3, 4, 10). The culture reference standard
thus inevitably leads to true CPTB case patients being mis-
classified as being negative for CPTB. If these misclassifi-
cations by the reference standard are ignored, then the
assessment of the test accuracy can be biased (11–14).

To address the problem of the lack of an accurate reference
standard, multivariable diagnostic algorithms for CPTB have
been proposed to combine information from multiple imper-
fect diagnostic tests (including tests for tuberculosis infection
and clinical data) in a systematic manner. Although more
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than a dozen of these algorithms have been described to
date, estimates of CPTB prevalence derived from them
vary widely (15, 16). None of these algorithms has relied
on statistical modeling approaches that take into account
the imperfect nature and relative weight of each of the
diagnostic tests.

In the present study, we re-analyzed the results of a study
of hospitalized children suspected to have CPTB in which
data on commonly used tests for CPTB had been prospec-
tively collected (9). The tests include 3 microbiological tests,
the tuberculin skin test (TST), and chest radiography. We
used Bayesian latent class analysis to simultaneously estimate
the accuracy of the 5 tests with regard to the detection of
CPTB, the prevalence of CPTB, and the degree of under- and
overtreatment in the cohort. Latent class analysis has success-
fully been used in other studies of the accuracy of diagnostic
tests in the absence of a gold standard (12, 17–19). However,
here we present one of the first applications of latent class
analysis to prospectively collected data on CPTB.

METHODS

Data were obtained from a study of hospitalized South
African children who were suspected to have CPTB (9).
Details on the design of the study are available from the
original publications (9, 20). Briefly, between February 2009
and June 2014, children were consecutively enrolled when
they presented to a hospital in Cape Town, South Africa,
with signs or symptoms suggestive of pulmonary tuberculo-
sis (PTB). Inclusion criteria were: 1) cough and at least 1
additional factor suggestive of CPTB (9, 20); 2) age younger
than 15 years; and 3) a parent or legal guardian who pro-
vided informed consent. Children were excluded if: 1) they
had received tuberculosis treatment or prophylaxis for more
than 72 hours or 2) their place of residence precluded
follow-up. Patient characteristics are shown in Table 1. In
total, 749 children were included in our analysis.

Written informed consent for enrollment in the study was
obtained from a parent or legal guardian. The Research Ethics
Committee of the Faculty of Health Sciences, University of
Cape Town, approved the study. Renewed approval for the
current analysis was not required because anonymized data
were used.

Study procedures

Up to 3 induced sputum samples per child were each
tested with 3 different microbiological tests: liquid culture
(mycobacterial growth indicator, BACTEC MGIT, Becton
Dickinson Microbiology Systems, Cockeysville, Maryland;
hereafter referred to as culture), a molecular nucleic acid
amplification test (Xpert MTB/RIF, Cepheid Inc., Sunnyvale,
California; hereafter referred to as Xpert), and sputum
smear microscopy. A TST was administered and read ac-
cording to standard procedures by measuring transverse
induration in response to purified protein derivative (2TU,
PPD RT23, Staten Serum Institute, Denmark, Copenhagen).
Based on a standardized reporting format, radiographs of
the chest were judged as “consistent with CPTB” or “not
consistent with CPTB” by 2 independent readers who were

blinded to all other investigations. Disagreement between
readers was resolved by a third reader. The studied tests
are complementary; none of these tests in isolation is ex-
pected to yield perfect diagnostic accuracy (Table 2).

Testing for human immunodeficiency virus (HIV) (HIV
rapid test in all children, followed by a confirmatory poly-
merase chain reaction for children younger than 18 months
or HIV enzyme-linked immunosorbent assay for children
18 months of age or older) was done in all children with
unknown HIV infection status. The weight of the child was
transformed to a standardized score (z score) as a measure
of malnutrition according to World Health Organization
Child Growth Standards (21). Parents provided information
about the child’s date of birth and any household contact
who was treated for tuberculosis in the past 3 months.
Antituberculosis treatment decisions were at the discretion
of the treating doctor based on all available routinely col-
lected information.

