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Many sample size criteria exist. These include power calculations and methods
based on confidence interval widths from a frequentist viewpoint, and Bayesian
methods based on credible interval widths or decision theory. Bayesian meth-
ods account for the inherent uncertainty of inputs to sample size calculations
through the use of prior information rather than the point estimates typically
used by frequentist methods. However, the choice of prior density can be prob-
lematic because there will almost always be different appreciations of the past
evidence. Such differences can be accommodated a priori by robust methods
for Bayesian design, for example, using mixtures or 𝜖-contaminated priors. This
would then ensure that the prior class includes divergent opinions. However,
one may prefer to report several posterior densities arising from a “community
of priors,” which cover the range of plausible prior densities, rather than form-
ing a single class of priors. To date, however, there are no corresponding sample
size methods that specifically account for a community of prior densities in the
sense of ensuring a large-enough sample size for the data to sufficiently over-
whelm the priors to ensure consensus across widely divergent prior views. In this
paper, we develop methods that account for the variability in prior opinions by
providing the sample size required to induce posterior agreement to a prespeci-
fied degree. Prototypic examples to one- and two-sample binomial outcomes are
included. We compare sample sizes from criteria that consider a family of priors
to those that would result from previous interval-based Bayesian criteria.
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1 INTRODUCTION

A wide variety of sample size criteria have been proposed. These range from power calculations and methods based on
confidence interval widths from a frequentist viewpoint (reviewed by Lemeshow et al1 and Desu and Raghavarao2) to
Bayesian versions of these same criteria,3-5 reviewed by Adcock6 and Wang and Gelfand.7 Bristol8 showed that sample
sizes based on interval widths are not directly related to those based on power, so that sample sizes guaranteeing high
power may not be sufficient for accurate estimation. It is therefore important that the sample size methods match the
eventual analysis. Because reporting interval estimates is preferable to hypothesis testing in most practical circumstances,9
sample sizes should be based upon interval widths rather than power of hypothesis tests. Decision theoretic criteria have
also been proposed,10 but while interesting in theory, these methods are difficult to implement in practice in a large part
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because realistic loss functions are difficult to derive and are highly specific to a given application. These criteria will
therefore not be discussed further here.

Frequentist sample size methods depend on point estimates of the required inputs such as means, proportions, and
standard deviations, but these are typically not accurately known at the design stage of any study. It is therefore advanta-
geous to consider Bayesian methods, where prior densities not only allow for uncertainty in the inputs but also incorporate
this uncertainty into the sample size calculations. However, the choice of prior density can be problematic because there
will almost always be different assessments of the previous evidence about any parameter, leading to different posterior
conclusions from the data collected in the study. This is extremely important to address to avoid study results that are
nondefinitive, in the sense that interested parties with different prior views may not agree on the final conclusions. It
is desirable, therefore, at the planning stage to know the sample size that is sufficiently large to bring initially divergent
views together. From an analysis perspective, one can examine robustness to prior inputs by reporting a family of pos-
terior densities corresponding to a “community of priors,” which run from optimistic to pessimistic.11 In this paper, we
propose a design methodology that corresponds to this type of analysis.

This work falls into the general category of robust Bayesian design, and there have been notable methods in the past that
are in a similar direction to the consensus sample size methods presented here. De Santis12 considered a class of power
priors, with the goal of resolving possible differences between historical data and data collected in the current study, for
example, by down-weighting the historical data. Brutti and de Santis13 select a class of priors and ensure a large-enough
sample size such that the lower bound of the posterior credible interval for a treatment difference will be above a given
threshold, regardless of which prior in the class is used to analyze the data. They apply their methods to normal sam-
pling situations, using priors with the same mean but with varying standard deviations. Interestingly, they also consider
optimistic and pessimistic prior scenarios, but they are used in separate sample size calculations, providing a sample size
relating to each possibility, but not necessarily resolving differences between them a posteriori. Similarly, Brutti et al14 pro-
pose 𝜖-contamination priors, ensuring a “successful trial” in terms of avoiding the range of clinical equivalence regardless
of which prior in that class is used. Brutti et al15 extended their own earlier work14 by using mixtures of priors rather than
𝜖 contamination priors. Gajewski and Mayo16 employ a mixture prior similar to Brutti et al,15 but they focus on design-
ing phase II clinical trials. De Santis17 proposes to select the sample size for normal sampling such that the upper and/or
lower posterior quantities of a given statistic will be close, regardless of which prior in a class of priors is used. While they
also consider using optimistic and pessimistic priors, these are used only as design but not analysis priors (the distinction
between design and analysis priors is discussed in Section 2). DasGupta and Mukhopadhyay18 proposed calculating the
sample size to guarantee posterior robustness using a minimax approach.

