

BUGS Inhaler: ordered catagorical data

Ezzet and Whitehead (1993) analyse data from a two-treatment, two-period crossover trial to compare 2 inhalation devices for delivering the drug salbutamol in 286 asthma patients. Patients were asked to rate the clarity of leaflet instructions accompanying each device, using a 4-point ordinal scale. In the table below, the first entry in each cell (r,c) gives the number of subjects in Group 1 (who received device A in period 1 and device B in period 2) giving response r in period 1 and response c in period 2. The entry in brackets is the number of Group 2 subjects (who received the devices in reverse order) giving this response pattern.

			Response in period 2					
		1	2	3	4	TOTAL		
		Easy	Only clear after re-reading	Not very clear	Confusing			
Response	1	59 (63)	35 (13)	3 (0)	2 (0)	99 (76)		
in	2	11 (40)	27 (15)	2 (0)	1 (0)	41 (55)		
period 1	3	0 (7)	0 (2)	0 (1)	0 (0)	0 (10)		
	4	1 (2)	1 (0)	0 (1)	0 (0)	2 (3)		
TOTAL		71 (112)	63 (30)	5 (2)	3 (0)	142 (144)		

The response R_{it} from the i th subject (i = 1,...,286) in the t th period (t = 1,2) thus assumes integer values between 1 and 4. It may be expressed in terms of a continuous latent variable Y_{it} taking values on (-inf, inf) as follows:

$$R_{it} = j$$
 if Y_{it} in $[a_{i-1}, a_i)$, $j = 1,...,4$

where \mathbf{a}_0 = -inf and $\mathbf{a}\mathbf{4}$ = inf. Assuming a logistic distribution with mean μ_{it} for \mathbf{Y}_{it} , then the cumulative probability \mathbf{Q}_{itj} of subject i rating the treatment in period t as worse than category j (i.e. Prob(\mathbf{Y}_{it} >= \mathbf{a}_j) is given by

$$logitQ_{itj} = -(aj + \mu_{s,t} + b_i)$$

where b_i represents the random effect for subject *i*. Here, μ_{s_it} depends only on the period *t* and the sequence $s_i = 1,2$ to which patient *i* belongs. It is defined as

$$\mu_{11} = \beta / 2 + \pi / 2$$

$$\mu_{12} = -\beta / 2 - \pi / 2 - \kappa$$

$$\mu_{21} = -\beta / 2 + \pi / 2$$

$$\mu_{22} = \beta / 2 - \pi / 2 + \kappa$$

where β represents the treatment effect, π represents the period effect and κ represents the carryover effect. The probability of subject i giving response j in period t is thus given by $\mathbf{p}_{itj} = \mathbf{Q}_{itj} - 1 - \mathbf{Q}_{itj}$, where $\mathbf{Q}_{it0} = 1$ and

 Q_{it4} = 0 (see also the Bones example).

The BUGS language for this model is shown below. We assume the b_i 's to be normally distributed with zero mean and common precision τ . The fixed effects β , π and κ are given vague normal priors, as are the unknown cut points a_1 , a_2 and a_3 . We also impose order constraints on the latter using the I(,) notation in BUGS, to ensure that $a_1 < a_2 < a_3$.

```
model
#
# Construct individual response data from contingency table
    for (i in 1 : Ncum[1, 1]) {
        group[i] <- 1
        for (t in 1 : T) { response[i, t] <- pattern[1, t] }
    for (i in (Ncum[1,1] + 1) : Ncum[1, 2]) {
        group[i] <- 2 for (t in 1 : T) { response[i, t] <- pattern[1, t] }
    }
    for (k in 2 : Npattern) {
        for(i in (Ncum[k - 1, 2] + 1) : Ncum[k, 1]) {
            group[i] <- 1 for (t in 1 : T) { response[i, t] <- pattern[k, t] }
        for(i in (Ncum[k, 1] + 1) : Ncum[k, 2]) {
            group[i] \leftarrow 2 for (t in 1 : T) \{ response[i, t] \leftarrow pattern[k, t] \}
        }
#
# Model
#
    for (i in 1 : N) {
        for (t in 1 : T) {
            for (j in 1 : Ncut) {
#
# Cumulative probability of worse response than j
                logit(Q[i, t, j]) \leftarrow -(a[j] + mu[group[i], t] + b[i])
            }
# Probability of response = j
#
            p[i, t, 1] <- 1 - Q[i, t, 1]
            for (j in 2 : Ncut) { p[i, t, j] <- Q[i, t, j - 1] - Q[i, t, j] }
            p[i, t, (Ncut+1)] <- Q[i, t, Ncut]
            response[i, t] \sim dcat(p[i, t, ])
        }
# Subject (random) effects
#
        b[i] \sim dnorm(0.0, tau)
}
# Fixed effects
#
    for (a in 1 · G) {
```

Note that the data is read into *BUGS* in the original contigency table format to economize on space and effort. The indivdual responses for each of the 286 patients are then constructed within *BUGS*.

Data → click on one of the arrows to open data ←

Inits → click on one of the arrows to open initall values ←

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
a[1]	0.7079	0.1377	0.004319	0.4547	0.7022	0.9886	1001	10000
a[2]	3.91	0.3322	0.01624	3.299	3.899	4.597	1001	10000
a[3]	5.256	0.4678	0.0186	4.394	5.237	6.22	1001	10000
beta	1.047	0.3264	0.008527	0.4203	1.039	1.707	1001	10000
kappa	0.2532	0.2524	0.006044	-0.2383	0.2547	0.7513	1001	10000
log.sigma	0.1667	0.2279	0.01523	-0.3635	0.1984	0.5194	1001	10000
pi	-0.237	0.199	0.002517	-0.6342	-0.2365	0.1586	1001	10000
sigma	1.21	0.2539	0.01669	0.6953	1.219	1.681	1001	10000

The estimates can be compared with those of Ezzet and Whitehead, who used the Newton-Raphson method and numerical integration to obtain maximum-likelihood estimates of the parameters. They reported $\beta = 1.17 +/-0.75$, $\pi = -0.23 +/-0.20$, $\kappa = 0.21 +/-0.49$, $\log \sigma = 0.17 +/-0.23$, a1 = 0.68, a2 = 3.85, a3 = 5.10