CPTB model

Before undertaking our statistical analyses, we defined a
heuristic CPTB model that represented our assumptions
about the pathophysiology of CPTB and the biological
mechanisms that are believed to have given rise to the test
results. This model is graphically depicted in Figure 1.

The mechanisms of the 3 microbiological tests under study
(culture, Xpert, and microscopy) are based on highly similar

Table 1. Characteristics of 749 Children Suspected to Have
Pulmonary Tuberculosis, South Africa, 2009–2014

Characteristic Median (IQR) No. %

Female sex 347 46

Age, months 22 (12 to 50) 1–120a

Infected with HIV 154 21

Weight, kg 10 (8 to 14)

Weight, z scoreb −1.1 (−2.2 to 0.2)

Malnutritionc 211 28

Diagnostic test positive

Liquid culture 122 16

Xpert MTB/RIF 106 14

Microscopy 42 6

Radiography 249 33

TST 321 43

Household tuberculosis
contact

409 55

Treated for PTB 436 58

Abbreviations: HIV, human immunodeficiency virus; IQR, inter-
quartile range; PTB, pulmonary tuberculosis; TST, tuberculin skin
test.

a Value is expressed as median (range).
bWeight for age z score, calculated according to World Health

Organization Child Growth Standards (21).
c Malnutrition was defined as having a weight-for-age z score

lower than −2.
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biological principles: directly visualizing tuberculosis bacilli
(microscopy), detecting their growth (culture), or amplifying
and detecting bacterial DNA (Xpert). Among children with
CPTB, we anticipated a positive relation between bacillary
burden and the probability of a positive test outcome. This is
because a higher bacillary burden is more easily detected by
all 3 microbiological tests, whereas a very low bacillary bur-
den is more likely to be missed by all tests.

We also anticipated conditional dependence between the
TST results and results from the microbiological tests.
With regard to tuberculosis in adults, it has been reported
that the TST may be less sensitive in persons with severe
disease, which can in turn be associated with high bacillary

burden (22–24). Because little is known about the exact
functional form of this relationship in children, we allowed
for the possibility that this association was nonlinear.

Further, based on the literature and the clinical expertise of
our team members, we expected that certain covariates would
influence the sensitivity and specificity of the different tests
and CPTB prevalence. For example, we expected the sensi-
tivity of the TST to be systematically lower for HIV-infected
children than for children not infected with HIV (3, 8). We
also expected that some covariates would influence CPTB
prevalence. Table 3 lists the covariates and associations of
interest. A distinction is made between those associations
that are well established and those that remain to be studied.

Table 2. Diagnostic Tests for Childhood Pulmonary Tuberculosis and Their Expected Accuracy

Test and Accuracy
Measure Expected Accuracy

Microbiologicala

Sensitivity Not perfect. Concentration of Mycobacterium tuberculosis is usually very low in sputum of children; true cases of
childhood pulmonary tuberculosis can be missed.

Specificity Nearly perfect for all 3 tests. Xpert MTB/RIF and microscopy might give rare false positive results due to detection of
dead bacilli or in children with bacillus Calmette-Guérin disease.

Radiography

Sensitivity Not perfect. Limited pathology might not be visible; subject to inter- and intra-observer variability.

Specificity Not perfect. Positive reading could be caused by other respiratory diseases and past pulmonary tuberculosis
infection; subject to inter- and intra-observer variability.

Tuberculin skin test

Sensitivity Not perfect because of anergy (HIV or malnutrition) or other reasons related to limited immune response. In adults,
decreased in cases with severe disease.

Specificity Not perfect. False positives expected because of latent tuberculosis infection, bacillus Calmette-Guérin immunization,
and nontuberculous Mycobacterial infections.

Abbreviation: HIV, human immunodeficiency virus.
a Liquid culture, Xpert MTB/RIF, and microscopy.