The general idea behind these works12-18 has been that there is uncertainty about the prior, not primarily because of
widely differing opinions about the past work but because the choice of the exact prior to use within a class of priors is not
clear, and concern about robustness to this choice of prior. For example, many of the methods have chosen a single prior
mean, and varied the strength of the prior around this mean. Other methods have combined mixtures of different priors
to form a single prior, and still, others have used 𝜖-contamination priors. In all of these cases, the primary concern is to
ensure robustness to a prior thought to be possibly imperfect or uncertain, and not to address widely divergent priors from
different interested parties. Although some authors did directly address families of distributions including optimistic and
pessimistic priors, they did so by not finding the sample size required to resolve these differences in comparing across
posterior densities from these individual priors, but rather by combining these priors by a mixture or calculating distinct
sample sizes for each of the optimistic and pessimistic priors. While all of these methods can be used to help design a
wide variety of studies in the presence of prior uncertainty, none uses the identical consensus-based criteria proposed
here and, therefore, will not necessarily produce the same sample sizes.

In this paper, we develop methods that account for variability in prior opinions by providing the sample size required
to induce posterior agreement to a prespecified degree across a range of prior opinions. Specifically, we consider the most
optimistic and pessimistic choices of priors and determine the sample size to induce posterior agreement between these
extremes. We develop criteria using three different ways to handle sampling uncertainty with applications to both single-
and two-population binomial sampling designs, as commonly found in clinical trials. The results will provide the sample
size required to design a definitive study or trial, in the sense that the amount of information gathered will be sufficient
to ensure posterior agreement regardless of prior opinion.

The outline of this paper is as follows. Section 2 reviews various Bayesian sample size criteria based on the highest
posterior density (HPD) credible interval lengths and applies these criteria to deriving sample sizes for posterior agreement
given two divergent prior densities. HPD intervals are optimal, in that they will lead to the smallest possible sample
sizes for a given desired length and coverage probability. Specific methods for calculating the sample sizes defined by the
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criteria in Section 2 in the case of single- and two-group binomial sampling are given in Section 3. Sample sizes from a
series of prototypic examples are given in Section 4, comparing the change in sample size with and without consideration
of posterior agreement. We end with a discussion in Section 5.

2 BAYESIAN SAMPLE SIZE CRITERIA THAT ACCOUNT FOR DISPARITIES
IN PRIOR OPINIONS

Let 𝜃 denote an unknown parameter to be estimated, let Θ denote the parameter space for 𝜃, and let f (𝜃) summarize the
prior information about 𝜃. Suppose further that data x ∈  with sample size N will be collected to inform about 𝜃. The
preposterior predictive distribution for x, the marginal density for the data, is given by

𝑓 (x) = ∫Θ
𝑓 (x|𝜃)𝑓 (𝜃)d𝜃, (1)

and the posterior distribution of 𝜃 given x is 𝑓 (𝜃|x) = 𝑓 (x|𝜃)𝑓 (𝜃)
𝑓 (x)

, where f (x|𝜃) is the likelihood function of the data x.
If f (𝜃) is known or generally agreed upon by all parties of interest, then sample sizes can be based on ensuring a

large-enough sample for accurate estimation, as measured by the width of an HPD interval. Because the data are not
known at the design stage of the study, one can guarantee the desired accuracy on average, or as a percentage of all possi-
ble data sets, weighted by f(x). Such methods have been developed for binomial parameters by Joseph et al5 and extended
to differences between binomial parameters by Joseph et al.5 M'Lan et al19 extended these methods to include curve fitting
algorithms for efficient searching for the optimal sample size. These methods are implemented in an R package available
from CRAN (cran.r-project.org/web/packages/SampleSizeProportions/index.html).

