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ABSTRACT ;

In this chapter we describe how hierarchical random-effects models can !
be applied to meta-analysis using a fully Bayesian approach. Using a meta- B
analysis of randomized trials of selective decontamination of the digestive [i-
tract as an example, inferences are made using Gibbs sampling via BUGS, '
a freely available software package. We illustrate the usefulness of graphi- i
cal modeling techniques for expressing the conditional independence as-
sumptions of the parameters in the model and show how specification of |
the model in BUGS leads naturally from the graph formulation. Problems 1
with using a standard noninformative prior distribution for the population ’
variance are discussed and suitable alternative prior distributions are de-
rived and compared.

-1 -INTRODUCTION - - : - i

Hierarchical random-effects models are becoming increasingly popular
for tackling problems involving complex structured data. In this chapter
we describe how meta-analysis fits naturally into the hierarchical frame-
work. Using an example of a meta-analysis of randomized trials of selec-
tive decontamination of the digestive tract [1], we illustrate how a Baye-
sian analysis can be carried out. Due to recent developments in Markov
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chain Monte Carlo [2], implementing such models within a fully Bayesian
framework is now a viable option, without recourse to approximations in
which uncertainty about certain parameters is ignored.

Inferences on the parameters of interest are based on the posterior
marginal distributions, which are obtained using the simulation technique
known as Gibbs sampling. This is implemented using BUGS, a software
package available free of charge, which provides a means of analyzing
complex models essentially by describing their structure and automati-
cally deriving the expressions necessary for the Gibbs sampling. In addi-
tion, we show how graphical modeling techniques may be used to express
the conditional independence assumptions of the parameters in the model:
not only can this provide valuable insight, but BUGS also exploits the
resulting factorization of the full distribution of all the parameters and
data as a product of simple conditional distributions.

Focus then centers on the choice of prior distribution and most impor-
tantly on the problems with using a standard noninformative prior for the
population (or between-study) variance in a random-effects meta-analysis.
Techniques for deriving suitable alternative priors based on three different
approaches-are also explored and their consequerices compared.

2 THE PROBLEM

Preventing infections in intensive care units is a major area of concern.
However, controversy still surrounds the best way to avoid them. One
suggested strategy involves selectively decontaminating the digestive tract
to prevent carriage of potentially pathogenic microorganisms from the
oropharynx, stomach, and gut. An international collaborative group inves-
tigated the clinical benefits of selective decontamination of the digestive
tract by carrying out a meta-analysis of 22 randomized trials [1]. In each
trial, patients in intensive care units were randomized to either a treatment
or a control group, where treatment consisted of different combinations
of oral nonabsorbable antibiotics, with some studies in addition including
a systemic component of the treatment. Patients in the control groups

A

~

were given no treatment. For®ach trial the number who developed respira- -
tory tract infections in the treatment and the control groups were recorded
(Table 1).

The collaborative group analyzed the data using the classical Mantel-
Haenszel-Peto method [3] to obtain estimates of both the individual treat-
ment effects in each study and the pooled effect. The pooled-effect esti-
mate is based on assuming a common effect across all studies.
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‘able 1 Respiratory Tract Infections in Control
nd Treatment Groups of 22 Trials, with Individual
nd Pooled Estimates of Odds Ratios (95%
-onfidence Intervals) Obtained Using Mantel-
{aenszel-Peto Method

Study  Infections/total Odds ratio
Control Treated (95% confidence interval)

[ 25/54 /17 0.24 (0.10, 0.55)
2 24/41 4/38 0.13 (0.05, 0.32)
3 37/95  20/96 0.42 (0.23, 0.78)
& U7 114 0.10 (0.02, 0.40)
5 26/49 10/48 0.25 (0.11, 0.58)
6 13/84 2/101 0.17 (0.06, 0.48)
T 38/170  12/161 0.31 (0.17, 0.57)
8 20/60  1/28 0.14 (0.05, 0.36)
9 9/20 1/19 0.13 (0.03, 0.54)
10 44/47  22/49 0.11 (0.04, 0.25)
11 30/160 25/162 0.79 (0.44, 1.41)
12 40/185  31/200 0.67 (0.40, 1.12)
13 10/41 9/39 0.93 (0.33, 2.59)
14 40/185 22/193 0.48 (0.28, 0.82)
15 4/46  0/45 0.13 (0.02, 0.95)
16 60/140 31/131 0.42 (0.26, 0.70)
17 12/75 4/75 0.33 (0.12, 0.92)
18 42/225 31220 0.72 (0.43, 1.18)
19 26/57 7/55 0.21 (0.09, 0.47)
20 17/92  3/91 0.21 (0.08, 0.54)
21 23/23  14/25 0.09 (0.02, 0.33)
22 6/68 3/65 0.52 (0.13, 1.99)
Pooled 0.36 (0.31, 0.43)