Microscopy

Culture

TB Disease

Xpert

TST

HIV
Malnutrition
Age

Exposure to TB
Reported

Household
Contact

Other Diseases Radiography

Bacillary Load
in Respiratory

Secretions

Figure 1. Heuristic model specifying prior beliefs of relations between latent and manifest variables. HIV, human immunodeficiency virus;
TB, tuberculosis; TST, tuberculin skin test.
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Latent class models

Based on the heuristic CPTB model, we determined that
the available tests would allow us to classify subjects into 1
of 2 latent classes representing true CPTB-positive and true
CPTB-negative subjects. It should be noted that CPTB-
negative subjects include those who have different respira-
tory diseases and CPTB-positive subjects may also include
children with co-infections.

We assumed conditional independence of test outcomes
for CPTB-negative subjects. Our analyses proceeded step-
wise through 4 different latent class models of increasing
complexity. Our purpose was to study improvement in
model fit and changes in parameter estimates as we pro-
ceeded to the model that most closely represented the
model illustrated in Figure 1.

Latent class model 1 is a 2-class latent class model based
on the assumption of conditional independence of test out-
comes within both classes. In all other latent class models
that we considered, this conditional independence assump-
tion is relaxed. Latent class model 2 adds to model 1 a con-
tinuous random effect representing the unobserved true
bacillary burden and its association with the microbiolog-
ical tests. The sensitivities of the microbiological tests are
expressed as functions of the random effect and are there-
fore allowed to vary with it (see Web Appendix 1 and Web
Table 1, available at http://aje.oxfordjournals.org/). Latent
class model 3 adds 9 established covariate associations
with the sensitivity, specificity, and/or class prevalence

(i.e., CPTB prevalence) to model 2. It also includes the
association between the random effect and the sensitivity
of the TST. We consider model 3 to be our main model.

We considered 1 more elaborate latent class model (model
4) that included the 10 additional covariate associations with
test sensitivity, specificity, and prevalence that are not well
established but are of potential interest (Table 3). As ex-
plained further in the Results section, we considered model 4
to be an exploratory analysis, given the large number of
covariate associations considered (19 in total) relative to the
available data. Details about the specification of these 4 latent
class models are in Web Appendix 1.

Similar to what was done in earlier studies (25, 26), we
assume that the random effect is a Gaussian random variable
with equal magnitudes of association with the sensitivity of
each of the 3 microbiological tests. The covariates and the
random effect influence the sensitivities and specificities of
individual tests through a probit model (see Web Appendix
1 for details). In order to model the possibly nonlinear rela-
tion between TST sensitivity and bacillary burden, we use a
quadratic function; all other associations with covariates and
random effects are assumed to be linear and additive. The
latent class prevalence parameter is allowed to vary with
covariates (household contact, age, HIV status, and malnutri-
tion) through a linear binary logistic function. To simplify
modeling, age of the child was dichotomized at 24 months
of age to separate very young and young children.

We estimated the probability of having CPTB for each
combination of test results. The model was also used to

Table 3. Covariates Potentially Associated With Test Accuracy and Childhood Pulmonary Tuberculosis
Prevalence Parametersa

Test and Parameter
Covariate

Bacillary Burdenb

HIV Age Malnutrition Household Tuberculosis Contact

PTB prevalence Strong Strong Strong Strong

Liquid culture

Sensitivity Weak Weak Strong

Specificity

Xpert MTB/RIF

Sensitivity Weak Weak Strong

Specificity

Microscopy

Sensitivity Weak Weak Strong

Specificity

Radiography

Sensitivity Weak Weak Weak

Specificity Weak

TST

Sensitivity Strong Strong Weak

Specificity

Abbreviations: HIV, human immunodeficiency virus; PTB, pulmonary tuberculosis; TST, tuberculin skin test.
a Clinical experts indicated “strong” or “weak” belief that the covariate should be included in the model. Empty

cells indicate that clinical experts provided no reason to believe that covariate should be included.
b Bacillary burden is represented by a random effect.
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estimate the proportion of overtreatment (the proportion of
those who received antituberculosis treatment in the latent
class but were CPTB disease negative) and undertreatment
(proportion who did not receive antituberculosis treatment in
the latent class but were CPTB disease positive) in the cohort.