In practice, however, it is rare that there is consensus about the choice of f(𝜃), as different appreciations of the available
information about 𝜃 will lead to different prior densities. Let f1(𝜃) and f2(𝜃) represent two prior distributions over 𝜃.
For example, 𝜃 might represent the difference in effectiveness between a standard and a novel therapy, with f1(𝜃) and
f2(𝜃) representing two expert opinions, one being optimistic and the other being more pessimistic about the value of the
new treatment. It may then be of interest to not only estimate 𝜃 to a given accuracy using either f1(𝜃) or f2(𝜃) but to
ensure that the two distinct posterior densities arising from f1(𝜃) and f2(𝜃) agree to a prespecified degree. In doing so, one
would ensure a definitive trial, in the sense that the data from the trial will be sufficiently informative to resolve a priori
differences in opinion. We note that it would not be sufficient to simply employ a noninformative prior because not only
does that ignore any existing prior opinions, it does not guarantee that the sample size will be large enough to ensure
posterior agreement when different interested parties may draw conclusions from the study draw using their own prior
densities.

One can define this posterior agreement in several ways. Given that final results are most often reported as posterior
intervals, it is perhaps most natural to keep to HPD intervals, and ensure that the maximum distance between the lower
and upper HPD interval limits from the two posterior densities associated with f1(𝜃) and f2(𝜃) are within a prespeci-
fied distance 𝜖. Letting the HPD intervals derived from f1(𝜃) and f2(𝜃) given data x be represented by (L1(x),U1(x)) and
(L2(x),U2(x)), respectively, we would seek a sample size that ensures

m(x) = max(|L1(x) − L2(x)|, |U1(x) − U2(x)|) < 𝜖. (2)

Alternative definitions of posterior agreement are of course possible. While our R software package includes criteria based
on closeness of sets of posterior cumulative probabilities and sets of posterior quantiles, the methods leading to sample
sizes from these criteria are very similar to those for the maximum distance between the lower and upper HPD interval
limits. Indeed, all steps are identical except for the check of whether the criterion is satisfied at the current sample size,
which of course depends on the particular criterion. Hence, without much loss of generality, these alternate possibilities
are not further discussed here.

For any given sample size, some data sets x may satisfy (2) while others may not. Hence, one requires a method to handle
the inherent data uncertainty in selecting the final sample size at the design stage. For example, one may be satisfied
with ensuring that (2) holds on average over all possible x, the average being over the predictive distribution of the data
given by (1). Alternatively, one can apply a more stringent criterion, such as ensuring that the sample size is sufficiently
large such that (2) will hold across all possible data sets, or over a sufficiently large proportion of all possible data sets.

cran.r-project.org/web/packages/SampleSizeProportions/index.html
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We term the most restrictive criterion, when (2) must hold over all possible data sets the worst outcome criterion (WOC).
We use the term “modified WOC” (MWOC) when there is a prespecified proportion of all data sets over which (2) must
hold. Thus, for example, MWOC(90) and MWOC(50) would indicate the criteria for sample sizes that fulfill (2) over 90%
or 50%, respectively, of all data sets, according to the probabilities given by (1). Finally, the average coverage criterion is
used when one wishes for (2) to be satisfied on average over all data sets, that is, 𝜖 is the average distance achieved over
all data sets, again weighted by the probabilities given by (1).

One must also select a design prior, that is, the prior density to plug into (1) to generate the set of all possible data x,
which is not necessarily the same as the “analysis priors” f1(x) or f2(x). For example, one can set the design prior to be
a linear combination of the two analysis priors leading to f(x) = a f1(x) + (1 − a) f2(x), where 0 ≤ a ≤ 1, or one can
choose an entirely different prior, say, f3(x), to use as the design prior. The density f3(x) could represent, for example,
an opinion close to that of an average clinician, or the “clinical prior” as defined by Spiegelhalter et al.11 One can also
consider ensuring that the criterion (2) is satisfied both when f1(x) or f2(x) are plugged into (1) as the design prior.

Taking all possible combinations of the three choices of design prior density to use in (1) and degree of certainty of
reaching the desired agreement accuracy (again three choices, on average, over all possible data sets or over a given
proportion of the data sets) leads to seven possible sample size criteria. Note that we do not have nine criteria as might be
expected (three prior choices times three degrees of certainty based on the data) because if we wish to ensure that (2) is
satisfied over all data sets, the choice of prior in (1) does not matter.

