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a b s t r a c t

Background: Increasing evidence suggests that ultrafine particles (UFPs) may contribute to cardiore-
spiratory morbidity. We examined the relationship between near road UFPs and several traffic and built
environment factors to identify predictors that may be used to estimate exposures in population-based
studies. Black carbon (BC) was also examined.
Methods: Data were collected on up to 6 occasions at 73 sites in Montreal, Canada over 6-week period
during summer, 2012. After excluding highly correlated variables, road width, truck ratio (trucks/total
traffic), building height, land zoning parameters, and meteorological factors were evaluated. Random-
effect models were used to estimate percent changes in UFP and BC concentrations with interquartile
changes in each candidate predictor adjusted for meteorological factors.
Results: Mean pollutant concentrations varied substantially across sites (UFP range: 1977–94, 798 par-
ticles/cm3; BC range: 29–9460 ng/m3). After adjusting for meteorology, interquartile increases in road
width (14%, 95% CI: 0, 30), building height (13%, 95% CI: 5, 22), and truck ratio (13%, 95% CI: 3, 23) were
the most important predictors of mean UFP concentrations. Road width (28%, 95% CI: 9, 51) and
industrial zoning (18%, 95% CI: 2, 37) were the strongest predictors of maximum UFP concentrations.
Industrial zoning (35%, 95% CI: 9, 67) was the strongest predictor of BC.
Conclusions: A number of traffic and built environmental factors were identified as important predictors
of near road UFP and BC concentrations. Exposure models incorporating these factors may be useful in
evaluating the health effects of traffic related air pollution.
Crown Copyright & 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Traffic emissions are an important source of air pollution
exposures in urban environments and have been associated with
a number of adverse health effects including cardiorespiratory
morbidity, mortality, and cancer (Beckerman et al., 2012; Berflind
et al., 2009; Chen et al., 2013; Crouse et al., 2010; Jerrett et al.,
2009; Parent et al., 2013; von Klot et al., 2011). In general, ambient
nitrogen dioxide (NO2) has been used as a marker of traffic-related
air pollution in large-scale epidemiological studies owing to the

availability passive samplers and exposure models (e.g. land use
regression) that can be used to estimate exposures for large
numbers of study participants (Crouse et al., 2009; Jerrett et al.,
2009). However, it is generally recognized that NO2 is a surrogate
measure of a broader mixture of traffic-related air pollution and
that NO2 itself may not be the etiological agent of interest (Brook
et al., 2007). More recently, ultrafine particles (UFPs) have received
increased attention as vehicle emissions are an important source
of these pollutants and existing evidence suggests that short-term
exposures to UFPs may have a measureable impact on cardior-
espiratory morbidity (Ibald-Mulli et al., 2002; Weichenthal, 2012).
However, there are no studies of the long-term health impacts of
UFPs owing in part to the absence of exposure assessment models
capable of assigning exposures to participants over a broad
geographic area (HEI, 2013). In particular, exposure models cap-
able of estimating pollutant concentrations at the local level
(e.g. home addresses) are required given the high spatial varia-
bility of urban UFPs and their rapid decay from near roadway
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peaks (Karner et al., 2010). To date, land use regression models have
been developed for UFPs in Vancouver, Canada (Abernethy et al.,
2013), Amsterdam, Netherlands (Hoek et al., 2011), and Girona,
Spain (Rivera et al., 2012), and findings generally suggest that
models based on traffic parameters, land use, and local sources
can be used to estimate the spatial distribution of UFP concentra-
tions in urban areas. Here we evaluate a number of predictors that
may be useful in developing similar models for Montreal, Canada.
Specifically, this study aimed to characterize the magnitude of
associations between near roadway UFPs and black carbon (BC)
concentrations and traffic and built environment factors that may
serve as determinants of exposure in population-based studies.