Bayesian estimation

We fitted the latent class models to the data using a
Bayesian approach. Web Appendix 1 provides details of
the form of the likelihood and prior distributions. We used
informative prior distributions only on the specificity para-
meters of the culture test and Xpert. The specificities of
these tests are widely acknowledged to be nearly perfect
(3, 4). We selected hyperparameters that let the 95% prior
credible interval of the specificity parameters for the culture
test and Xpert range from 99% to 100% and 98% to 100%,
respectively. For all other parameters, we used noninforma-
tive prior distributions (Web Appendix 1).

The analytical form of the joint posterior distribution or
the marginal posterior distributions of individual parameters
cannot be obtained for any of the 4 models considered.
Therefore, a Markov chain Monte Carlo approach was used
to sample from these distributions. Using the statistical soft-
ware package JAGS (27) in R (28) for all models, we ran 3
parallel Markov chain Monte Carlo simulations, each with
50,000 iterations. The first 10,000 iterations of each chain
were discarded. Convergence was assessed by visual inspec-
tion and by examining the Brooks-Gelman-Rubin statistic
(29). No convergence problems were identified. To avoid
label switching problems between chains (30), the para-
meters associated with random effect were constrained to
positive values among the microbiological tests. R code is
available in Web Appendix 2.

Estimation of exploratory model 4 with informative priors
on only the sensitivity of Xpert and culture test (as in models
1–3) yielded at least 1 covariate parameter estimated with
extremely wide credible intervals. This suggests that with
the current priors some parameters of model 4 are not identi-
fiable or only weakly identifiable with these data. In a
Bayesian context, defining additional informative priors may
help overcome this problem (31–33). We therefore adopted
a Bayesian Lasso approach (34) to estimate the 10 additional
covariate associations in model 4 (Table 3). This is imple-
mented by placing zero-centered Laplace prior distributions
with a diffuse prior on the scale parameter (for details, see
Web Appendix 1). The shrinkage is adaptive in the sense
that it is proportional to the variance of the parameter esti-
mate, such that parameters that are estimated with poor pre-
cision are more likely to be shrunk to the null value.

Sensitivity analyses

We conducted a series of sensitivity analyses to explore
alternative modeling choices. First, to consider the impact of
an alternative conditional dependence structure, we fit a
3-class latent class model resulting from treating the random
effect as a dichotomous rather than a Gaussian variable. In
this model, children with CPTB belong to 1 of 2 groups:
“CPTB disease with tuberculosis detectable in respiratory

secretions” or “CPTB disease with tuberculosis not detectable
in respiratory secretions.” In the latter group, we assume the
sensitivity of each of the 3 microbiological tests to be 0%,
and the sensitivity of the TST is assumed equal for the 2
CPTB disease classes. We compared this model (model 2B)
with model 2 for differences in sensitivity, specificity, and
prevalence estimates.

Further, the informative prior distributions for the speci-
ficity parameters of the culture and Xpert tests were replaced
by noninformative priors. To study the consequence of re-
laxing the assumption that the random effects equally affect
the sensitivity of each of the 3 microbiological tests, we
conducted an analysis in which this constraint was removed.

RESULTS

Model fit

Figure 2 shows the pairwise residual correlations (25)
between the test outcomes for the 4 latent class models con-
sidered. For models 1 (the conditional independence model)
and 2 (conditional dependence assumed only between micro-
biological tests), substantial residual correlation was found.
In comparison, models 3 and 4 had low residual correlation.
From Table 4, we can see that for models 1 and 2, the ex-
pected frequencies of test outcome patterns substantially
deviated from the observed frequencies. For model 3, the
expected frequencies of test outcome patterns are close to
the observed frequencies; together with low residual corre-
lation, this suggests satisfactory fit of model 3 to the data.
The expected frequencies of test outcome patterns for
exploratory model 4 were similar to those for model 3 (not
shown), despite the addition of 10 covariate associations to
the latent class model.