» A FULL BAYESIAN RANDOM-EFFECTS MODEL

— A random-effects model, unlike the fixed-effect method, adopts a proba-
ility model for individual study effects whose joint distribution is as-
umed not to depend on the order in which the studies are placed. In
sther words, we have no prior reason for thinking any particular study is
lifferent from another, and hence we are formally expressing a belief
n similarity, as opposed to the extremes for equivalence or complete
ndependence. This formal assumption, known as exchangeability, is
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mathematically equivalent to assuming these effects are randomly drawn
from some population.

Let . denote the number of patients in the control group with infec-
tions in the ith study, arising from »,° patients randomized to the control
group, each assumed to have probability of p of developing an infection.
Adopting equivalent notation for the treatment group, the full model can
be written

& ~ binomial(p,°, n.°)

I‘,‘T ~ binomial(p,-T, I’l,'T)

logit(p€) = p; — 82
logit(p;™) = w; + 82
8; ~ normal(d, ¢?)

where logit(p) = log.[p/(1 — p)]. The estimates of primary interest are
the study-level treatment effects 6; = logit(p,T).~ logit(p;©), which is the
log(odds ratio) in the ith study, and the population, or pooled, treatment
effect . w; = [logit(p,T) + logit(p;©))/2 may be considered the “‘average’’
(on the logit scale) infection rate in the ith trial.

Standard ‘‘empirical Bayes’’ methods [4] make inferences conditional
on estimates of d and o2 that are obtained using a momient-matching proce-
dure. This, however, ignores the uncertainty in the estimates of ¢ when
making inferences about d, and in o and d when estimating the precision
of estimates of the individual trial effects, and this neglect may have a
considerable impact if there are only a few studies.

A fully Bayesian analysis allows for this uncertainty by placing prior
distributions on the unknown parameters, u’s, o2, and d. These priors will,
however, generally be noninformative. Inferences about the parameters of
interest (d, the population effect, and §;s, the individual trial effects)
can then be made from the joint distribution formed by the prior and the
likelihood by integrating out the unknown parameters (see Section 4). We
may also be interested in predicting the true effect in a new study, as this
in effect produces a prior distribution that may be used, for example, in
assessing sample size for a fiifther confirmatory trial.

The model can be expressed in the form of a graph [5] in which the
nodes in the graph denote the data and parameters of the model (Figure
1). The idea of such a representation is to display qualitative aspects of
the model without requiring algebraic formulas and hence to call attention
to the essential assumptjons. Constants fixed by the design of the study
are denoted as double-edged rectangles (7., n;T), observed variables as




‘ayesian Meta-Analysis of Randomized Trials

a?

trial i

igure 1 Graphical model for random-effects meta-analysis.

]

ingle-edged rectangles (r<, r,7), and unobserved variables as circles (p©
’,'T, His (3[, d, O‘l)

The graph is directed and acylic, and the arrows drawn between nodes
wdicate the conditional independence assumptions of the model. Direct
ifluences on a node are known as its *‘parents”’, using an obvious genetic
nalogy, so, for example, d and o are the parents of each §;. The directed
nks express the assumption that given its parent nodes, denoted pa(v),
ach node v is independent of all other nodes except descendants of v.
‘or example, from Figure 1, it can be seen that conditional on knowing
;¥ (the true treatment response rate in the ith trial), our beliefs in rT
sould be independent of the population parameters (d and ¢2) and data
or the other trials. The links may either indicate a stochastic dependence
solid arrow), for example, r, ~ binomial(p,°, n,S), or a logical function
lashed arrow) such as logit(p©) = u; — 8:/2. Due to the conditional
dependence assumptions as expressed in the graph, the full joint proba-
ility distribution of all the quantities V can be specified as a simple factori-
ation of the conditional parent-child distributions p(v | pa(v)) [6]. So

