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PURPOSE: Biomarkers provide valuable information when detecting disease onset or monitoring disease
progression; examples include bone mineral density (for osteoporosis), cholesterol (for coronary artery dis-
eases), or prostate-specific antigens (PSA, for prostate cancer). Characteristics of markers series can then be
used as prognostic factors of disease progression, such as the postradiotherapy PSA doubling time in men
treated for prostate cancer. The statistical analysis of such data has to incorporate the within and be-
tween-series variabilities, the complex patterns of the series over time, the unbalanced format of the
data, and the possibly nonconstant precision of the measurements.
METHODS: We base our analysis on a population-based cohort of 470 men treated with radiotherapy for
prostate cancer; after treatment, the log2PSA concentrations follow a piecewise-linear pattern. We illus-
trate the flexibility of Bayesian hierarchical changepoint models by estimating the individual and popula-
tion postradiotherapy log2PSA profiles; parameters such as the PSA nadir and the PSA doubling time were
estimated, and their associations with baseline patient characteristics were investigated. The residual PSA
variability was modeled as a function of the PSA concentration. For comparison purposes, two alternative
models were briefly considered.
RESULTS: Precise estimates of all parameters of the PSA trajectory are provided at both the individual
and population levels. Estimates suggest greater PSA variability at lower PSA concentrations, as well as an
association between shorter PSAdts and greater baseline PSA levels, higher Gleason scores, and older age.
CONCLUSIONS: The use of Bayesian hierarchical changepoint models accommodates multiple com-
plex features of longitudinal data, permits realistic modeling of the variability as a function of the marker
concentration, and provides precise estimates of all clinically important parameters. This type of model
should be applicable to the study of marker series in other diseases.
Ann Epidemiol 2008;18:270–282. � 2008 Elsevier Inc. All rights reserved.
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INTRODUCTION

A biomarker is a laboratory measure of a biological process
that can act as an indicator of a current or future disease
state. Examples include bone mineral density (for
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osteoporosis), cholesterol (for coronary artery diseases),
CD4 T-cells count (for HIV/AIDS), or prostate-specific an-
tigens (PSA, for prostate cancer). Biomarkers are exten-
sively used to track patient status over time, and the
analysis of long series can provide valuable information
when estimating the time of disease onset or monitoring dis-
ease or treatment outcome.

The analysis of biomarker series requires special care be-
cause it has to accommodate multiple characteristics of lon-
gitudinal data. First, repeated observations usually are
available on each individual and, thus, are likely to be cor-
related. Second, measurement errors and short-term biolog-
ical variations (because of natural biological fluctuations,
errors in laboratory procedures, or imprecise measurement
tools) are important sources of within-series variability
that need to be accounted for in the model. Third, marker
data may not have been obtained in the context of a con-
trolled study, so that the length of follow-up and the fre-
quency of the measurements can vary considerably from
subject to subject. Finally, the biomarker profile may exhibit
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Selected Abbreviations and Acronyms

PSA Z prostate-specific antigen
BHC Z Bayesian hierarchical changepoint

a sudden change over time because of treatment, disease on-
set, or recurrence. For example, in patients treated for infec-
tion with the human immunodeficiency virus, a rapid
decline in the CD4 T cells number is observed immediately
after seroconversion, followed by a less-rapid decline after
some unknown time point. Similar changes are observed,
for example, for estrogen concentration before compared
with after menopause, PSA concentration before compared
with after prostate cancer onset or before compared with af-
ter treatment. In the presence of such abrupt changes, sev-
eral parameters are of interest: the time of change, called
the changepoint, as well as summaries of the overall patterns
in the data, for example, the slopes of the biomarker trajec-
tories before and after the changepoint.

Given the aforementioned characteristics, a Bayesian hi-
erarchical changepoint (BHC) model appears particularly
suited to the analysis of markers series data, including for ex-
ample, postradiotherapy PSA concentration. If radiotherapy
is successful, PSA levels reach a nadir, and remain low or
possibly rise very slowly. A sustained steeper increase is usu-
ally an indication of treatment failure. The interest is in the
estimation of both individual and group level parameters:
the PSA nadir, its timing or changepoint, the PSA decline
rate before the nadir, or equivalently the PSA half-life, and
the subsequent PSA growth rate, or equivalently the PSA
doubling time, as well as the variability of these parameters.

Bayesian methods have been developed to estimate the
parameters of changepoint models (1,2); they have been
successfully applied to CD4 cell counts to predict the timing
of HIV viral rebound following treatment (3,4) and to lon-
gitudinal PSA series to predict cancer onset (5–7) or recur-
rence (8,9). One advantage of the Bayesian approach is its
ability to provide a direct estimation of the probability
that the changepoint and, thus, that disease onset or recur-
rence, has occurred.

Previous studies relying on a BHC model have considered
the residual variability of the observations to be constant
within the pre- and post-changepoint phases (10), but the
model could easily handle another level of complexity by al-
lowing the variance to be a function of the level of the
marker. This feature is added here because, in general, lab-
oratory assays can have a precision (i.e., the reciprocal of
the variance) that is dependent on the marker’s concentra-
tion. For example, this phenomenon has been reported in
the context of PSA data (11,12).

