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SUMMARY 
Many clinicians wrongly interpret p-values as probabilities that treatment has an adverse effect and 
confidence intervals as probability intervals. Such inferences can be validly drawn from Bayesian analyses of 
trial results. These analyses use the data to update the prior (or pre-trial) beliefs to  give posterior (or 
post-trial) beliefs about the magnitude of a treatment effect. However, for these methods to gain acceptance 
in the medical literature, understanding between statisticians and clinicians of the issues involved in 
choosing appropriate prior distributions for trial reporting needs to be reached. I focus on two types of prior 
that deserve consideration. The first is the non-informative prior giving standardized likelihood distribu- 
tions as post-trial probability distributions. Their use is unlikely to be controversial among statisticians 
whilst being intuitively appealing to clinicians. The second type of prior has a spike of probability mass at 
the point of no treatment effect. Varying the magnitude of the spike illustrates the sensitivity of the 
conclusions drawn to the degree of prior scepticism in a treatment effect. With both, graphical displays 
provide clinical readers with the opportunity to explore the results more fully. An example of how a clinical 
trial might be reported in the medical literature using these methods is given. 

1. INTRODUCTION 

Recent developments in the application of Bayesian methods to the design and analysis of clinical 
trials have been reviewed by Spiegelhalter and Freedman.’ Essentially, Bayesian methods use 
data from a clinical trial to update prior or pre-trial beliefs about a treatment’s effect to give 
posterior or post-trial beliefs. This allows an analysis of the strength of the trial’s results to 
overcome different prior beliefs. Whilst Bayesian methods have been used in such sensitivity 
analyses for internal decision making within a pharmaceutical company,’ they have been used 
rarely in reporting results to medical audiences or to drug regulatory authorities. However, the 
direct interpretation of probability statements about the magnitude of a treatment’s effect and the 
simplicity of understanding portrayed by graphical displays of posterior distributions should 
encourage wider use of these methods. 

In this paper the role of Bayesian analyses in the reporting of clinical trials is considered with 
an emphasis on the use of two types of prior belief as aids for interpreting results. Two phase 111 
clinical trials, both having a binary (survival) endpoint, are used as illustrations. A Bayesian 
approach to their analysis is described in the next section. In Section 3 a non-informative prior 
distribution is considered, giving an analysis which is essentially data-dependent and so unlikely 
to be controversial. In Section 4 a prior distribution that might represent the beliefs of an 
individual who is sceptical of the existence of a treatment effect is considered. By varying the 
degree of scepticism, the ability of the trial data to overcome weak or strong prior opinions 
against the treatment can be examined. Section 5 gives an example of a report using these 
approaches in a manner suitable for publication in the medical literature. The example also 
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illustrates the use of prior distributions based on the trial investigators’ pre-trial beliefs and on 
results from previous similar trials. In Section 6, I discuss the use of these methods. 

2. BAYESIAN ANALYSES FOR THE BAYREP AND AIMS TRIALS 

Two trials with somewhat contrasting results have been chosen to illustrate how Bayesian 
analyses might be presented. The first, known as the Anistreplase Intervention Mortality Study 
(AIMS), is a placebo-controlled trial designed to assess whether a thrombolytic agent, anistrep- 
lase, reduces all-cause mortality within one year of an acute myocardial infarction. This trial has 
been reported in the medical literature3 using classical (frequentist) methods of analysis. Of 634 
patients randomized to receive placebo, 133 (17.8 per cent) died within one year, compared with 
69 of 624 ( 1  1 . 1  per cent) randomized to receive anistreplase, giving an odds ratio of 0.57. 

The second trial, used in the example in Section 5, is not yet completed and so no real data can 
be presented; I refer to it as the BAYREP trial. It is a placebo-controlled trial designed to  assess 
whether a beta-blocker reduces all-cause mortality during two years of treatment for patients 
with oesophageal varices that have not previously bled. This trial is of particular interest as the 
investigators involved have described their prior beliefs for the treatment effect, and also the 
magnitude of effect needed before they would use beta-blockers in their routine clinical practice. 
The ‘data’ used in the example are based on the result of a similar, but smaller, trial reported in 
a conference a b ~ t r a c t , ~  but with the counts increased by a factor of 5 to reflect the planned size of 
the BAYREP trial. 