Estimates of disease prevalence and diagnostic test
accuracy

Table 5 summarizes the estimates of test accuracy and
CPTB prevalence based on models 1–3. Estimates from
model 3 were marginalized over the covariates and random
effect. The corresponding estimates for model 4 were very
similar to those from model 3 and are not shown.

When ignoring the conditional dependence (i.e., model 1),
the sensitivity and specificity of the culture test were estimated
to be close to 100%; the estimates for the other tests and
CPTB prevalence were therefore close to those obtained from
a naïve analysis in which we assumed culture is a perfectly
accurate reference standard. Accounting for conditional depen-
dence between the microbiological tests (model 2) provided
lower estimates of culture sensitivity. Adjustment for the con-
ditional dependence between the TST and the microbiological
tests caused the estimate of TST sensitivity to increase.

From Table 5, we see that by model 3, prevalence of
CPTB was estimated (posterior median) at 26.7% (95%
credible interval (CrI): 20.8, 35.2). The average sensitivities
of the microbiological tests were 60.0% (95% CrI: 45.7,
75.5) for culture, 49.4% (95% CrI: 37.7, 62.2) for Xpert,
and 22.3% (95% CrI: 15.6, 30.3) for microscopy. These
sensitivities strongly depend on the random effect that
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represents the unobserved bacillary burden in the sputum
of the child (Figure 3A). In accordance with our prior be-
liefs, the specificities of culture and Xpert were estimated
to be nearly 100%; the specificity of microscopy was esti-
mated to be 99.7% (95% CrI: 99.0, 100). The sensitivity of
diagnosis by radiography was estimated to be 64.2% (95%
CrI: 54.9, 72.8), and the specificity was estimated to be
78.0% (95% CrI: 73.4, 83.4). For the TST, the overall sen-
sitivity was estimated to be 75.2% (95% CrI: 61.2, 83.8),
and the specificity was estimated to be 69.3% (95% CrI:
63.2, 75.9).

Sensitivity analyses

Results of our sensitivity analyses are shown in Web
Table 2. Replacing the Gaussian random effects model
(model 2) between the microbiological tests with a 3-class
latent class model (model 2B, defined in Web Appendix 1)
did not affect the results substantially. Therefore, we concluded

that our results seemed robust to the choice of the condi-
tional dependence structure and retained the Gaussian ran-
dom effect in more complex models 3 and 4. Also, relaxing
the equal random effects assumption (model 3A) and repla-
cing the informative priors on culture and Xpert specificity
parameters with noninformative priors (models 3B and 3C)
had little effect on the model parameters.

Covariate associations

The estimated coefficients under model 3 showed lower
TST sensitivity in HIV-infected children. A graphical pre-
sentation of the relations of TST sensitivity with the covari-
ate associations and random effect is found in Figure 3B.
Sensitivity of the TST dropped significantly at higher and
low levels of the random effect and for malnourished and
HIV-infected children. Average sensitivity of the TST under
model 3 for children who were both malnourished and HIV
infected was estimated to be 55.8% (95% CrI: 30.8, 79.2);
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Figure 2. Residual correlation plots for models 1–4 (A–D), South Africa, 2009–2014. Residual correlations are computed as the difference
between observed and model-predicted correlations between each pair of tests: pair 1, liquid culture and Xpert MTB/RIF; pair 2, liquid culture
and microscopy; pair 3, liquid culture and radiography; pair 4, liquid culture and tuberculin skin test; pair 5, Xpert MTB/RIF and microscopy; pair
6, Xpert MTB/RIF and radiography; pair 7, Xpert MTB/RIF and tuberculin skin test; pair 8, microscopy and radiography; pair 9, microscopy and
tuberculin skin test; and pair 10, radiography and tuberculin skin test.
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for those who were only HIV positive, it was estimated to
be 61.7% (95% CrI: 41.5, 84.9); for those who were only
malnourished, it was estimated to be 74.3% (95% CrI: 58.6,
86.1); and for those who were not malnourished and not
infected with HIV, it was estimated to be 80.9% (95% CrI:
69.0, 89.5).