p(V) = 11 p(v | patw)) (1

‘or the model described above, this joint distribution (ignoring the con-
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stants n%, n7, and using the fact that p., pi* can be expressed in terms
of u;, 8;) takes the form

p(rS, rf, u, 8, d, 0?) « H lp(r i Ky 8:) p(r* i Kis 8:) p(pe;) 2

p(8:| d, 0®)] p(d) p(c?)

A technical problem is to obtain the appropriate posterior marginal
distributions for parameters of interest, conditional on having observed
the data <, r. For example, inferences on the population effect d should
be based on p(d | r¢, /T), which by Bayes’ theorem is proportional to
p(r, 1T | d) p(d), so that

Pl N [ p0S, 8, d, o) dy db do?

We thus need to integrate the joint distribution (2) over u, §, and o*.
The integrand does not have a closed-form solution, even though it is
composed of a product of terms each of whith has a simple form. Some
form of approximation or simulation technique is necessary for this and
-otherinferences based on integrating out parameters from the full joint
distribution. Developments in computer-intensive methodology have es-
tablished what are known as Markov chain Monte Carlo methods as a
practical proposition, a particular form of which is known as Gibbs sam-
pling [7].

The graph is thus translated into a full probability model, and in the
next section we now show how this model description directly forms the
basis of the computational method.

4 INFERENCE USING GIBBS SAMPLING AND BUGS

A simple, although computationally demanding procedure for the numeri-
cal integration of complex functions, Gibbs sampling has come from its
origins in statistical mechanics through image processing to play a major
role in modern statistics. Initial values are given to all unknown quantities,
which include all paramefers, missing data, latent variables, and so on.
Samples are then successively drawn from the conditional distribution of
each variable in turn, given the current value of all the other variables,
both observed data and unknown parameters set at their temporary val-
ues. It can be shown that under broad conditions eventually one will be
sampling from the correct posterior distributions of the unknown param-
eters. There is a large literature on this topic: both methodological [2] and
applications [8].
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For any node v it is therefore necessary to sample from p(v | V\v),
the full conditional distribution given all other nodes V\v. However, the
factorization (1) of the joint distribution expressed by the graphical model
can be exploited to obtain,

p(v | V\v) = terms in p(V) containing v

H“.) p(w | pa(w))

€ pa(

= pv| paw)

The full conditional distribution of any node v therefore depends only on
a prior component p(v | pa(v)) and likelihood components arising from
each of its children w.

The Gibbs sampling was implemented using the BUGS software (9,
10]. The BUGS language allows the model to be specified in much the
same way as it was represented by the graphical model. The specification
file has two sections. The first contains a declaration of all the nodes in
the graph and the names of the files containing the data and the initial
values, and the second is a list of the dependence relations expressed by
the graph. This is shown below. The ‘“‘average’’ infection rate for the ith
trial, w;, and the overall treatment effect, d, were assigned normal(0, 4)
and normal(0, 10) prior distributions, respectively. We note that BUGS
parameterizes the normal distribution in terms of the precision rather than
the variance in order to provide a conjugate prior analysis, such that ““tau”’
represents 7 = 1/o~. The gamma(0.001, 0.001) prior distribution given to
7 is a noninformative prior that is approximately equivalent to p(¢?) x
l/*. Suitable priors for r are discussed in more detail in Sections 5 and 6.

for (i in 1:Num) {
rt[i] ~ dbin(pt[i], ntli]);
rcli] ~ dbin(pcli], nefi));
logit(pc[i]) <~muli] — (delta[i}/2);
logit(ptfi]) <—muli] + (deltali]/2);
delta[i] ~ dnorm(d, tau);
mu{i] ~ dnorm(0.0, 0.25);

d ~ dnorm(0.0, 0.1);
“tau ~ dgamma(1.0E-3, 1.0E-3);
sigma < — 1/sqrt(tau);
delta.new ~ dnorm(d, tau);

The syntax of the language should be largely self-explanatory and
essentially consists of using the graph to express the joint distribution (2)
as concisely as possible. Two forms of relation are shown: ~ translates
to “is distributed as” and < — represents ‘‘is equal to.”” It is important
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to understand that the language is declarative (describing a model), rather
than procedural (specifying a sequence of steps as in a standard computer
program). For example, the lines may be given in any order. (Details of
how to obtain the program are given at the end of this chapter.)