Our objective is to emphasize the flexibility and accuracy
of BHC models, illustrated by estimating postradiotherapy
PSA series. We also compare our BHC model to other
possible models. This work proceeds as follows. We first in-
troduce our postradiotherapy PSA data set by presenting
a population-based cohort of men treated for prostate can-
cer. We then present our BHC model and provide details
with respect to previous distributions, likelihood function,
and practical implementation. Next, we investigate possible
associations between the individual estimates provided by
the BHC model, such as the PSA doubling time and the
PSA nadir, and baseline characteristics, including age at di-
agnosis of the cancer, pretreatment PSA concentration, and
pretreatment Gleason score. Finally, to emphasize the ad-
vantages of the BHC model, we compare it with two other
commonly used models, including a ‘‘naı̈ve’’ piecewise
model that is used to estimate each PSA profile indepen-
dently, and then pools the estimates using a simple average.
We also model the PSA data series over time as a polynomial
function.

MATERIALS AND METHODS

Patients

To illustrate our approach, we used a dataset from a study
aimed at linking increasing PSA profiles after treatment
(surgery or radiotherapy) of prostate cancer to long-term
outcomes (13). The data were assembled retrospectively,
on a population-based cohort that was identified by the
Connecticut Tumor Registry. The men were aged 75 years
or younger and were residents of Connecticut when diag-
nosed with localized cancer between 1990 and 1992. Men
who were known to have metastatic disease were excluded,
as well as men with an initial PSA greater than 50 nano-
grams per millimeter (ng/mL), because this population has
a very high probability of having systemic (extra prostatic
or metastatic) disease. PSA values were recorded from the
ambulatory records located primarily in urologists’ offices
but also from ambulatory records located in the offices of ra-
diation oncologists, medical oncologists, the Connecticut
Tumor Registry, and inpatient records. More details are
available from Albertsen et al. (13). We based our analysis
on men treated with radiotherapy and required each PSA se-
ries to have at least a baseline PSA measurement, as well as
two subsequent PSA measurements. In some cases, men can
receive a subsequent treatment, usually in the form of hor-
mones. For the purposes of this study, we excluded any
PSA measurements taken after hormonal therapy.

PSA Series and Notation

After radiotherapy, the PSA levels decrease and then start
to increase again at variable rates across individuals, al-
though rates are reasonably constant within-men, with close
to exponential patterns before and after the nadir (14,15).
For this reason, we applied a base 2 logarithmic
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transformation to the PSA observations. This transforma-
tion has several advantages. First, it allows one to obtain
piecewise linear patterns within individuals. Second, the se-
ries tend to be smoother than when plotted on the original
PSA scale. Finally, the post-nadir log2PSA growth rate is
equivalent to the number of PSA doublings per year (i.e.,
the number of times the PSA level doubles during a 1-year
period), and its reciprocal corresponds to the PSA doubling
time, a variable of particular interest to clinicians. Similarly,
the log2PSA decline rate before the nadir is equivalent to
the number of PSA halvings per year (i.e., the number of
times the PSA level is halved during a 1-year period), and
its reciprocal corresponds to the PSA half-life.

Figure 1 illustrates a prototypic log2PSA profile plotted
over time for a given man i; the time axis starts at the initi-
ation of treatment. We denote by ai, b1i, b2i, and ti, the log2-

PSA nadir, the log2PSA decline rate before the PSA nadir
(the slope of the first line), the post-nadir log2PSA growth
rate (the slope of the second line), and the changepoint
(or location of the nadir) respectively. We are interested
in the estimation of these four parameters, their variability
in the population, as well as the residual PSA variability.

On average, men with a secondary treatment reach their
PSA nadir much sooner, with a steeper postnadir PSA
growth rate, than men without such treatment. For this rea-
son, we split the men into two subgroups according to
whether or not they received a subsequent hormonal treat-
ment. This division allowed us to obtain two relatively ho-
mogeneous subgroups, simplifying the fitting of our model.
As not only the changepoint, but other parameters as well
may differ between these groups, each subgroup was fitted
independently.

A Bayesian Hierarchical Changepoint Model

We used a changepoint model with three hierarchical levels
to account for the presence of a random changepoint, as well
as the wide between-subjects variations in PSA trajectories

time

lo
g2

PS
A

log2PSA
decline

(rate = β1i)

Changepoint (τi)

log2PSA
nadir (αi)

log2PSA
growth

(rate = β2i)

FIGURE 1. Individual piecewise linear model, with the four in-
dividual parameters.
(16). At the first level, each individual log2PSA profile was
modeled as in Figure 1. Let log2PSAij be the PSA concentra-
tion on the log2 scale for the jth measurement for the ith man.
We assumed that the log2PSAij were normally distributed,
with expected value mij, and variance s2

ij :

log2PSAijwN
�

mij;s
2
ij

�
: (1)

The expected log2PSA value, mij, was related to the tim-
ing of the measurement, tij, through linear regression func-
tions before and after the unknown changepoint ti:

mijZ
aiþ b1i

�
tij� ti

�
; tij!ti;

aiþ b2i

�
tij� ti

�
; tij>ti;

�
(2)

where ai, b1i, and b2i, correspond respectively to the log2-

PSA nadir, the log2PSA decline rate prior to the PSA nadir,
and the post-nadir log2PSA growth rate for the ith man.