2. Methods

2.1. Air pollution monitoring

UFP (0.01–1 μm) (TSI CPC Model 3007) and BC (Magee Scientific, Micro-
aethalometer) data were collected at 73 sites along a range of roadways in
Montreal, Canada over a 6-week period between June and July, 2012. Monitoring
sites were identified as part of a larger data collection effort aimed at capturing air
pollutant concentrations along roadways in Montreal. Specifically, maps of the road
network including information on road geometry (width, number of lanes, and
classification) and traffic flows at 1841 intersections in Montreal were used to
select sites in an effort to maximize variations in the set of determinant variables
available for analysis. The data include traffic counts conducted at 15 min intervals
at each intersection for 8 h during the day. These counts were conducted in 2009
and 2010 and range from 200 to 6000 vehicles/h at each location. We did not adopt
a particular algorithm to achieve this allocation but we manually identified the
locations in a way that allowed us to achieve variability in the parameters of interest.
Our data collection sites were selected to reflect diversity in both traffic volumes and
road types. While the City of Montreal database includes only local and arterial roads,
we added bridges to our sample of sites in order to achieve better representation of
the road network. All measurements were recorded at the side of the road as close as
possible to the roadway (little variability was observed in terms of distance from curb).
Technicians also measured the distance between monitoring locations and the
centerline of each road; however, this measurement was generally equivalent to half
of the road width and thus it was not retained for analysis as it simply duplicated
information already captured by the road width variable.

Two pairs of research assistants collected simultaneous UFP, BC, and traffic
information at each monitoring site. Research assistants manually recorded vehicle
composition at each location for the duration of each air monitoring period. Traffic
composition data included cars, light-duty trucks (SUVs, vans, pick-up trucks),
heavy-duty trucks, buses, motorcycles, total traffic, and the ratio of trucks to total
traffic. Real-time UFP and BC data were collected using the above instrumentation
at 1-s sampling intervals using instruments carried in backpacks with sampling
tubes placed in technicians' breathing zones. All measurements were recorded over
10–20 min periods on sidewalks at mid-block; data were collected at each location
during peak morning (8–10 AM) and afternoon (3–5 PM) periods as well as during
mid-day (11 AM–2 PM). Each location was monitored on at least 3 separate
occasions (typically 1–2 weeks apart) up to a maximum of 6 times. Meteorological
data were extracted from Environment Canada's online database for the duration of
each air monitoring period (McTavish station for downtown locations and Trudeau
airport station for suburban locations).

All BC data were processed prior to computing descriptive statistics owing to
the fact that the microaethalometer sometimes outputs negative observations
when the difference in light attenuation between two consecutive readings is
negligible. In particular, an optical noise-reduction averaging algorithmwas used to
correct the readings (Hagler et al., 2011). Briefly, this algorithm reads the difference
in light attenuation between consecutive readings and eliminates peaks in BC
concentrations associated with a light attenuation differential below 0.05. The
algorithm then averages BC data across time intervals associated with changes in
incremental light attenuation of 0.05. After applying this algorithm the mean
sampling interval for black carbon measurement was 2.6 min; however, values
used for analysis in this study reflect BC vales averaged over the entire sampling
interval at each site (10–20 min).

2.2. Built environment data collection

Road geometry and built environment data surrounding each air monitoring
location were compiled using a combination of GIS databases, Google maps, and
orthophotographs. Most processing was conducted in ArcGIS (ArcMap10, ESRI Inc.)
using automated buffering and intersecting functions. Compiled variables included
characteristics of each road segment where monitoring was conducted as well as

land-use and built environment factors within a buffer around monitoring points
(described below).

2.3. Statistical analysis

Spearman's correlations were first used to evaluate potential co-linearity between
candidate predictors related to traffic and the built environment. If two predictors
were moderately or highly correlated (r40.50), the predictor that could be most easily
measured at the local level (e.g. home address) was retained for analysis. This
approach was selected as the ultimate goal was to identify factors that could be
included in future models designed for application in large-scale epidemiological
studies where detailed information on specific predictors may not be available.