In the next section, we will present methods for applying the above criteria in selecting sample sizes for studies involving
binomial parameters and the difference between two-binomial parameters.

3 SAMPLE SIZE METHODS FOR BINOMIAL PARAMETERS AND THE
DIFFERENCE BETWEEN TWO-BINOMIAL PARAMETERS

In this section, we apply the above criteria to calculate sample size requirements for studies involving binomial param-
eters. We begin by specifying the likelihood function and prior distributions for binomial parameters, first for simple
experiments that estimate a single-binomial parameter and, then, for experiments estimating the difference between
two-binomial parameters. Once these are defined, all criteria of Section 2 are fully specified and, in theory, can be applied.
Closed-form posterior densities are available for single-binomial parameters, and while in theory they are also available
for the difference between two-binomial parameters,20 the resulting calculations are cumbersome and it is thus prefer-
able to use simulations from the posterior density or substitute an approximate density. Therefore, below, we will outline
both exact and approximate algorithms that can be used to calculate the sample sizes in practice.

3.1 Methods for single-binomial parameters
Let 𝜃 be the binomial probability to be estimated. We assume that two different analysis priors f1(𝜃) and f2(𝜃) can be
expressed as beta densities, with

𝑓i(𝜃) ∼ Beta(𝛼i, 𝛽i), i = 1, 2. (3)
After observing data x of sample size n, the corresponding posterior densities will then also be from the beta family, with

𝑓i(𝜃) ∼ Beta(𝛼i + x, 𝛽i + n − x), i = 1, 2. (4)

We calculate HPD intervals from the beta posterior density using the algorithm given by M'Lan et al.19

In the case of estimating a binomial parameter with a beta prior density, the predictive density (1) is beta-binomial. We
will denote this probability function by Bb(𝛼, 𝛽,n), given by

Bb(x; 𝛼, 𝛽,n) = ∫
(

n
x

)
𝜃x(1 − 𝜃)n−x 𝜃

𝛼−1(1 − 𝜃)𝛽−1

B(𝛼, 𝛽)
d𝜃

=
(

n
x

)
1

B(𝛼, 𝛽) ∫ 𝜃x+𝛼−1(1 − 𝜃)n−x+𝛽−1d𝜃

=
(

n
x

)
B(x + 𝛼,n − x + 𝛽)

B(𝛼, 𝛽)

= n!
x!(n − x)!

· Γ(x + 𝛼)Γ(n − x + 𝛽)Γ(𝛼 + 𝛽)
Γ(n + 𝛼 + 𝛽)Γ(𝛼)Γ(𝛽)

,



JOSEPH AND BÉLISLE 5

where Γ(x) is the gamma function. If the design prior for 𝜃 is a linear combination of beta densities, then the predictive
density is a linear combination of beta-binomial distributions.

To determine the sample size, let m(x) be the criterion of interest as defined by (2), obtained when x successes are
obtained from a sample size of n. Given the sample size n and prior values 𝛼 and 𝛽, Bb(𝛼, 𝛽,n) depends only on the
observed data x, and so can be denoted as f(x). Using this notation, the minimum sample size n satisfying

n∑
x=0

𝑓 (x)m(x) ≤ 𝜖 (5)

is the optimal sample size n. Given a bounded range that contains the correct sample size, it can be found through a
bisectional search algorithm.21 In practice, a starting sample size is selected, and the above criterion is checked. The
sample size is then increased or decreased according to whether

∑n
x=0 𝑓 (x)m(x) is below or above 𝜖, continuing until the

optimal sample size is found.

3.2 Methods for the difference between two-binomial parameters
We next consider sample size determination for experiments aimed at drawing inferences about the difference between
two-binomial proportions, when two researchers have different prior beliefs and consensus about their posterior infer-
ences is desired. Let i = 1, 2 index the two populations, and let k = 1, 2 index the two researchers, each of whom models
their prior knowledge about the binomial proportions 𝜃i, i = 1, 2, through the beta densities

𝜃i ∼ Beta(𝛼ik, 𝛽ik), i = 1, 2, k = 1, 2.