At the second hierarchical level, we selected noninfor-
mative prior distributions for the individual parameters ai,
b1i, b2i, and ti. We assumed that the individual parameters
were a priori uncorrelated, both within and between sub-
jects, although they are related through the likelihood func-
tion (given in the appendix). We selected normal
distributions for the two slopes and the nadir, i.e.,
aiwNðma; s

2
aÞ; b1iwNðmb1; s

2
b1Þ; and b2iwNðmb2; s

2
b2Þ:

This choice was motivated by the histograms of these pa-
rameters provided the simple analysis (see section ‘‘Alterna-
tive Approaches’’). The individual parameters are thus
viewed as a random sample from a common distribution.
For example, consider the individual slopes before the nadir.
During this initial phase, the individual PSA concentrations
decreased with different rates. The hierarchical model as-
sumes that the individual slopes b1i are randomly selected
from a normal distribution, b1iwNðmb1; s

2
b1Þ; where mb1

and s2
b1 are the common mean and between-men variance

of the prenadir slopes.
The prior distribution of the changepoint was a continu-

ous uniform distribution; the range was selected according to
previous biological knowledge and depending on the sub-
group of men. Secondary treatment usually is initiated
when it is suspected that radiotherapy has failed, indicated
by a rising PSA pattern starting within the first 2 to 3 years
after radiotherapy; we thus selected a range of 5 years for this
subgroup, ti w U(0, 5). Most men who do not receive a sec-
ondary treatment generally are those for whom radiotherapy
is successful. In such cases, PSA are still produced by the re-
maining healthy prostate cells, although in very small quan-
tities. Thus, the PSA concentrations for these men will start
to rise at a later time, and at a very slow rate. For this reason,
we selected a uniform distribution with a ten-year range for
this subgroup: ti w U(0, 10).
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In addition, our model included another feature of the
PSA data not accounted for in earlier studies: we expressed
the residual variance of the PSA measurements as a function
of the PSA concentration. This is particularly appropriate
given that PSA laboratory assays are known to have lower
precision at lower PSA concentrations (11,12). We thus
modeled the logarithm of the precision, that is, the recipro-
cal of the variance, as a linear function of the observed log2-

PSA level, i.e.:

log
1

s2
ij

Zq1þ q2log2PSAij: (3)

Finally, at the third hierarchical level, the parameters
of the second level hierarchical distributions, that is
ma;mb1;mb2; s

2
a; s

2
b1; s

2
b2; as well as q1 and q2, were assigned

distribution functions. For the nadir, the slopes before and
after the nadir, we used non-informative normal distribu-
tions on the mean parameters, and non-informative uniform
prior distributions on the standard deviation parameters,
i.e.,

mawN
�
0;100

�
; s2

awU
�
0;4
�
;

mb1wN
�
0;100

�
; s2

b1wU
�
0;4
�
;

mb2wN
�
0;100

�
; s2

b2wU
�
0;4
�
:

We preferred to use a noninformative uniform prior dis-
tribution on the standard deviation parameters, because it is
generally believed to work better than the commonly used
inverse-gamma distribution (17). Similarly, the variance
parameters, q1 and q2, were assigned noninformative normal
prior distributions, i.e., q1 w N(0, 100) and q2 w N(0, 100).

We performed a sensitivity analysis to ensure that the es-
timates provided by our hierarchical model were not driven
by the choice of our prior distributions. We tried other non-
informative distributions with varying shapes, including log-
normal distributions for the slopes and the PSA nadir, and
normal and Dirichlet distributions for the changepoint.
We assessed the adequacy of the fit of the model to the
data using individual predicted PSA profiles (or realizations)
(16).

Implementation

Estimation was implemented in WinBUGS, a statistical
software package that uses Markov Chain Monte Carlo to
generate random samples from the relevant posterior distri-
butions (18). To ensure convergence, we generated three
chains with distinct sets of widely dispersed initial values;
we specified initial values for the individual and population
parameters. For the first chain, we selected initial values
close to expected values for the slopes, the nadirs, and the
changepoints; standard deviation parameters were assigned
an initial value of one. For the second chain, the slopes
and the nadirs were assigned extreme initial values, as well
as large standard deviations; the changepoints were assigned
expected initial values. For the last chain, the slopes and the
changepoints were assigned expected initial values and very
large standard deviations; the individual changepoints were
assigned large initial values. For each chain, we ran an initial
burn-in period of 2,000 iterations, and an additional set of
10,000 iterations for inference. We assessed convergence us-
ing the Gelman-Rubin convergence statistic (16); in partic-
ular, we focused on the mean and variance of the four
parameters of the PSA profiles, as well as the two variance
parameters. We then pooled the three chains, and used
the 30,000 iterations to estimate the posterior distributions
for each parameter. Point estimates of parameters were cal-
culated using the mean of the posterior distribution; 95%
credible intervals were based on the 2.5th and 97.5th

percentiles.

Association of PSA Trajectory Features With Baseline
Characteristics

To illustrate how estimates provided by the BHC model can
be used in subsequent analyses, we investigated the associa-
tions between individual level parameters and baseline
characteristics, including age at diagnosis of the cancer, pre-
treatment PSA concentration, and pretreatment Gleason
score. The Gleason score refers to the aggressiveness of
the cancer, and ranges from 2 to 10; the higher the score,
the more aggressive the tumor. We could have built the as-
sociations with baseline factors into the model, rather than
analyzing them afterwards. However, we ran separate
models in our two subgroups (with and without subsequent
hormonal treatment). Because we preferred to analyze the
associations all at once, we first pooled the estimates across
all subjects from the two subgroups, and then analyzed the
baseline factors. We constructed four standard multiple lin-
ear regression models; the dependent variables were one of
the four parameters of the PSA profile, i.e., the log2PSA
nadir, the changepoint, or one of the two slopes, and the
independent variables were the above three baseline
characteristics.