The (marginal) covariate associations estimated by model
4 are tabulated in Web Table 3. Based on this exploratory
analysis, only the association between age and sensitivity of
radiography stands out. For children older than 24 months
of age, the sensitivity of radiography was estimated to be
52.5% (95% CrI: 39.4, 66.0), whereas for children younger
than 24 months, it was 75.0% (95% CrI: 62.6, 85.8).

Posterior probability of CPTB

In addition to the estimates of prevalence and test accu-
racy, the Bayesian latent class model was used to estimate
the posterior probability of CPTB for a given set of test
outcomes. The estimated posterior probability of CPTB per
test pattern under model 3 is given in Table 4. Not surpris-
ingly, test patterns that included a positive culture generally
had a predicted probability of CPTB of 1, with very high

precision. Two other patterns associated with a greater than
50% predicted probability were those in which Xpert and
radiology alone were positive and in which radiology and
TST were positive. However, these estimates were accom-
panied by wide credible intervals, illustrating the difficulty
in diagnosing individual culture-negative children based on
the 4 other tests we have considered.

Under- and overtreatment

Based on model 3, we evaluated potential overtreatment
and undertreatment in the cohort. Details about these calcu-
lations can be found in Web Appendix 1. Subjects were
classified into quintiles based on their posterior probability
of CPTB. Within each quintile, we estimated the mean prob-
ability of CPTB and the proportion who received antituber-
culosis treatment. The relationship between these 2 variables
is depicted by Figure 4. The steep initial rise of the curve re-
flects the low treatment threshold applied by clinicians, sug-
gesting that the probability of receiving antituberculosis
treatment exceeds 80% even among subjects with probabil-
ity of CPTB as low as 30%.

Table 4. Posterior Median Expected Frequency of Each Combination of Test Results for Models 1–3 and Predicted Probability of Childhood
Pulmonary Tuberculosis Based on Model 3, South Africa, 2009–2014

Test Outcome Pattern
Observed Frequency

Posterior Median Expected Frequency
Predicted

Probability of CPTB
Based on Model 3

Cu Xp Mi Ra TS Model 1 Model 2 Model 3 % 95% CrI

0 0 0 0 0 296 278 292 294 2 0, 7

0 0 0 0 1 149 168 155 151 16 5, 33

0 0 0 1 0 87 102 90 89 9 0, 34

0 0 0 1 1 78 62 73 77 52 26, 74

0 0 1 0 1 1 0 0 0 11 0, 100

0 1 0 0 0 5 5 4 4 4 0, 40

0 1 0 0 1 7 3 4 4 56 0, 100

0 1 0 1 0 2 2 2 1 12 0, 100

0 1 0 1 1 2 2 4 4 88 50, 100

1 0 0 0 0 3 3 4 2 23 0, 100

1 0 0 0 1 8 5 7 10 93 62, 100

1 0 0 1 0 1 4 6 1 54 0, 100

1 0 0 1 1 20 9 13 17 99 90, 100

1 1 0 0 0 1 6 5 3 100 100, 100

1 1 0 0 1 17 14 12 15 100 100, 100

1 1 0 1 0 4 12 10 5 100 100, 100

1 1 0 1 1 27 26 22 26 100 100, 100

1 1 1 0 0 8 3 4 10 100 100, 100

1 1 1 0 1 5 7 10 5 100 100, 100

1 1 1 1 0 21 6 8 18 100 100, 100

1 1 1 1 1 7 13 18 9 100 100, 100

Abbreviations: CPTB, childhood pulmonary tuberculosis; CrI, credible interval; Cu, liquid culture; Mi, microscopy; Ra, radiography; TST,
tuberculin skin test; Xp, Xpert MTB/RIF.
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The proportion of CPTB-positive children within the
group of children who received antituberculosis treatment
was estimated to 45.8% (95% CrI: 42.4, 48.7), which reflects
the level of overtreatment; the proportion of children with
CPTB within the group who did not receive antituberculosis
treatment was estimated to be 7.0% (95% CrI: 1.8, 17.8),