Random-effects models were first used to estimate the relationship between
air pollution concentrations (mean and maximum UFP concentrations and mean BC
concentrations) and each traffic/built environment factor separately. These models
included a random intercept for monitoring site (i.e. measurements nested within
site) to account for potential correlations between repeated air pollution measure-
ments collected at the same location but a different time-points. We previously
employed a similar approach to characterize the impact of traffic and built
environment on air pollution exposures over repeated cycling trips in Montreal
(Hatzopoulou et al., 2013). In this study, the following traffic and built environment
factors were evaluated in random-effects models: traffic counts (buses, cars, trucks,
SUV/vans, motorcycles, total traffic), road width (m), number of traffic lanes,
buildings on both sides of the street, continuous buildings on both sides of the
street, mean building height (with a 25 m buffer), building coverage (within a 25 m
buffer), and several zoning factors (percentage commercial, industrial, institutional,
residential, park, and undeveloped land) within a 150 m buffer of each monitoring
site. All air pollution data were log-transformed for statistical modeling and all
coefficients reflect percent changes air pollution concentrations per interquartile
range (IQR) increase in predictor variables. All models were adjusted for continuous
measures of average ambient temperature and wind speed during sampling.

Covariates for final multi-variable random-effects models were selected using
approximate Bayes factors calculated using the BMS package (Feldkircher and
Zeugner, 2009) in R (version 2.15.3) with uniform model priors (which assumes
that all models are equally likely a priori) and non-informative “unit information”
priors for model coefficients which contain the information equivalent to one
observation. Bayes Factors calculate the probability of obtaining the observed data
under each possible model, with higher Bayes Factors going to models that would
more likely lead to the observed data. This process considers models for all possible
combinations of the predictor variables examined. Specifically, when comparing
two models, say model 1 and model 2, Bayes Factors are defined as the probability
of the data given model 1 divided by the probability of the data given model 2,
these probabilities averaged over the prior density of each unknown parameter in
the model (Kass and Raftery, 1995). Thus, Bayes Factors larger than one indicate
better fit for model 1, while Bayes Factors below one indicate better fit for model 2.
Bayes Factors lead to the probability of including the parameter in the model
(Posterior Inclusion Probability (PIP)) which is an indication of the overall utility of
this variable in making future predictions. Bayes Factors have also been shown to
avoid over-fitting the data and lead to optimal future predictions in future samples
(Kass and Raftery, 1995). PIPs for a given predictor variable represent the sum of
posterior model probabilities for all models in which a covariate was included, with
the most important predictors having the highest PIPs. Candidate predictors with
the highest PIPs (450%) were automatically included in final multivariable
random-effects models. Other predictors were also evaluated if they had a mean-
ingful impact (a change of at least 10%) on air pollution concentrations in single
predictor models (described above). These factors were retained if their coefficients
suggested a meaningful impact (a change of at least 10%) on air pollutant
concentrations regardless of statistical significance. Continuous measures of aver-
age ambient temperature and wind speed were also included in all final models. All
random-effects models were estimated using the xtmixed procedure in STATA
(version 11; StataCorp LP, College Station, TX, USA).

As a sensitivity analysis, an alternative approach was also examined to account
for potential correlations in repeated measurements collected at each sampling
location. Specifically, final random-effects models (described above) were also run
using marginal mixed-effects models with a first order autoregressive (AR-1)
residual covariance structure to account for potential correlations in repeated
measurements collected at each location over time (xtgee procedure in STATA). This
covariance structure specifies that measurements collected closer in time are more
highly correlated, with correlations decreasing with time between measurements.
All mixed-effects models were estimated using the xtgee procedure in STATA
(version 11; StataCorp LP, College Station, TX, USA).