Alternative Approaches

To show the advantages of our BHC model, we used two al-
ternative models. We first present a simplistic approach that
independently estimates individual PSA profiles; popula-
tion estimates are next obtained by pooling individual esti-
mates using a simple average. The second model
incorporates the multilevel structure of the data, and the
log2PSA values are modeled using a smooth function of
time.
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Independent Estimation of Individual PSA Profiles

Several studies have taken the PSA data at their face value,
including the PSA nadir (19–21). For comparison purposes,
we performed an equivalent naive analysis, thus ignoring
measurement errors owing to short-term biological varia-
tions. For each man, we visually identified the lowest log2-

PSA observation, and considered it as the true log2PSA
nadir value. Similarly, we used the timing of the lowest log2-

PSA observation as the true changepoint. The log2PSA de-
cline rate for each man was estimated by the slope of the
least-squares regression (LSR) line fit to the log2PSA values
for that man versus time in years, for PSA values from pre-
treatment up until and excluding the log2PSA nadir. Simi-
larly, the log2PSA growth rate was estimated by the slope of
the LSR line fit to the log2PSA values from and including
the log2PSA nadir to the last log2PSA observation avail-
able. The population parameters were obtained using a sim-
ple average of the individual estimates; we report the 95%
reference range based on the 2.5th and 97.5th percentiles.

A Smooth Model. Smooth models can be particularly
appropriate to model longitudinal biological data (22). In-
deed, a smooth transition between two distinct phases,
such as before and after the PSA nadir, can be more credible
than a sharp transition as imposed by a piecewise linear pat-
tern. We thus also investigated fitting a polynomial model
for comparison purposes. Given that the PSA nadir follow-
ing radiotherapy treatment is typically the only inflexion
point in the PSA trajectory, we selected a quadratic model.
We assumed that the log2PSAij values were normally distrib-
uted about our quadratic curve, with expected value mij and
variance s2

ij , where mij, was related to the timing of the mea-
surement, tij, through the quadratic function mijZai þ bitij þ
git

2
ij ; and where ai, bi,and gi are the individual level param-

eters for the ith man. We assigned normal prior distributions
to the individual parameters, i.e., aiwNðma; s

2
aÞ,

biwNðmb; s
2
bÞ, and giwNðmg; s

2
gÞ with noninformative

normal distributions for the mean parameters (ma w N(0,
100), mb w N(0, 100), mg w N(0, 100)) and noninformative
uniform distributions for the standard deviations (sa w N(0,
4), sb w N(0, 4), sg w N(0, 4)) We also modeled the log-
arithm of the precision as a linear function of the log2PSA
level, logð1=s2

ijÞZq1 þ q2 log2PSAij, and assigned noninfor-
mative normal distributions to the variance parameters, i.e.,
q1 w N(0, 100) and q2 w N(0, 100). The adequacy of the
model was assessed using the predicted PSA profiles.

RESULTS

From the initial population-based cohort of men diagnosed
with prostate cancer between 1990 and 1992, 470 men were
treated with radiotherapy and satisfied our inclusion criteria.
Of those, 139 men subsequently received a hormonal
treatment, and 331 did not. The shortest and longest PSA
series had 3 and 36 measurements, respectively, with an av-
erage of 9 PSA readings per series. The shortest and longest
durations of follow-up were, respectively, 4 months and 12
years long, with a mean follow-up duration of 5.7 years after
the initiation of radiotherapy. The median interval between
PSA readings was 6 months during the first 2-year period
(range, 2–24 months), and 7 months afterwards (range, 1–
83 months), close to the recommendations of the American
Society for Therapeutic Radiology and Oncology Consensus
panel published in 1997 (23).

The average age at diagnosis was similar for the two sub-
groups (69 and 70 years old for the subgroups with and with-
out a subsequent hormonal treatment, respectively). The
baseline median PSA level was greater in the subgroup of
men with a subsequent treatment compared to the subgroup
of men without a subsequent treatment (17 ng/mL and 10
ng/mL, respectively). Similarly, the median Gleason score
was higher in the subgroup of men with a subsequent treat-
ment compared to the subgroup of men without a subsequent
treatment (7 and 6, respectively).

Bayesian Hierarchical Changepoint Model

Summary statistics for the estimates provided by the BHC
model are shown in the first column of Table 1, and histo-
grams are given in the first columns of Figures 2 and 3.
The credible intervals and the spreads of the histograms sug-
gest that the parameters were estimated with precision. In
the subgroup of 139 men with a subsequent treatment, the
estimate of the median number of PSA halvings per year
was 3.50, corresponding to a median PSA half life of 0.29
years. The estimated median number of PSA doublings
per year was 1.66, corresponding to a median PSA doubling
time of 0.60 years. For the 331 men without a secondary
treatment, the median number of PSA halvings per year
was 3.29, corresponding to a median PSA half life of 0.30
years. The median number of PSA doublings per year was
0.28, corresponding to a median PSA doubling time of
3.57 years. Thus, as expected, men who received a secondary
treatment, and thus those who tend to be the more severe
cases, had a much shorter PSA doubling time, and reached
the PSA nadir much sooner. In addition, the PSA nadir was
higher for these men, than those who did not receive any ad-
ditional treatment.