which reflects the level of undertreatment. Additionally, the
probability of a CPTB-negative child not receiving treatment
was estimated as 42.4% (95% CrI: 34.4, 51.9); conversely,
the probability of a CPTB-positive child receiving treatment
was 95.5% (95% CrI: 85.6, 99.0), which suggests that nearly
all CPTB-positive children did receive treatment.

Table 5. Posterior Median Estimates of Marginalized Sensitivity, Specificity, and Childhood Pulmonary Tuberculosis Prevalence for Models
1–3, South Africa, 2009–2014

Test and Parameter

Model

1 2 3

Posterior Median Estimate 95% CrI Posterior Median Estimate 95% CrI Posterior Median Estimate 95% CrI

CPTB prevalence 16.6 15.6, 18.0 28.7 22.2, 36.3 26.7 20.8, 35.2

Liquid culture

Sensitivity 96.7 87.8, 99.8 57.2 44.8, 73.5 60.0 45.7, 75.5

Specificity 99.8 98.9, 100.0 99.9 99.3, 100.0 99.6 98.7, 100.0

Xpert MTB/RIF

Sensitivity 74.4 66.0, 82.2 46.7 37.1, 59.1 49.4 37.7, 62.2

Specificity 98.3 97.0, 99.4 98.9 97.3, 99.9 98.6 97.3, 99.5

Microscopy

Sensitivity 33.3 25.3, 42.1 20.4 14.6, 27.9 22.3 15.6, 30.3

Specificity 99.8 99.2, 100.0 99.7 99.0, 100.0 99.7 99.0, 100.0

Radiography

Sensitivity 65.4 56.5, 73.8 64.7 56.0, 73.0 64.2 54.9, 72.8

Specificity 73.1 69.6, 76.6 79.4 74.2, 84.9 78.0 73.4, 83.4

TST

Sensitivity 69.0 60.5, 76.7 69.3 61.1, 76.8 75.2 61.2, 83.8

Specificity 62.4 58.5, 66.1 67.8 62.6, 73.4 69.3 63.2, 75.9

Deviancea 2,366.1 2,141.8 2,013.9

Abbreviations: CrI, credible interval; TST, tuberculin skin test.
a Posterior median model deviance.
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Figure 3. Estimated sensitivity as a function of the random effect (latent class model 3), South Africa, 2009–2014. A) Microbiological tests;
B) tuberculin skin test. HIV, human immunodeficiency virus.
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DISCUSSION

We presented a Bayesian latent class analysis in the con-
text of CPTB. Using prospectively collected data from hos-
pitalized children in South Africa who were suspected to
have CPTB, we estimated the accuracy of 5 commonly
used diagnostic tests and provided estimates of under- and
overtreatment in this cohort. The predefined latent class
models that incorporated conditional dependence between
the 3 microbiological tests and the TST showed good fit to
the data. Through sensitivity analyses, we showed that our
estimates of accuracy and CPTB prevalence are robust to
changes to the prior distributions and the assumed depen-
dence structure.

Our results are in agreement with those from pre-existing
reports in which the sensitivities of confirmatory tests for
CPTB were low (3). We estimated that a single mycobacte-
rial culture test—generally regarded as the most sensitive
confirmatory test for CPTB currently available and often
the preferred reference standard—fails to detect almost 40%
of all children with a positive estimated CPTB status. The
numbers of children with a positive estimated CPTB status
missed by Xpert (approximately 50%) and microscopy
(approximately 77%) are larger. Sensitivities of the TST- and
chest radiography–based diagnoses are somewhat higher
than the that of the culture test, although the specificities
of these tests are much lower.