3. Results

In total, UFP data were collected at 73 locations and valid
BC data were obtained at 61 sites. Monitoring sites included
47 locations in the downtown core, 24 locations outside the
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downtown core (on the periphery or in the suburbs), and 2 points
located along bridges connecting the Island of Montreal with the
rest of the region. Eighty-five observations were collected in the
morning peak period, 73 in the afternoon peak period, and 56
during off-peak hours. Traffic flows at the selected locations
ranged from 80 to approximately 6000 vehicles per hour (Fig. 1).
The proportion of heavy-duty trucks did not exceed 30% of the
total traffic flowwith the majority of sites recording less than 3% of
heavy-duty trucks.

Average ambient temperature and wind speed during monitor-
ing ranged from 14 to 33 1C and 2 to 13 km/h respectively, and
reflected typical conditions in Montreal during the summer months.
Descriptive data for air pollutant concentrations and traffic/built
environment factors are summarized in Table 1. Mean UFP levels
varied substantially across the island of Montreal with number
concentrations ranging from less than 2000 cm�3 to more than
90,000 cm�3. Maximum UFP concentrations and mean BC concen-
trations also varied substantially between sites. Mean ultrafine

Fig. 1. Traffic volumes at each data collection site.

Table 1
Summary of air pollutant concentrations, traffic, and built environment measures.

Mean/% (SD) Minimum Maximum Sites (n) Samples (n)

Mean UFP (#/cm3) 20,145 (14,000) 1977 94,798 73 200
Maximum UFP (#/cm3) 77,863 (55,486) 2368 214,561 73 200
Mean black carbon (ng/m3) 1140 (1260) 29 9460 61 103
Traffic counts (per 10 min)

Cars 102 (121) 0 694 73 214
Trucks 7.4 (15) 0 84 73 214
SUV/vans 53 (59) 0 318 73 214
Buses 2.5 (4.0) 0 39 73 214
Motorcycles 1.5 (2.4) 0 19 72 179
Total traffic count 195 (192) 0 1074 73 214
Truck ratio 0.028 (0.036) 0 0.26 73 214

Number of traffic lanes 2.9 (2.0) 1 8 73 214
Road width (m) 9.8 (6.7) 2.6 28 73 214
Buildings on both sides 52% 73 214
Continuous buildings 20% 73 214
Building coverage (%)a 14% (14) 0 51% 73 214
Mean building height (m)a 2.6 (4.8) 0 29 62 177
Commercial zoning (%)b 3.8% (7.2) 0 38% 73 214
Industrial zoning (%)b 11% (15) 0 64% 73 214
Institutional zoning (%)b 8.4% (14) 0 68% 73 214
Undeveloped area (%)b 3.1% (5.7) 0 34% 73 214
Park zoning (%)b 11% (26) 0 100% 73 214
Residential zoning (%)b 56% (30) 0 100% 73 214

SD, standard deviation.
a Within a 25 m buffer.
b Within a 150 m buffer.
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particle and black carbon concentrations were weakly correlated
(r¼0.35).

A number of traffic/built environment predictors were highly
correlated and thus were removed from further analysis in
random-effect models. Specifically, road width was highly corre-
lated with all traffic count variables (0.60Zrr0.79) and number
of traffic lanes (r¼0.95); therefore, only road width was retained
for analysis as an indicator of traffic volume. To verify this decision,
we compared coefficients for road width and total traffic counts in
single predictor models. In general, coefficients for interquartile
changes in road width and total traffic counts were comparable in
magnitude (data not shown) with the exception of models for
maximum UFP concentrations. In these models, the coefficient for
road width (28%, 95% CI: 9, 51) was more than double the
coefficient for traffic counts (12%, 95% CI: �3, 29). Indicator
variables for the presence of buildings on both sides of the street
and continuous buildings on both sides of the street were also
removed from analysis owing to correlations with building cover-
age (r40.51). Moreover, building coverage was correlated with
average building height (r¼0.69) and inversely correlated with
road width (r¼�0.62); therefore, average building height was
retained for analysis. In total, 9 variables were retained for
evaluation in multivariable random-effects models including: road
width, truck ratio (trucks/total traffic counts), mean building
height within a 25 m buffer, and six zoning factors within a
150 m buffer (commercial, industrial, institutional, undeveloped,
park, and residential).