The variance parameters q1 and q2, as given by equation
3, were similar for the two subgroups. The estimate of q2 was
positive, suggesting, as expected, that the variance of the
PSA observations decreased at higher concentrations. Mod-
eling the variability was particularly appropriate given the
wide discrepancies between lower and higher concentra-
tions. For example, in the subgroup of men with a secondary
treatment, at mean log2PSA concentrations of 1 and 4, the
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TABLE 1. Estimates (with 95% credible intervals) of the parameters of the Bayesian hierarchical changepoint (BHC) model (equations
2 and 3), and the simple model based on independent estimation of individual profiles

Parameters BHC model Simple model

139 men with a secondary treatment

log2PSA decline ratea �3.50 (�3.89; �3.12) �3.37 (�9.18; �0.65)

log2PSA growth rateb 1.66 (1.38; 1.95) 1.51 (0.11; 5.97)

PSA nadir in ng/ml 3.01 (2.75; 3.38) 3.48 (0.03; 16.8)

Timing of the nadir in years 1.08 (1.00; 1.17) 1.17 (0.17; 3.07)

Variance parameterc (q1) 0.72 (0.55; 0.87) Not applicable

Variance parameterc (q2) 0.31 (0.27; 0.36) Not applicable

331 men without a secondary treatment

log2PSA decline ratea �3.29 (�3.60; �2.99) �2.22 (�8.26; �0.24)

log2PSA growth rateb 0.28 (0.23; 0.33) 0.42 (�0.01; 1.85)

PSA nadir in ng/ml 1.25 (1.17; 1.35) 1.07 (0.03; 3.8)

Timing of the nadir in years 1.41 (1.29; 1.53) 2.58 (0.48; 7.17)

Variance parameterc (q1) 0.68 (0.62; 0.75) Not applicable

Variance parameterc (q2) 0.27 (0.24; 0.29) Not applicable

aBefore the PSA nadir is reached; equivalent to the negative of the number of PSA halvings.
bAfter the PSA nadir is reached; equivalent to the number of PSA doublings.
cFor example, in the subgroup of men with a subsequent treatment, and from equation 3, the estimated variance at mean log2PSA concentration of 1, is
1=expð0:72þ 0:31� 1ÞZ0:357; corresponding to a coefficient of variation of 60%.
standard deviations were, respectively, 0.60 and 0.37, corre-
sponding to coefficients of variation of 60 and 10%. The re-
sults of our sensitivity analysis were not substantially
different from our main analyses. As indicated by Figure 4,
the predicted profiles fit the observed data very closely.

Association of PSA Model Features With Baseline
Characteristics

Estimates for the parameters of the regression analysis are re-
ported in Table 2. A greater initial PSA level was found to
be associated with a larger number of PSA halvings per year
(longer half-life), a higher PSA nadir, and a larger number of
PSA doubings per year (shorter doubling time). Higher ini-
tial Gleason scores were associated with shorter doubling
times. Finally, there was a positive association between age
at diagnosis and the number of post-nadir PSA doublings.

Alternative Approaches

Independent Estimation of Individual PSA Profiles.
Summary statistics are provided in the second column of Ta-
ble 1, and histograms are given in the second columns of Fig-
ures 2 and 3. We excluded 3 series from the analysis of the
number of PSA halvings in the first phase; the first observa-
tion in each of these series corresponded to the lowest ob-
served PSA measurement and, thus, no regression line
could be drawn for the initial phase. Thus, although the
BHC model permits to estimate each individual profile,
this simpler method cannot be applied to subjects with a lim-
ited number of observations.

Although most parameter point estimates were relatively
close to the ones obtained using the BHC model, the PSA
nadir was estimated to occur much earlier using the
hierarchical model. This is particularly true for the subgroup
of men without a second treatment; in this case, the nadir
was reached about 1 year earlier using the hierarchical
model, compared with the simple model. One likely expla-
nation is the poor precision of the PSA readings at lower
concentrations, which affects the subgroup of men without
a secondary treatment more than the others. Indeed, for
these men, the PSA concentrations decrease up to the nadir,
and then remain at relatively low levels, compared to men
subsequently treated who have a sharp PSA increase. The
simple model considers the timing of the lowest observed
PSA observation as the changepoint. Suppose that a man
is followed-up for 10 years, and the changepoint occurs
around 2 years. Afterwards, the PSA level stabilizes at low
concentration. Then, because of the important variability
of the observations at low PSA level, there are chances
that PSA measurements, lower than the 2-year PSA read-
ing, will be observed. Although the BHC model accounts
for these random fluctuations, the simple model only con-
siders the lowest reading. This is particularly well illustrated
by the series 5, 6, and 8 in Figure 5, which represents the es-
timated log2PSA trajectories estimated using the 3 methods.
The nadir appears to be reached between the third and
fourth year, and the series tend to follow a close to flat pat-
tern afterwards. On the other hand, the lowest PSA mea-
surement is observed much later than what appears to be
the true nadir.