We allow the sample sizes drawn from each group to differ. Let n1 denote the sample size drawn to estimate 𝜃1, and let
n2 = M × n1, where the sample size ratio M is given by the study designer. If M = 1, then the two groups will have equal
sample sizes.

As is typical in clinical trial design, we assume the two groups are independent. Therefore, the posterior density of each
binomial proportion is given by

𝜃i|xi ∼ Beta(𝛼ik + xi, 𝛽ik + ni − xi),

and the posterior density of the parameter of main interest is defined by the difference between these two parameters
𝜃2 − 𝜃1, the difference between two independent beta distributions. We approximate the exact posterior density with a
generalized beta distribution, as previously discussed in the work of Joseph et al.4 In particular, we approximate the exact
density of 𝜃2 − 𝜃1 with a beta distributed variable Z ∼ Beta(𝛼∗, 𝛽∗), such that Z∗ = 2Z − 1 is nonzero over the range
(−1, 1), and fit by the method of moments with E(Z∗) and V(Z∗) matching the posterior mean and variance of 𝜃2 − 𝜃1.

Having defined this approximation to the exact posterior density of 𝜃2 − 𝜃1, for any given sample size as defined by n1
and the multiplier M, we can now sample from the predictive density of the as yet unobserved data to approximate the
criterion as given by (2), and as in the single-binomial case, use a search algorithm to converge to the optimal sample size.

We next use our methods to determine sample sizes for various scenarios that may occur in the planning of studies with
dichotomous outcomes. User-friendly R packages called “SampleSizeConsensusBinomialProportion” and “SampleSize-
ConsensusBinomialProportionsDiff” that implements all of the above methods (as well as some additional criteria not
discussed in detail here) are available from www.medicine.mcgill.ca/epidemiology/Joseph/.

4 SAMPLE SIZES FOR PROTOTYPIC SCENARIOS

We first look at a typical example when estimating a single-binomial proportion, followed by an application of our meth-
ods to the difference between two-binomial proportions. In each case, we calculate the required sample size to ensure a
high degree of posterior agreement starting from prior densities from researchers whose opinions initially diverge. We
also calculate the sample sizes required from non–consensus-based criteria because one may in practice wish to assess
sample sizes from a variety of criteria before settling on a final sample size. For example, one might consider first run-
ning interval-based sample size methods, which ensure a sufficient sample size for estimation purposes when there is a
high degree of prior agreement among researchers. One can then check how different the sample size might be if one, in
addition, requires a high degree of posterior agreement among researchers whose opinions initially vary. Based on all of

www.medicine.mcgill.ca/epidemiology/Joseph/
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the calculated sample sizes, one can decide on a reasonable final choice depending on the information one would obtain
for each sample size and how much importance one places on posterior agreement.

4.1 Example for a single-binomial proportion
Suppose one is designing a study of a new surgical technique, with the objective of estimating the probability of success
for this technique through a single sample of size n. Suppose that one researcher (or interested party) is enthusiastic,
and believes that the true proportion is highly likely to be near 90% and is a priori 95% certain that the true value is in
the interval (0.85, 0.95). However, a second researcher (or interested party) is more pessimistic, and a priori believes the
true rate to be closer to 80%, with 95% certainty that the true value is in the interval (0.75, 0.85). Following the criterion
given by (2), suppose we define posterior agreement to be that the maximum difference between the upper and lower
95% posterior HPD intervals from the two researchers should be not larger than 0.005, ie, they will agree on both ends of
the interval to within one-half of a percentage point. What should the sample size n be to ensure this degree of posterior
agreement arising from these two distinct prior densities? Furthermore, apart from guaranteeing posterior agreement, is
this sample size sufficient for accurate estimation of the probability of success, here specified as a 95% HPD interval with
total width no larger than 0.04 (ie, roughly ± 2%)?

We first provide the relevant inputs to the sample size calculation. We assume analysis priors for the first and second
researchers of beta(116.064, 12.045) and beta(194.0375, 47.79375), respectively, to match their prior intervals given above.
Our software allows inputs of either a prior 95% HPD interval, or a prior mean and standard deviation, in each case
calculating the parameters of a beta density that best fits the information given. Users can of course also directly input
beta prior parameters. We next assume a design prior that covers the full range of the researchers prior beliefs, that is, a
range of (0.75, 0.95), which implies a beta(36.596, 5.6483) design density. Referring to Equation (2), we assume 𝜖 = 0.005.