Random-effect models for individual candidate predictors are
shown in Table 2. Road width was the strongest predictor of mean
and maximum UFP concentrations with each IQR increase in road
width corresponding to 14% (95% CI: 0, 30) and 31% (95% CI: 10,
55) increases in mean and maximum UFP concentrations, respec-
tively. Truck ratio and industrial zoning were positively associated
with mean and maximum UFP concentrations and these factors
were also the strongest predictors of mean BC concentrations.
Residential zoning was inversely associated with UFPs and BC with
the strongest association observed for maximum UFP concentra-
tions. Similarly, mean building height was positively associated
with air pollutant concentrations but was most strongly associated
with mean UFPs. Ambient temperature and wind speed were
each inversely associated with near road air pollution concentra-
tions (Table 3), likely owing to decreased volatility (i.e. less
evaporation of the volatile component of particulate matter) and
increased mixing at lower temperatures and higher wind speeds,
respectively.

Final multivariable models describing the impact of traffic/built
environment factors on UFP and BC concentrations are shown in
Table 3. Of the factors examined, road width, mean building
height, and truck ratio were identified as the most important

predictors of mean UFP concentrations. Coefficients for these
variables were similar to those in single predictor models with
each associated with increases of more than 10% per interquartile
change after adjusting for meteorological factors. Industrial and
residential zoning were also explored as potential predictors of
mean UFPs in final multivariable models based on strong associa-
tions in single predictor models; however, the magnitudes of these
associations decreased in multivariable models and thus were not
included in the final model. Potential interactions between road
width and mean building height were also examined in the final
model for mean UFPs by including a first order integration term;
however, we did not observe a significant interaction between
road width and building height (p¼0.561).

Industrial zoning was an important predictor of maximum UFP
concentrations in multivariable models along with road width and
truck ratio. Of these, road width was the strongest predictor of
maximum UFP levels with each IQR increase associated with a 28%
(95% CI: 9, 51) increase in maximum UFP concentration. While a
strong inverse association was observed between residential
zoning and maximum UFPs in single predictor models, the
magnitude of this relationship decreased substantially in multi-
variable models and thus was not included in the final model.

Table 2
Random-effect models for UFPs, black carbon and traffic and built environment factors.

Independent variable IQR Percent change mean
UFP per IQR (95% CI)

Percent change maximum
UFP per IQR (95% CI)

Percent change black carbon
per IQR (95% CI)

Road width (m) 6.6 14% (0, 30) 31% (10, 55) 15% (�10, 47)
Truck ratio (%) 2.9 12% (4, 20) 18% (6, 30) 21% (1, 46)
Industrial zoning (%)a 14 12% (0, 25) 21% (4, 41) 37% (12, 69)
Mean building height (m)b 2.8 10% (2, 20) 8.7% (�3, 21) 3.2% (�12, 21)
Undeveloped area (%)a 4.0 7.6% (0, 17) 6.0% (�5, 18) 13% (�4, 32)
Institutional zoning (%)a 14 6.3% (�6, 20) 7.9% (�8, 27) �9.4% (�28, 13)
Commercial zoning (%)a 5.5 4.5% (�5, 15) 10% (�3, 25) 1.2% (�15, 20)
Park zoning (%)a 9.7 �0.21% (�6, 6) 5.9% (�1, 14) �1.0% (�11, 10)
Residential zoning (%)a 43 �14% (�29, 4) �28% (�44, �9) �17% (�41, 19)

IQR, interquartile range. Each factor was evaluated separately in models adjusted for ambient temperature and wind speed.
a Within a 150 m buffer.
b Within a 25 m buffer.