Compared with the BHC model, the simple model also
provides less precise estimates, as shown by the tighter cred-
ible intervals and histograms; this is particularly obvious for
the PSA nadir. Thus, the BHC model allows one to gain pre-
cision by allowing for the simultaneous estimation of the in-
dividual and population curves. This enhanced precision is
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also particularly well illustrated by Figure 5. The PSA trajec-
tories estimated by the simple model follow all observations
very closely, whereas the BHC model provides smoother
pattern, putting less weight on observations that appear as
outliers, again, a consequence of the simultaneous inference.

Finally, note that this simple model does not allow one to
provide an estimate of the residual PSA variability, nor to
express it as a function of the PSA concentration.

A Smooth Model. Estimates of the quadratic model are
presented in Table 3. Because of the hierarchical structure of

PSA halvings
1

PSA halvings
1

0

5

10

15

20

25

30

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

P
r
o

p
o

r
t
i
o

n
 
(
%

)

P
r
o

p
o

r
t
i
o

n
 
(
%

)
P

r
o

p
o

r
t
i
o

n
 
(
%

)
P

r
o

p
o

r
t
i
o

n
 
(
%

)
P

r
o

p
o

r
t
i
o

n
 
(
%

)

P
r
o

p
o

r
t
i
o

n
 
(
%

)
P

r
o

p
o

r
t
i
o

n
 
(
%

)
P

r
o

p
o

r
t
i
o

n
 
(
%

)

0

5

10

15

20

25

30

PSA doublings
2

PSA doublings
2

0

5

10

15

20

25

30

35

40

0
0

5

10

15

20

25

30

35

40

PSA nadir in ng/ml
3

PSA nadir in ng/ml

0

5

10

15

20

25

30

35

0 10
0

5

10

15

20

25

30

35

Timing of nadir in years Timing of nadir in years

0

5

10

15

20

25

30

35

0
0

5

10

15

20

25

30

35

0 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

987654321 0 987654321

8642 0 108642

4321 0 4321

FIGURE 2. Estimates of the parameters of the BHC model (left) and the simple model using LSR (right), for the 139 men who under-
went secondary therapy. 1Number of PSA halvings before the PSA nadir is reached. 2Number of PSA doublings after the PSA nadir is
reached. 3For enhanced visualization, one estimated nadir with value 53 ng/ml is not shown on the LSR plot.



AEP Vol. 18, No. 4 Bellera et al.
April 2008: 270–282 HIERARCHICAL CHANGEPOINT MODELING OF BIOMARKERS

277
PSA halvings
1

PSA halvings
1

0
2
4
6
8

10
12
14
16
18
20

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 210 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 210

P
r
o

p
o

r
t
i
o

n
 
(
%

)

0
2
4
6
8

10
12
14
16
18
20

P
r
o

p
o

r
t
i
o

n
 
(
%

)

PSA doublings
2

PSA doublings
2

0

5

10

15

20

25

30

35

40

-3 -2 -1 10 2 3 4 -3 -2 -1 10 2 3 4

P
r
o

p
o

r
t
i
o

n
 
(
%

)

0

5

10

15

20

25

30

35

40

P
r
o

p
o

r
t
i
o

n
 
(
%

)

PSA nadir in ng/ml PSA nadir in ng/ml

0

10

20

30

40

50

60

70

1086420 12 14 16 18 1086420 12 14 16 18

P
r
o

p
o

r
t
i
o

n
 
(
%

)
P

r
o

p
o

r
t
i
o

n
 
(
%

)

0

10

20

30

40

50

60

70

P
r
o

p
o

r
t
i
o

n
 
(
%

)
P

r
o

p
o

r
t
i
o

n
 
(
%

)

Timing of nadir in years Timing of nadir in years

0

5

10

15

20

25

30

35

40

8 9 1076543210 11 8 9 1076543210 11
0

5

10

15

20

25

30

35

40

FIGURE 3. Estimates of the parameters of the BHC model (left) and the simple model using LSR (right), for the 331 men who did not un-
dergo secondary therapy. 1Number of PSA halvings before the PSA nadir is reached. 2Number of PSA doublings after the PSA nadir is
reached.



Bellera et al. AEP Vol. 18, No. 4
HIERARCHICAL CHANGEPOINT MODELING OF BIOMARKERS April 2008: 270–282

278
*
*
*
*
**

*****
**

*

*

* *
*
*

*
*

*
*

*

*
*

*

*

* * *
* *

*
* *

*
* *** *

**

*
*

* * *
** * *

*
*

*
*

*

*
*

* * ** * * * * * * * * * * *
* * * * * * *

*

*

*

* ** * *
**

*
*

Series #1

years

l
o

g
2
p

s
a

Series #2

years

Series #3

l
o

g
2
p

s
a

Series #4

Series #5

l
o

g
2
p

s
a

Series #6

Series #7

l
o

g
2
p

s
a

Series #8

0 2 4 6 8 10 12 0 2 4 6 8 10 12

years years

0 2 4 6 8 10 12 0 2 4 6 8 10 12

years years

0 2 4 6 8 10 12 0 2 4 6 8 10 12

years years

0 2 4 6 8 10 12 0 2 4 6 8 10 12

-4

-2

0

2

4

6

-4

-2

0

2

4

6

-4

-2

0

2

4

6

-4

-2

0

2

4

6

l
o

g
2
p

s
a

l
o

g
2
p

s
a

l
o

g
2
p

s
a

l
o

g
2
p

s
a

-4

-2

0

2

4

6

-4

-2

0

2

4

6

-4

-2

0

2

4

6

-4

-2

0

2

4

6

FIGURE 4. Postradiotherapy PSA observations (stars) for eight men, with predicted PSA profiles using the BHC model (solid line) and
the quadratic model (dotted line).