From this model specification BUGS works out the parents and chil-
dren of each node, constructs an internal representation of the graph,
derives the necessary full conditional distributions, and carries out the
Gibbs sampling. In fairly simple problems of this type a “‘burn-in’’ of,
say, 500 iterations is generally sufficient to reach convergence and then
summary statistics such as means and standard deviations of generated
parameters values are monitored over, say, 1000 further iterations: formal
techniques are available for checking convergence [11] and here a method
described by Geweke [12] was adopted.

The full Bayesian random-effects model specified above gives a mean
estimate for d of —1.39 (95% probability interval — 1.82, —1.01). Figure
2 shows the individual study estimates for the random-effects model are
drawn toward a central overall effect and have*smaller intervals than the
fixed-effects (Mantel-Haenszel-Peto) estimates. The pooled effect, how-
ever, has a wider interval. This is the expected pattern, due to some of
the within-study variability in the fixed-effects analysis being accounted
for as between-study variability in the random-effects model.

To obtain an estimate of the overall or pooled effect in a meta-analysis,
the individual study estimates are combined in a way that enables some
studies to contribute more to the pooled estimate than others. The amount
that a study contributes to the pooled estimate is determined by its weight.
In a fixed-effects analysis the studies are given weights that are inversely
proportional to the variance of the estimated study effect, so

g = 2k éjwj’ W, = 1 ]
kL w; Var(;)

and hence each weight w; is proportional to study size.

In a random-effects analysis, however, the between-study variability
o?, as well as the within-stugy variability, is taken into account in the
weighting. If there is little haerogeneity between studies, then o2 will be
small and the fixed-effects and random-effects estimates will be very simi-
lar. However, as the heterogeneity increases we will find that the
weighting in the random-effects analysis will be less influenced by the
within-study variance and become dominated by the between-study
variance.

In the preceding example we see that random-effects analysis esti-
mates a stronger relationship between infections and selective decontami-
nation upon pooling. The random-effects analysis is placing less weight
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Figure 2 Estimated odd ratios for Bayesian random-effects model and Mantel- 3
Haenszel-Peto method (area of mark is proportional to the sample size of the
study).

on larger studies (with small variances) than the fixed-effect method due
to the presence of heterogeneity, and hence this shift in estimated pooled L
log odds ratios is a result of the larger studies tending to have less strong
treatment effects. L

5 ISSUES WITH IMPROPER PRIORS IN HIERARCHICAL MODELS S

It is important that appropriate consideration is given to the choice of
prior distributions and that the effect they have on estimates of the param-
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eters of interest is investigated. In this section we highlight the problems
of priors for the population variance o2 and discuss the motivation behind
the use of the gamma(0.001, 0.001) distribution for + = 1/02 in Section 4.
Alternative methods for deriving prior distributions are then explained.

The standard noninformative J effreys prior [13] for the variance, o-,
of a normal distribution is of the form

plo?) =
. 1
or equivalently p(r) « 1/, where 7 = =

which leads, when combined with an improper uniform prior for the mean,
to the classical ¢-distribution for the posterior distribution of the mean.

However, as DuMouchel [14, 15] points out, when o2 is the variance
-of a random effect in a hierarchical model, the boundary value ¢® = 0 is
supported by a nonnegligible likelihood because it is theoretically possible
that there are no trial-specific random effects’ The asymptote at zero of
p(0?) = 1/6 is then sufficient to lead to an improper posterior distribution,
and-se suifable alternative priors should be used.

6 ALTERNATIVE PROPER PRIORS FOR POPULATION
VARIANCE

6.1 Prior 1: “Just” Proper Prior

The standard noninformative prior for the population variance, p(c?) x
l/o?, is formally equivalent to an inverse gamma(0, 0) distribution. A
“Just” proper approximation to this is an inverse gamma(0.001, 0.001)
distribution for o (Figure 3), or equivalently a gamma(0.001, 0.001) distri-
bution for 7 = 1/o2. This was the prior used in Section 4.

