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suss Rats: a normal hierarchical model

This example is taken from section 6 of Gelfand et al (1990), and concerns 30 young rats whose weights were
measured weekly for five weeks. Part of the data is shown below, where Y; is the weight of the ith rat measured

at age X

Weights Y of rat i on day x;
x=8 16 22 29 36

Rat 1 151 199 246 283 320
Rat 2 145 199 249 293 354

Rat 30 |153 200 244 286 324

A plot of the 30 growth curves suggests some evidence of downward curvature.

The model is essentially a random effects linear growth curve

Y~ Normal(c; + B(X - Xoar), Tc)
o; ~ Normal(a, )
B; ~ Normal(B, tp)

where X, = 22, and T represents the precision (1/variance) of a normal distribution. We note the absence of a
parameter representing correlation between a; and [3; unlike in Gelfand et al 1990. However, see the Birats
example in Volume 2 which does explicitly model the covariance between o; and [3; For now, we standardise

the x|'s around their mean to reduce dependence between o.; and B, in their likelihood: in fact for the full

balanced data, complete independence is achieved. (Note that, in general, prior independence does not force
the posterior distributions to be independent).

Qg Tos Peo Tp s Te are given independent “noninformative” priors. Interest particularly focuses on the
intercept at zero time (birth), denoted oLy = ot¢ - B¢ Xpgr-

Graphical model for rats example:
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BUGS language for rats example:

model
{
for(iin 1:N){
for(jin1:T){
Y[i, j] ~ dnorm(muli , j],tau.c)
mul[i , j] <- alphali] + beta[i] * (x{j] - xbar)
}
alphali] ~ dnorm(alpha.c,alpha.tau)
beta[i] ~ dnorm(beta.c,beta.tau)
}
tau.c ~ dgamma(0.001,0.001)
sigma <- 1/ sqrt(tau.c)
alpha.c ~ dnorm(0.0,1.0E-6)
alpha.tau ~ dgamma(0.001,0.001)
beta.c ~ dnorm(0.0,1.0E-6)
beta.tau ~ dgamma(0.001,0.001)
alpha0 <- alpha.c - xbar * beta.c

Note the use of a very flat but conjugate prior for the population effects: a locally uniform prior could also have
been used.

Data =ilist(x = ¢(8.0, 15.0, 22.0, 29.0, 36.0), xbar = 22, N = 30, T=5,




Y = structure(

.Data = ¢(151, 199, 246, 283, 320,
145, 199, 249, 293, 354,
147, 214, 263, 312, 328,
155, 200, 237, 272, 297
135, 188, 230, 280, 323,
159, 210, 252, 298, 331,
141, 189, 231, 275, 305,
159, 201, 248, 297, 338
177, 236, 285, 350, 376,
134, 182, 220, 260, 296,
160, 208, 261, 313, 352,
143, 188, 220, 273, 314,
154, 200, 244, 289, 325
171, 221, 270, 326, 358
163, 216, 242, 281, 312,
160, 207, 248, 288, 324,
142, 187, 234, 280, 316,
1566, 203, 243, 283, 317,
157, 212, 259, 307, 336,
152, 203, 246, 286, 321,
154, 205, 253, 298, 334,
139, 190, 225, 267, 302,
146, 191, 229, 272, 302,

157,211,-250,-285,-323,

132, 185, 237, 286, 331,

160, 207, 257, 303, 345,

169, 216, 261, 295, 333,

157, 205, 248, 289, 316,

137, 180, 219, 258, 291,

153, 200, 244, 286, 324),
.Dim = ¢(30,5)))¢

(Note: the response data (Y) for the rats example can also be found in the file ratsy.odc in rectangular format.
The covariate data (X) can be found in S-Plus format in file ratsx.odc. To load data from each of these files,
focus the window containing the open data file before clicking on "Data" from the "Model" menu.)

Inits =list(alpha = ¢(250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250),
beta =c(6,6,6,6,6,6,6,6,6,66,6,6,6,6,
6,6,6,6 6,6 6,6,6,6,6,6,6,6,0),
alpha.c = 150, beta.c = 10,
tau.c = 1, alpha.tau = 1, beta.tau = 1)&

Results

A 1000 update bum in followed by a further 10000 updates gave the parameter estimates:

node mean sd MC error | 2.5% median | 97.5% start sample
alpha0 106.6 3.625 0.03477 99.32 106.6 113.6 1001 10000
beta.c 6.185 0.1068 0.001354 | 5979 6.184 6.398 1001 10000
sigma 6.082 0.4714 0.007308 | 5.248 6.052 7.093 1001 10000

These results may be compared with Figure 5 of Gelfand et al 1990 — we note that the mean gradient of
independent fitted straight lines is 6.19.

Gelfand et al 1990 also consider the problem of missing data, and delete the last observation of cases 6-10, the
last two from 11-20, the last 3 from 21-25 and the last 4 from 26-30. The appropriate data file is obtained by



simply replacing data values by NA (see below). The model specification is unchanged, since the distinction
between observed and unobserved quantities is made in the data file and not the model specification.

=> click on one of the arrows to open the data for the missing value analysis €

Gelfand et al 1990 focus on the parameter estimates and the predictions for the final 4 observations on rat 26.

These predictions are obtained automatically in BUGS by monitoring the relevant Y[] nodes. The following
estimates were obtained:

node mean sd MC error | 2.5% median | 97.5% start sample
Y[26,2] 204.5 8.74 0.1159 187.0 204.4 2217 1001 10000
Y[26,3] 250.0 10.27 0.1642 229.7 249.9 2701 1001 10000
Y[26,4] 295.4 12.64 0.2092 270.3 295.3 320.3 1001 10000
Y[286,5] 3406 15.32 0.284 310.2 340.5 370.5 1001 10000
beta.c 6.575 0.1507 0.003708 | 6.281 6.573 6.875 1001 10000

We note that our estimate 6.58 of bc is substantially greater than that shown in Figure 6 of Gelfand et al 1990.
However, plotting the growth curves indicates some curvature with steeper gradients at the beginning: the
mean of the estimated gradients of the reduced data is 6.66, compared to 6.19 for the full data. Hence we are
inclined to believe our analysis. The observed weights for rat 26 were 207, 257, 303 and 345, compared to our
predictions of 204, 250, 295 and 341.