A sample size of n = 3, 979 is required to ensure a maximum distance between upper and lower HPD limits from the
two researchers posterior densities of 0.005, or one-half of one percentage point, on average over all data sets. A very
similar sample size of 4047 is required to attain the same posterior agreement over half of all data sets, whereas the size
increases to 5423 to cover 90% of all data sets. These MWOC sample sizes are found by sampling 50% or 90% of all possible
data sets according to the predictive density (1). To cover 100% of all data sets, one requires a much larger sample size of
16 386, in a large part because the extra 10% of data sets are likely to contain improbable but highly divergent data sets
that require large sample sizes to reach posterior agreement.

In practice, therefore, ensuring a high degree of posterior agreement between initially divergent opinions requires
a sample size roughly between 4000 and 5500, depending on the exact degree of certainty over which one wishes to
ensure agreement. It is interesting to also calculate sample sizes that ensure accurate estimation width, regardless of
posterior consensus, here defined as a total posterior HPD interval width of 0.04 using the same design prior as for the
consensus-based calculations. Using the Bayesian criteria given by Joseph et al,5 one requires sample sizes of 1070, 1639,
or 2358 to attain the desired accuracy on average, over 90% and over 100% of all data sets, respectively. Therefore, one
requires a much larger sample size to ensure very close posterior agreement between divergent researchers than to attain
the desired estimation accuracy. In this case, one might choose to relax the degree of agreement. If 0.01 is used instead of
0.005, that is, 95% posterior HPD limits will agree to within 1%, then the sample size to achieve this on average is 1897,
and to agree over 90% of all data sets requires a sample size of 2613. Similarly, requiring a 2% agreement difference results
in sample sizes of 850 and 1194 on average and over 90% of all data sets, respectively.

Roughly speaking, one can see that a sample size close to 1100 will ensure accurate estimation in terms of a total HPD
width of 0.04, while also ensuring posterior agreement from our a priori divergent researchers of 2%. Increasing this
sample size to close to 2000 will of course ensure even better than the desired estimation accuracy while also attaining a
posterior agreement for our two researchers of 1%. One can then select a final sample size based on all of this information,
depending on practical considerations including budget and ability to recruit subjects, as well as the importance of getting
the community of researchers to all agree on a final posterior estimate.

4.2 Example for the difference between two-binomial proportions
We will now turn to the design of a prototypical comparative clinical trial. Suppose a new medication has been developed
and is to be compared with the standard treatment. We again consider two researchers with different appreciations of
the past literature on these two medications. With two researchers each providing their prior evaluations of both the
standard and new treatments, we have four prior densities to input as analysis priors. Suppose the first researcher is more
sure of their opinions, and strongly believes the new medication to be superior to the standard treatment, giving 95%
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prior HPD ranges of (0.75, 0.85) for the standard therapy and shifting both upper and lower limits to (0.85, 0.95) for the
new medication. The second researcher is rather pessimistic that the new medication is better than the standard but is
also less certain of their opinion, so their two intervals overlap and are wider compared with the intervals from the first
researcher. In particular, they provide 95% prior HPD intervals of (0.70, 0.90) for the standard treatment, and (0.70, 0.95)
for the new, allowing for an upper tail for the new medication that exceeds that upper limit of the standard therapy. We
will define posterior agreement by having both upper and lower 95% HPD limits agree to within 0.01, that is, to within
1%. We will also calculate the sample size required for non–consensus sample size methods, calculating the sample size
requirements to estimate the difference between these two-binomial success probabilities to within a total HPD width of
0.04, or roughly ±2%.

We first convert the four analysis prior ranges to beta densities. This gives densities of beta(194.0375, 47.79375),
beta(116.064, 12.045), beta(46.3288, 10.84949), and beta(25.22343, 4.56154) for the four rages of (0.75, 0.85), (0.85, 0.95),
(0.7, 0.9), and (0.7, 0.95), respectively. Similar to our example with a single-binomial proportion, we will assume design
priors that cover the entire range of both researchers. In this case, because the second researcher's intervals include those
from the first researcher, the beta densities required here in fact match those from the analysis priors from the second
researcher. We plug 𝜖 = 0.01 into Equation (2).