AEP Vol. 18, No. 4 Bellera et al.
April 2008: 270–282 HIERARCHICAL CHANGEPOINT MODELING OF BIOMARKERS

279
TABLE 2. Regression parameters from four analyses of associations between the parameters of the PSA profile and pretreatment
characteristics

Covariates

Dependent variable Initial PSA level Gleason score Age at diagnosis

log2PSA decline ratea �0.04 (�0.05; �0.03) 0.04 (�0.07; 0.15) �0.03 (�0.06; 0.00)

log2PSA growth rateb 0.02 (0.01; 0.03) 0.22 (0.14; 0.30) 0.00 (�0.02; 0.02)

log2PSA nadir 0.05 (0.04; 0.06) 0.09 (�0.01; 0.18) �0.02 (�0.04; 0.01)

Timing of the nadirc 0.00 (�0.01; 0.00) �0.04 (�0.10; 0.03) 0.00 (�0.02; 0.02)

aBefore the PSA nadir is reached.
bAfter the PSA nadir is reached.
cIn years.
Each row corresponds to one regression analysis. For example, using the second line, and given a man with initial PSA level of 2 ng/mL (i.e., log2PSA Z 1), Gleason score of 2,
and age 70 years, the estimated number of postnadir PSA doublings per year is 0.02 � 1 þ 0.22 � 2 þ 0 � 70 Z 0.46. Similarly, with a Gleason score of 10, the estimated number
of post-nadir PSA doublings per year is 2.2.
the model, inference is strengthened, and as a result, param-
eters are estimated with precision, as suggested by the rela-
tively tight credible intervals.

The smooth model, however, has some major drawbacks
compared with the BHC model. First, although the param-
eters of the BHC model have all an important clinical inter-
pretation, the parameters provided by a polynomial model
are not as clinically useful. Importantly, no estimate of the
PSA doubling time is directly available. Moreover, the
smooth model does not appear in accordance with the un-
derlying biological process. The quadratic model allows for
a smooth transition, however, it assumes that the PSA pat-
tern is symmetric about the nadir, which is in contradiction
with the typical postradiotherapy PSA pattern. This results
in a poor fit to the data, as confirmed by the predicted PSA
profiles (Fig. 4). One could then use a greater degree polyno-
mial; however, this process would also be biologically inap-
propriate, because the PSA nadir is typically the only
inflexion point of the postradiotherapy PSA profiles. The
mean log2PSA profiles as estimated by the 3 models are
shown in Figure 5.

DISCUSSION

We have shown that the BHC model is particularly appro-
priate for modeling longitudinal data with abrupt changes,
because it easily allows the user to account for the between
and within-subjects variabilities, as well as other complex
features, such as the presence of a random changepoint, and
nonconstant variance. As a result, estimates are more pre-
cise compared with a simpler model relying on independent
individual estimations, all clinically important parameters
are estimated, and estimation of the PSA variability as
a function of the PSA concentration is available. In addi-
tion, the flexible hierarchical structure of the model could
be easily extended to account for an additional level, or
source of variability. For example, one can pool PSA series
from multiple studies, and use the study as another hierar-
chical level, assuming then that subjects from the same
study share common mean parameters (7).

One limitation of hierarchical modeling is the number
and timing of measurements which can be potentially infor-
mative about the shape of the subsequent curve, and thus in-
troduce some bias. Because of the hierarchical structure,
subjects with larger number of observations will contribute
more information to the hierarchical means and variances
compared to lesser-tracked subjects; if these lesser-tracked
subjects are different in some way, this can introduce some
bias. In the case of post-treatment PSA data, healthier sub-
jects are usually followed up less closely than men with poor-
er prognosis. However, healthy subjects tend to have lower
pretreatment PSA levels and, thus, potentially different sub-
sequent slopes. The possibility of such a bias should be rec-
ognized when interpreting hierarchical models.

Alternative approaches to the BHC model are available.
Instead of a single master model, one could use a simpler
model such as the first alternative analysis presented in
this paper. Because the method is relatively simple, it is com-
monly applied in the clinical literature. The PSA nadir, for
example, is often defined as the lowest observed PSA con-
centration; the population nadir is then estimated using
the average of the observed individual nadirs (24–27). To
estimate the PSA doubling time, some authors identified
PSA series they believed were rising (based on some arbi-
trary definition), and fitted a least-squares regression line
only to these specific rising profiles; the mean of the resulting
estimated slopes was used as an estimate of the mean PSA
doubling time (20,21,28). Although these methods, similar
to our first alternative analysis are straightforward, and not
time consuming, they do not adequately account for the
PSA variability. By using the observed nadir as the true na-
dir, the variability is completely ignored.