6.2 Prior 2: Proper PriorA by Introspection

By using knowledge of the~§:1rticular context of the problem being ana-
lyzed a reasonable prior may be derived based on judgments about the
likely size of between-study variability.

First, suppose that before looking at the data we consider it is plausible
to observe one order of magnitude spread in odds ratios between the
studies, so that the ratio of the maximum odds ratio to the minimum odds
ratio could be 10. Converting to a log scale, this can be interpreted as
having a prior belief that 95% of studies (contained in a range +1.96¢)




Bayesian Meta-Analysis of Randomized Trials :

0.004 1 0.010 1 |
0.008 A ;

0.003 { |
0.006 1

0.002 4 ;
0.004 4 E

0.001 1 ;
0.002 A

0.0 A 0.0 4

0 20 40 60 80 100 0 1 2 3 4 5
tau sigma*2

Figure 3 Inverse gamma (0.001, 0.001) distribution for o2

coverlog odds ratios in a range of log 10 = 2.3, and hence thata reasonable
estimate of o is (2.3/(2%1.96))> = 0.34. Suppose in addition that we believe
it would be very unlikely to observe two orders of magnitude difference
(i.e., a hundredfold difference) between odds ratios in a meta-analysis.
The ratio of the maximum odds ratio to the minimum odds ratio would then i
be 100 and this would lead to a “"high’’ value of o= of 1.37. A gamma(3, 1)

T
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Figure 4 Inverse gamma (3, 1) distribution for o=
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distribution has a mean of 1/0.33 and a 96% probability of exceeding 1/

1.37, and hence an inverse gamma(3, 1) distribution for o2 could represent
these beliefs (Figure 4).

6.3 Prior 3: Proper Prior by Empirical Methods

From a large number of meta-analyses, each providing an estimate of
the between-study variability, a prior for o can be obtained empirically.
Parmar et al. [16] reviewed 30 meta-analyses of trials in a number of areas
(Table 2) and the resulting estimates of o2 were used to find an inverse

Table 2 Estimates of 2 from 30
Meta-analyses [16]

” No. of trials 42

i 21 0.044
2 5 0.055
3 21 0.000 v,
e iind 64 0.145
.5 7 0.918
6 8 0.005
7 21 0.000 ' o
8 26 0.000
9| 4 0.000
10 6 0.063
11 13 0.111
12 13 0.012
13 7 0.023
14 10 0.109
15 7 0.011
16 i1 0.477
17 6 1.297
18 19 0.056
19 11 1.352
20 21 0.000
21 31 0.000,
22 28 0.0003
23 31 0.016
24 9 0.000
25 23 0.004
26 20 0.076
27 3 0.000
28 10 0.064
29 14 0.327
30 8 0.533
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Figure 5 Kernel estimate of density for 6* from meta-analyses of cancer trials
solid line = kernel estimate, dotted line = inverse gamma density).
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Figure 6 Inverse gamma (0.3, 0.005) distribution for 2.
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gamma distribution that *‘best’’ described the observed between-study
variability. We note that this empirical prior is derived from a number of
different medical areas, but it should give an indication of plausible values
of population variances in random-effects analyses.

The kernel estimate of the density of the sample was considered (Fig-
ure 5), and it suggested that a reasonable prior would be an inverse gamma
(0.5, 0.005), shown in Figure 6. The kernel estimate of the density for the
sample of 67s differs quite considerably from the priors derived in Section

6.1 and 6.2 (Figure 5).