A sample size of n = 612 per treatment group, giving a total sample size of 1,224, is required to ensure a maximum
distance between upper and lower HPD limits from the two researchers posterior densities of 0.01, or one percentage
point, on average over all data sets, weighted by the design prior given above. A slightly smaller sample size of 559 per
group (total sample size of 1118) is required to attain the same posterior agreement over half of all data sets, whereas the
size substantially increases to 1029 per group (total of 2058) to cover 90% of all data sets. To cover 100% of all data sets,
one requires a much larger sample size of 6946 per group (total of 13892), again, because of highly improbably data sets
that require large sample sizes to reach posterior agreement.

Total sample sizes close to 1100 or 1200 therefore will provide about 50% assurance of close posterior agreement between
the two researchers, while doubling this to about to 2000 will ensure close agreement over 90% of all data sets, according to
the design priors. We can compare these sample size to those required to estimate this difference to within a total credible
interval HPD width of 0.04 ignoring the divergent priors from the two researchers and using the same design prior as for
the consensus-based calculations. Using the Bayesian criteria given by Joseph et al,4 one requires per group (total) sample
sizes of 2639 (5078), 3650 (7300), and 4758 (9516) to attain the desired accuracy on average, over 90% and over 100% of
all data sets, respectively. Unlike the example of Section 4.1.2, here, we find the consensus sample sizes are smaller than
those required by the interval-based methods. In this case, one can investigate more strict degree of agreements. If 0.005
is used instead of 0.01, that is, 95% posterior HPD limits will agree to within one-half of a percentage point, the sample
size required to achieve this on average is 1207 per group (2414) and to agree over 90% of all data sets requires a sample
size of 2077 (4154). Thus, we are still ensured of our desired posterior agreement with sample sizes less than those given
by interval-based methods.

Note that the main difference between this and the example of Section 4.1 is the stronger a priori agreement between
researchers. In the first example, the researchers' prior intervals did not overlap, whereas in the example of this section,
while the prior opinions were again quite different, there was a large degree of overlap, leading to smaller sample sizes
required for agreement.

5 DISCUSSION

Many sample size criteria have been proposed to aid the design of clinical research studies and clinical trials from both
hypothesis testing and interval estimation viewpoints. Since the advent of fast desktop computers and the development of
MCMC algorithms for Bayesian analysis, increasing numbers of statisticians are using Bayesian methods. Accompanying
these advances have been less technical but no less important changes in how Bayesian statistics are practiced. Technical
problems in computing posterior densities for complex models aside, a major roadblock to the use of Bayesian methods
has been the choice of prior density. In particular, the nonuniqueness of prior densities as each researcher or other indi-
vidual interested in the study question assesses the available evidence in different ways, has often been cited as a reason
to avoid Bayesian methods. This problem was addressed for Bayesian analyses by reporting a family of posterior densi-
ties corresponding to a family of priors.11 By ensuring that the family of posterior densities arises from a family of prior
densities that span the range of reasonable prior opinions, all readers should be able to draw their own conclusions incor-
porating their view of past evidence together with the information in the new data set. If the range of posterior densities is
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narrow enough, then the new data set should result in consensus even among researchers with previously divergent opin-
ions. However, if the posterior densities remain sufficiently different, one must admit that more data must be collected
to definitively resolve the issue. The next natural question is how much data needs to be collected to result in a definitive
trial. It is this question that we and others12-18 have aimed to resolve. In this paper, we provide sample size determination
methods for ensuring closeness of the posterior densities starting from potentially highly divergent prior opinions.

Of course, having posterior agreement is not the only important outcome of a study; one also needs to ensure sufficient
information for decision making. Therefore, as in both of the prototypic examples we presented in Section 4, we calcu-
lated sample sizes from our consensus-based approach and from an interval-based approach. As our examples illustrate,
sometimes one sample size can be larger than the other, and vice versa. Taking the maximum over the two sample sizes
guarantees both sufficiently small interval estimates and consensus among researchers.

While this paper has concentrated on binomial sampling, of course, our methods can be extended to other sampling
situations. Software for both binomial and normal sampling situations, the two most common sampling designs used, are
available from the first author's webpage at http://www.medicine.mcgill.ca/epidemiology/Joseph/.
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