With respect to the slopes, the simple average gives equal
weight to each series regardless of the number of observed
data points; the hierarchical structure of the data is ignored,
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FIGURE 5. Postradiotherapy PSA observations (stars) for eight men, with mean PSA profiles as estimated by the BHC model (solid
line), the simple model using LSR (dotted line), and the quadratic model (dashed line).
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and thus so are the multiple sources of variability. On
the other hand, the BHC model relies on the borrowing of
strength. Individual and population parameters are esti-
mated simultaneously, and information from other series is
used when estimating parameters from a specific trajectory.
The individual profiles are estimated using what is effec-
tively a weighted average of the observed profiles and the
population profile, where the weights are the corresponding
precisions. Thus, the individual profiles are pulled (or
shrunk) toward the population profile: the less precision of
the individual series compared to the precision of the popu-
lation estimates, the more pulling, and vice-versa. As a re-
sult, overall inference is strengthened at the expense of
possible bias at the individual level.

Finally, the hierarchical model allowed us to estimate the
PSA variability as a function of the underlying PSA levels.
Incorporating this feature into the simpler model would be
theoretically possible. However, in practice, with relatively
few data points per subject, without the borrowing of
strength inherent to hierarchical models, it would be very
difficult to accurately estimate parameters from a model
that simultaneously estimate the trajectory and variance
within each subject when the variance is a function of the
observed levels within each man. We therefore did not at-
tempt to estimate such an unstable model.

Smooth models, such as splines (29) or polynomials, can
be appropriate for longitudinal data. Just as the BHC model,
the smooth model presented in this paper adequately ac-
counted for the multilevel structure of the data. However,
from a biological perspective, a piecewise linear pattern
seems more appropriate, and provides clinically useful
estimates.

One could also model the raw data without relying on
a logarithm transformation, since some have used a nonlin-
ear model such as the exponential decay -exponential
growth model in the form PSA Z a1 exp(�b1t) þ a2

exp(b2t), where a1, a2, b1, and b2 O 0 are the parameters

TABLE 3. Estimates (with 95% credible intervals) of the
parameters of the smooth model

Parameters Estimates

139 men with a secondary treatment

Constant term (ma) 3.70 (3.53; 3.87)

Linear term (mb) �1.90 (�2.18; �1.62)

Quadratic term (mg) 0.68 (0.58; 0.80)

Variance parameter (q1) 0.48 (0.41; 0.56)

Variance parameter (q2) �0.51 (�0.70; �0.34)

331 men without a secondary treatment

Constant term (ma) 1.88 (1.54; 2.14)

Linear term (mb) �0.87 (�0.96; �0.78)

Quadratic term (mg) 0.10 (0.09; 0.11)

Variance parameter (q1) 0.06 (�0.12; 0.16)

Variance parameter (q2) �0.23 (�0.35; �0.14)
of interest, and ln2/b1, ln2/b2 and a1 þ a2 provide, respec-
tively, the PSA half life, the subsequent PSA regrowth,
and the post-treatment PSA level (30,31). However, infor-
mation on the subject status is necessary, because in the case
of cured patients, the parameter b2 is set to 0.

One could prefer a method based on maximum likelihood
instead of a Bayesian estimation approach (32,33); these
models have been applied to describe the natural history
of prostate disease in healthy men where the changepoint
represents cancer onset (34,35). Beyond the fundamental
conceptual differences between the Bayesian and classical
procedures, there are however, some complexities in the fre-
quentist approach that are not (or less) encountered when
relying on a Bayesian estimation process. Specifically, there
may be a problem of non-identifiability if there is a non-zero
probability that there is no changepoint, that is, the change-
point corresponds to the timing of the last observation. This
is not an issue when using a Bayesian approach, as the prior
distribution on the changepoint allows the user to separate
out more likely from less likely parameter values, not possi-
ble from the likelihood alone.

Finally, from a clinical perspective, it is difficult to com-
pare our estimates to published results. First, as suggested by
our analysis, pretreatment characteristics, such as the PSA
level or the Gleason score are associated with characteristics
of the PSA profile. Thus, it is likely that studies with differ-
ent selection criteria will produce different estimates. Also,
as discussed earlier, the statistical methods used by other
studies are not always appropriate, and a measure of preci-
sion is not systematically reported. Overall, however, results
tend to be in accordance. Reported estimates of the PSA na-
dir range between 1 and 3 ng/mL (24,25); the PSA doubling
time and half-life were estimated to be approximately 1 year
and 2 months, respectively (20,21). The association be-
tween the parameters of the PSA profile and pretreatment
characteristics has been investigated in a few studies, and re-
sults are in accordance with our findings. In particular,
a shorter PSA doubling time has been shown to be associ-
ated with a higher pretreatment Gleason score (14,20,21),
and higher pretreatment PSA concentrations (21). Simi-
larly, an association has been reported between the PSA na-
dir and the pretreatment PSA level, but none with the
Gleason score.

The BHC model has multiple advantages. The model is
in accordance with the underlying biological principles
and provides clinically useful estimates, accounts for the
multiple sources of variability, allows for the borrowing of
strength, and finally the estimation process permits complex
modeling of the variance function. The resulting precise es-
timates of the biomarker profile can then provide valuable
information when monitoring disease and treatment out-
comes; they can be used, for example, as prognostic factors
in analysis of long-term outcomes such as survival. This
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type of model should be applicable to the study of marker se-
ries in other diseases.
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