Table 3
Multivariable random-effect models for air pollutant concentrations and traffic and
built environment factors.

Model PIP (%) IQR Percent change
per IQR (95% CI)

Mean UFP concentration (particles/cm3)
Road width (m) 57 6.6 14% (0, 30)
Mean building height (m)a 87 2.8 13% (5, 22)
Truck ratio (%) 78 2.9 13% (3, 23)
Wind speed (km/h) 75 3.0 �9.8% (�20, 2)
Temperature (1C) 98 4.7 �25% (�32, �16)
Maximum UFP concentration (particles/cm3)
Road width (m) 94 6.6 28% (9, 51)
Industrial zoning (%)b 61 14 18% (2, 37)
Truck ratio (%) 66 2.9 9.7% (�2, 22)
Wind speed (km/h) 22 3.0 �7.1% (�21, 10)
Temperature (1C) 21 4.7 �17% (�28, �4)
Mean black carbon concentration (ng/m3)
Industrial zoning (%)b 99 14 35% (9, 67)
Road width (m) 31 6.6 17% (�8, 48)
Undeveloped area (%)b 13 4.0 11% (�4, 28)
Truck ratio (%) 12 2.9 10% (�9, 33)
Temperature (1C) 10 4.7 �15% (�33, 8)
Wind speed (km/h) 14 3.0 �23% (�33, 8)

PIP, posterior inclusion probability and IQR, interquartile range.
a Within a 25 m buffer.
b Within a 150 m buffer.
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Industrial zoning was the most important predictor of mean BC
concentrations in multivariable models with each IQR increase
corresponding to a 35% (95% CI: 9, 67) increase. Variables for road
width, truck ratio, and undeveloped area were also included in the
final model for BC as these factors were strongly associated with
mean BC concentrations in single predictor models and the
magnitudes of these associations remained strong in multivariable
models. However, the coefficient for truck ratio decreased by
approximately 50% suggesting that the impact of this factor on
BC concentrations is partially captured by the other covariates.
Residential zoning was evaluated in the final multi-variable model
for BC as a strong inverse association was observed in single
predictor models; however, the magnitude of this association
decreased in multivariable models and thus was not included in
the final model. Ambient temperature and wind speed were
inversely associated with pollutant concentrations in all three
final models with temperature having a stronger impact on UFPs
and wind speed having a stronger impact on BC.

Sensitivity analyses using mixed-effect models with a first
order autoregressive structure (AR-1) generally yielded results
similar in magnitude and direction to those reported above (data
not shown). The only meaningful difference noted was for the
truck ratio variable in the model for mean black carbon concen-
tration. Specifically, an IQR increase in truck ratio was associated
with a stronger increase in mean black carbon concentration in the
mixed-effect model (β¼32%, 95% CI: 18, 49).

4. Discussion

In this study, we examined a number of potential determinants
of near-road UFP and BC concentrations focusing primarily on
road-specific attributes and land-use characteristics. In general,
our findings are consistent with previous studies in Europe and
North America (Abernethy et al., 2013; Hoek et al., 2011; Rivera et
al., 2012) in that traffic and land use variables were important
predictors of near-roadway UFP concentrations, although the
specific variables examined differed between cities. In Montreal,
road width, mean building height, and truck ratio were the
strongest predictors of mean near-road UFP concentrations
whereas road width and industrial zoning were the most impor-
tant predictors of maximum concentrations. This is not surprising
as traffic is a major source of UFPs in urban areas and UFPs are
known to be elevated in street canyons (Nikolova et al., 2011);
however, it is interesting to note that road width was a stronger
predictor of maximum UFP concentrations than total traffic counts
suggesting that this variable may be a reasonable replacement for
traffic counts in population-based exposure models if detailed
traffic count data are not available. None of the three previous land
use regression studies for UFPs identified industrial zoning as an
important determinant of UFPs and reasons for this are not clear;
however, port proximity was identified as an important determi-
nant of UFP concentrations in two studies (Abernethy et al., 2013;
Hoek et al., 2011) likely owing to combustion emissions from ship
and truck traffic in and around ports. In Montreal, the industrial
zoning parameter likely reflects a mixture of both industrial
emissions and regional increases in traffic in the vicinity of
industrial sites. In particular, industrial zoning may be a surrogate
measure of diesel traffic in a given area as this parameter was the
strongest predictor of mean BC concentrations. Indeed, truck ratio
was also an important predictor of mean BC concentrations in
Montreal and others have also reported significant positive asso-
ciations between truck traffic, industrial space, and BC in urban
areas (Clougherty et al., 2013; Larson et al., 2009). Finally, while
residential zoning was inversely associated with ultrafine particle
and BC concentrations in single predictor models, this factor was