As both trials have mortality as their primary endpoint, a simple analysis of the data might use 
a logistic model for the probability n of dying during follow-up: 

where x = 0 if a patient receives placebo and x = 1 if the active treatment. Here f l  is the log odds 
ratio of dying for the treatment relative to placebo, and ci (which is of less interest) is the log odds 
of dying in the placebo group. I assume a uniform non-informative prior distribution for ci which 
is independent of fi. On a log odds scale, this gives all values of a equal probability a priori, and so 
p(a)  is an (improper) uniform distribution. For simplicity, the analyses presented describe the 
marginal post-trial density function for P given the trial’s data y, obtained using Bayes’ theorem: 

P(BlY) = k 4 Y l K  P)p(P)da s 
where I(yla, P )  is the likelihood function based on the logistic model, p ( P )  is the prior distribution 
for the treatment effect and k is a constant chosen so that the p ( p l y )  integrates to unity over the 
range of p. Each of the next two sections describes analyses based on a different choice of the 
distribution, p ( P ) .  

3. THE NON-INFORMATIVE PRIOR AND STANDARDIZED LIKELIHOODS 

Many doctors interpret classical p-values and confidence intervals in a Bayesian manner. For 
instance, a p-value is the probability of obtaining, under the null hypothesis (usually of no 
treatment effect), an effect as or more extreme than that observed. However, when the effect 
observed is beneficial, the p-value is often interpreted as the probability that treatment causes 
a detrimental effect. A similar misinterpretation of confidence intervals as Probability intervals is 
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Figure I .  The standardized likelihood distribution for an effect of anistreplase relative to placebo in the AIMS trial 

also commonly made. The recent proposal by Pocock and Hughes’ that 70 and 95 per cent 
confidence intervals be overlaid to indicate more strongly the likely size of a treatment effect leans 
towards a Bayesian probability interpretation of these intervals. 

Using the non-informative prior for f i  in which p(f i )  is an (improper) uniform distribution leads 
to the posterior distributions known as the standardized likelihood distribution: 

Figure 1 shows this distribution for the AIMS trial. The median treatment effect shown on the 
plot is very close to the expected treatment effect as the likelihood function is approximately 
symmetric. Also shown are probability intervals: overlaying a 70 per cent interval (heavier 
shading) on a 90 per cent interval (lighter shading) emphasizes the range of values for which the 
standardized likelihood distribution is most concentrated and shows clearly the degree of 
uncertainty still prevailing about the likely size of the treatment effect. Each interval is construc- 
ted by finding the two limits which exclude equal tail probabilities: for example, 0.05 for the 90 per 
ccnt interval. Alternatively, the highest posterior density intervals (the shortest intervals contain- 
ing the required probability) might be used. For unimodal symmetric likelihood functions each 
approach gives the same interval. With skew distributions the former might be preferred because 
their interpretation is simpler, there being a clear relationship between an interval bounded by the 
point of no effect and the probability of a detrimental effect. 

Also shown on Figure 1 is the probability of an adverse effect of treatment (an odds ratio 
greater than one). With large samples, the standardized likelihood distribution will approximate 
a normal distribution and so these probabilities will be very similar in magnitude to the p-values 
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obtained from a classical one-tailed significance test but need doubling to give the p-value 
corresponding to a two-tailed test. Similarly, a confidence interval with coverage (1 - p )  will 
approximate a (1 - p )  probability interval. Thus the presentation of statistical results in terms of 
characteristics of the standardized likelihood distribution allows clinically relevant interpreta- 
tions to be drawn whilst maintaining a link with the classical interpretation. 