We also found evidence that the sensitivity of the micro-
biological tests depends on the bacterial load in respiratory
secretions. Our estimates of sensitivity might therefore not
be generalizable to ambulatory settings because children
with true CPTB who present in outpatient clinics may be
expected to be on average less severely diseased (35) and
may therefore (on average) have lower bacillary burden in
their respiratory secretions. Sensitivity of the microbiolog-
ical tests in outpatient settings may thus be lower (35).

TST sensitivity is strongly dependent on the immune status
and thus is lower in HIV-infected and malnourished chil-
dren. Our results additionally indicated that TST sensitivity
varied with the random effect, providing some evidence
that—as in adult tuberculosis—TST sensitivity is lower in
persons with more severe CPTB disease.

Because of the lack of an accurate diagnostic testing pro-
cedure for CPTB, doctors often make treatment decisions
under great uncertainty. Reflecting this uncertainty, a defi-
nite CPTB diagnosis based on a clinical CPTB case defini-
tion as defined in the original study protocol could not be
made for 48% of children suspected to have CPTB in the
present study. Taking into account this uncertainty of true
CPTB status, using our latent class model, we estimated
that in our cohort the proportion of children with a negative
estimated CPTB status who received CPTB treatment was
approximately 46%, whereas the proportion of children
with a positive estimated CPTB status who did not receive
CPTB treatment was estimated to be 7% (with a wide cred-
ible interval). This points to the possibility of a substantial
amount of overtreatment and limited (low) undertreatment,
which reflects the use a low implicit threshold probability
for a decision to treat hospitalized children for CPTB by
the treating doctors in a country with a high HIV preva-
lence. We stress that this low threshold and consequent
high level of overtreatment were likely clinically appropri-
ate in the study cohort because of the high uncertainty of
true CPTB, the high prevalence of tuberculosis in this geo-
graphical area, and the high morbidity and mortality associ-
ated with untreated CPTB.

Diagnostic test evaluation in the absence of an accurate
reference standard remains a challenging problem. In recog-
nition of this, the US National Institutes of Health convened
an expert panel to propose a uniform clinical case definition
for PTB. This panel recently issued revised definitions (36).
The proposed PTB case definition contains 3 different classes
(confirmed tuberculosis, unconfirmed tuberculosis, and
unlikely tuberculosis) based on a set of clinical, radiological,
and microbiological criteria. Although development of this
case definition is clearly an important step forward, the mid-
dle category (unconfirmed tuberculosis) prohibits unambigu-
ous evaluation of diagnostic tests in terms of diagnostic test
accuracy and estimation of PTB prevalence and of degrees of
possible under- and overtreatment. In future work, we intend
to compare the estimates of diagnostic test accuracy obtained
from using the 3 National Institutes of Health categories to
those obtained from our model. We also intend to evaluate
our model in children who present with suspected PTB with
less severe disease in an ambulatory setting.

Although our latent class analyses have been carefully
designed, we acknowledge that our results depend on the
assumptions we have made and that it may be difficult to
appreciate the validity of such analyses. However, we have
made our assumptions explicit in this paper and presented
a variety of sensitivity analyses, and we consider this pref-
erable to making assumptions that are both left implicit and
known to be untenable, for example, assuming culture is a
perfect test. In the absence of a gold-standard test (i.e., a
test with perfect accuracy) for CPTB, making essentially
unverifiable assumptions is inevitable when quantifying the
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Figure 4. The probability of childhood pulmonary tuberculosis
(CPTB) and the probability of treatment were estimated within quan-
tiles of the posterior mean probabilities of CPTB for each child
based on latent class model 3, South Africa, 2009–2014. Dashed
lines are boundaries of quantiles.
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accuracy of the diagnostic tests for CPTB. Similarly, stud-
ies on the effectiveness of CPTB treatments are compli-
cated by the absence of methods that can distinguish
between children who do and do not suffer from active
CPTB.
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