not an important predictor of near-road UFP or BC concentrations
in Montreal after accounting for other factors. This finding is in
contrast to those of Rivera et al. (2012) who reported that the
proportion of high density residential area was an important
predictor of ambient UFPs in Girona, Spain.

While our study had several strengths including monitoring at
a large number of sites with a wide range of traffic and land use
characteristics over multiple days, it is important to note several
limitations. First, monitoring was limited to the summer months
and thus we could not develop predictive models for annual
average exposures as ambient UFP concentrations are expected
to be higher in the winter months owing to the well-recognized
inverse relationship between temperature and ambient UFPs. In
addition, potentially important factors such as restaurant or port
proximity (Abernethy et al., 2013) were not evaluated as the
current investigation focussed specifically on the impact of traffic
and built environment on near-road UFPs and BC; these factors
should be evaluated in future studies. Similarly, Hu et al. (2009)
identified aircraft emissions as potentially important sources of
UFP concentrations in neighborhoods adjacent to airports and this
source should also be examined in future studies. Furthermore, the
short time-period of monitoring in each location may be viewed as
a limitation, although others have used similar methods (Rivera et
al., 2012) in developing predictive models for UFPs and our
monitoring was designed to capture time-periods expected to
have the highest UFP and BC concentrations. Our models did not
include fixed-site background concentrations as potential predic-
tors and this may also be a limitation. However, we did include
regional measures of ambient temperature and wind speed to
account for the impact of meteorological changes on near-roadway
concentrations. Indeed, a statistically significant inverse relation-
ship was observed between ambient temperature and UFP con-
centrations and this finding is consistent with previous studies
(Hatzopoulou et al., 2013; Weichenthal et al., 2008). Nevertheless,
the use of regional monitors for temperature and wind speed as
opposed to continuous monitors at each sampling site may have
contributed to non-differential measurement error thus we may
underestimate the impact of these factors on near-roadway air
pollutant concentrations.

Ultrafine particles are a growing health concern but few
models are currently available with which to evaluate the poten-
tial long-term health effects of these exposures. The need for such
models was recently reiterated in the HEI Review Panel on
Ultrafine Particles (HEI, 2013) and the factors identified in this
study may be appropriate targets for the development of future
models. In particular, the impact of long-term average UFP
exposures on cardiovascular morbidity/mortality is arguably of
most interest owing to evidence supporting the biological plausi-
bility of an impact of UFPs on cardiovascular health (Weichenthal,
2012). Models for maximum UFPs, although useful in identify
potential peak exposure areas, may be less suitable for use in
chronic exposure studies as maximums occur infrequently and are
less stable than average values. Future studies should also examine
models predicting percentiles of exposure (e.g. 75th or 90th
percentile) as illustrated by Larson et al. (2009). Regardless, city-
specific models are likely required as the small number of LUR
models developed to date all contain different predictor variables
for ambient UFPs, although they all generally relate to traffic and
local combustion sources. As a result, near-road air quality models
are expected to be key elements of future studies interested in the
long-term health effects of traffic-related air pollution.
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