Another useful summary of the possibility of an adverse effect is the ratio of the probability of 
a beneficial effect to an adverse effect: for the AIMS trial this is 0.9997/0.0003 = 3332:l. Of 
course, the point of no effect may be of less practical interest than other points if, for instance, 
costs or side effects of treatment mean that a greater treatment effect is necessary to justify its 
routine use. Providing a plot of the standardized likelihood distribution enables readers of the 
trial report to assess the evidence for an effect that they judge to be clinically worthwhile. This is 
illustrated in the example in Section 5. In addition, for trials of adequate size the analysis might be 
extended to show any dependence on patient characteristics of the ratio of probabilities for 
a beneficial effect to an adverse effect. 

4. SCEPTICAL PRIOR BELIEFS 

Clinicians have their own beliefs about the possibility that a treatment will have a beneficial effect. 
These beliefs may be based on results from other trials or on their own experiences with the 
treatment or related treatments, or they may be more subjective. If a treatment is to become 
established in clinical practice, then data from a trial need to affect such beliefs so that clinicians are 
convinced of its worth. In this section, one conceptually simple form for the beliefs of a sceptical 
clinician is considered. Analysis leads to graphical displays showing how the post-trial belief in 
a beneficial effect of a treatment is affected by the degree of prior belief in no treatment effect. 
To introduce this prior distributions, consider the prior belief of one particular investigator 

prior to starting the BAYREP trial (Figure 2). This prior distribution was elicited (as for other 
investigators) in a postal questionnaire using the framework suggested by Spiegelhalter and 
Freedman6 and developed by Gore.7 Note the spike at the point of no effect, around which there 
is a fairly uniform distribution. Discussion with this investigator identified an uncertainty 
between two models: one, represented by the spike, in which the treatment had no effect (neither 
beneficial nor detrimental), and one in which the treatment had an effect (though not necessarily 
beneficial), of whose magnitude he was unsure. 

A simple prior belief distribution can be constructed to capture such uncertainty between two 
models ( M ,  and M , ) :  model M o  allows no treatment effect so that f l  = 0 with probability 1; 
model M I  allows a treatment effect with a non-informative (uniform) prior describing prior 
beliefs. Letting the prior beliefs in models M o  and M1 be p o  and 1 - p o  respectively, then the prior 
odds for model M o  versus model M l  is ,I = po/(l  - p o ) .  Thus the pooled prior from the two 
models is a mixture distribution having a spike at the point of no effect with probability mass p o  
and is, for other effects, uniform with total probability mass 1 - po. Note that Cornfield' 
suggested a similar prior distribution as a basis for hypothesis testing in clinical trials though he 
adopted a normal prior distribution for the treatment effect in model M 1 .  

The post-trial probability distribution p(fl1 y )  is then proportional to 

Using the Bayes factor' Bol , defined as the ratio of posterior to prior odds for model M o  versus 
model M 1, that is 
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Figure 2. Pre-trial belief distribution of one investigator in the BAYREP trial showing the ‘spike’ of probability 
associated with no treatment effect 

gives, with normalization, 

This is also a mixture distribution having a spike with probability mass ABol/(l + Mol) at the 
point of no treatment effect (the left-hand term in the sum above) and elsewhere following the 
shape of the standardized likelihood distribution but with probability mass 1/(1 + lBol )  
(the right-hand term). Thus characteristics of the sceptical clinician’s post-trial beliefs can be 
related to their pre-trial belief po that there is no treatment effect. 

For analysis of the example, denote by Ip and IT the observed log odds of dying in the placebo 
and treatment groups respectively. Then the Bayes factor for comparing models M o  and MI is lo  

Bol = 2[var(jp) + var(lT)]’/’ exp { - 1/2(lp - lT)*/[var(lp) + var(l,)]>. 