Study

rc/nc  rt/nt
t 25/54 7147
2 24/41 4/38
3 37/95 20/96
4 /17 1714
5 26/49 10748
8 13/84 27100 Y-
7 387170 12/ 161
8 29/60 1/28
| 9’ a/20 /19
!’ 10 44747 22749
" 30/ 160 25/ 162
12 40/185 31/200
13 10741 9739
14 40/185 22/193
15 4/46 0145
18 60 /140 31/131
17 12/75 4/75
18 42/225 31/220
18 26/57 7/55
20 17792 3/91
21 23/23 14/25
22 6/68 3/65
—— Inv Gamma(0.001,0.001}
-==- |nv Gamma(3,1)
Pooled ) -—-- Inv Gamma(0.5,0.005)

[ T I T
0.0 0.1 0.3 1.0

Odds ratio

Figure 7 Meta-analysis of the decontamination example using three different
priors for g2. Posterior mean and 95% credible intervals obtained from Gibbs

sampling.
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COMPARISON OF ALTERNATIVE PRIORS ‘

1yesian Meta-Analysis of Randomized Trials

1e three different priors gave almost identical results when applied to m
¢ meta-analysis of the selective decontamination example (Figure 7). ‘
1 only difference was that the estimated credible intervals from the !
trospective inverse gamma(3, 1) were slightly narrower compared with o
ose from the other two priors (particularly for the smaller study esti-
ates). This is due to the just proper prior and the data-driven prior both
voring small values of between-study variability o2, and therefore more
“the residual variability is accounted for as within-study variability.

Although the three approaches led to different inverse gamma priors, D
ere was actually little practical difference between the distributions. |
1is suggests that the just proper prior may well be a reasonable prior !
r o7, as it provides reasonable support to a wide range of plausible values
g,

DISCUSSION

he selective decontamination of the digestive tract meta-analysis was :
sed here to highlight a number of problems that frequently occur in meta- :
alysis. In particular, any variability between studies should be taken ‘ é
to account in the analysis. The fixed-effect analysis estimated a 64%
:duction in infections with selective decontamination compared with the
ntrols (odds ratio 0.36, 95% confidence interval 0.31, 0.43). When the e
indom-effects model is used, however, a stronger relationship is found
ith an estimated 75% reduction in infections (odds ratio 0.25, 95% proba-
lity interval 0.16, 0.36). Because the random-effects analysis acknowl- !
iges the presence of heterogeneity, the uncertainty of estimating a pooled
fect when individual study estimates vary greatly is reflected in its much
ider 95% interval. :
When heterogeneity among the studies in a meta-analysis is apparent, :
ossible differences between the studies that could be instrumental in E
{

i

ATy

ausing the heterogeneity could be adjusted for. In the decontamination
<ample the impression gained from Figure 2 is that the larger studies
ave the less extreme results. In the Bayesian random-effects model we
buld easily include the log of the study size (n; = n;T + 1,°) as a covariate
> that

logit(p;") — logit(p,°) = &; + B(log n; — log n.)

‘here log n. = (1/I) 2; log n;. The estimated overall treatment effect
1en has the slightly cdd interpretation as the effect expected in an *‘aver-
ge’’ size trial.
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Other factors that could explain the difference in the effects of the
studies include the variations in patient mix both within and between the
studies. For example, the percentages of trauma, surgical, and medicaj
patients varied widely. Differences in study design (whether they were
double blind or not and variations in diagnostic measures) and treatment
regimens could also have been important contributors. Heterogeneity
should be explained, if possible, and not simply accommodated within a
random-effects analysis.

Although the fully Bayesian model described here enables adjust-
ments that can account for some of the between-study variability, interpre-
tation requires care. In the example above it may be felt that the larger
studies carry more credibility and we might expect carefully controlled
studies to tend to show smaller effects. The larger centers are also more
likely to stay up with recent developments and use more standard defini-
tions of disease and treatment. The more extreme effects being observed
in smaller studies might also point to publication bias, as small studies
with small observed effects may not have been significant enough to be
published.

The e three population variance priors compared in this chapter, al-
though themselves specific to the particular model, were derived using
approaches that can be used to develop priors in many other areas.

This chapter illustrates just one application of BUGS. The software
is capable of handling a wide range of problems, including hierarchical
random effects-and measurement error in generalized linear models, latent
variable and mixture models, and various forms of missing and censored
data. It also prov1des a mechanism for attaching models of different types
within a singlé structure: essentially the graphical formalism permits
models of arbitrary complexity. Naturally, for complex models issues of
convergence of the sampled values becomes crucial, and a range of diag-
nostics are possible. BUGS is freely available, with full documentation,
by anonymous ftp from the second author (e-mail: bugs@mrc-
bsu.cam.ac.uk).
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