When dp of np patients randomized to placebo are observed to die, var(lp) is estimated by 
np/dp(np - dp), with a similar definition for var(lT). For the AIMS trial, this gives a Bayes factor of 
0.001 1 independent of the choice of p o .  This factor describes how the trial data change the belief in 
model M o  (no treatment effect) relative to that in model M1 (treatment effect term included). For the 
AIMS trial, the data produce a substantial shift of belief away from model M o  toward model M1, 

It is useful to plot the post-trial belief in a beneficial effect, p ( p  < Oly), versus the prior belief in 
no treatment effect, po. As B is zero with probability 1 in model M o ,  equation (3) gives that 

P(P < O l Y )  = (1 + kBo1)-’ P ( P  < OlY, MI) .  (4) 
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Figure 3. Relationship in the AIMS trial of the post-trial probability for a beneficial effect of anistreplase (bold line) and 
a reduction in the odds of dying by at least 20 per cent (dashed line) versus the pre-trial belief in no effect 

The right-hand term is just the probability of a beneficial effect obtained from the standardized 
likelihood distribution adjusted by a factor to reflect the prior beliefs in no effect. Thus with no 
spike of prior belief in no effect, I = 0, equation (4) gives the same post-trial belief of a beneficial 
effect as obtained from the standardized likelihood distribution. At the other extreme if, a priori, 
we have a spike of prior belief in no effect of probability one, then 1, = 0 0 ,  and equation (4) gives 
zero post-trial belief in a beneficial effect, so that no amount of data can alter our pre-trial belief. 
Figure 3 shows the relationship between p ( b  < Oly) and p o  for the AIMS trial (bold line). The 
proximity of the curve to a post-trial belief of one for a beneficial effect for all but the most 
extreme prior beliefs in no effect shows the strength of evidence coming from this trial. The data 
should overcome any realistic prior scepticism of the form described. The shape of the curve in 
Figure 3 follows from the magnitude of the Bayes factor: a value of one for Bol would give a linear 
relationship; values of Bol greater than one lead to a concave shape; values of Bol less than one 
lead to a convex shape. 

Stronger evidence from a trial might be displayed by showing that substantial prior beliefs in 
no effect still lead to sizable post-trial beliefs in a larger beneficial effect. For example, also shown 
in Figure 3 (dashed line) is the post-trial belief in treatment producing a 20 per cent or greater 
reduction in the odds of dying. Akin to equation (4), this belief is given by 

p ( b  < ln(o.g)ly) = (1 + lBo l  P ( B  < ln(0.8)ly, ) I  ( 5 )  

so explaining the similarity of the shapes of the two curves. 
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An alternative presentation of this analysis shows how probability intervals obtained from 
the probability distribution for f i  (given by equation (3)) depend on the prior belief in no 
effect, p o .  This enables the reader to focus on what he or she feels are clinically worthwhile 
treatment effects. Figure 4 shows these intervals for the AIMS trial: they are largely unaffected by 
the magnitude of the prior belief in no effect. The plot gives information about the shape and 
location of the standardized likelihood distribution as this is the post-trial probability distribu- 
tion when p o  = 0. Note that the intervals always converge to an odds ratio of one as p o  
tends to one. 

5. EXAMPLE: HOW A REPORT MIGHT BE WRITTEN 

In this Section I use the BAYREP trial to illustrate how Bayesian analyses might be reported in 
the medical literature. The report is restricted to the results for the survival endpoint, and is 
shorter than a complete trial report which would include details on study background, trial 
design and information concerning other outcomes. In the discussion section of this report, two 
other prior distributions are used to illustrate how the results of the trial might be interpreted in 
the context of the subjective opinions of the trial investigators and of previous results from earlier 
related studies. 
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Patients and methods 

A total of 510 patients with oesophageal varices confirmed by biopsy were randomly 
assigned to receive either a beta-blocker (n  = 255) or a matching placebo (n = 255). All 
patients had at least one varix of diameter 5 mm or greater, were over 16 years of age 
and received no beta-blocker agent during the month prior to randomization. Exclusion 
criteria were a history of upper gastrointestinal tract bleeding, regular use of beta- 
blocker or contraindications to their use. 

All patients were followed for two years while receiving randomized treatment. The 
primary endpoint of the study was death. Comparison of groups is by intention-to-treat 
using a logistic regression model. Bayesian methods of analysis are used. A non- 
informative uniform distribution is used for the prior distribution for the log odds of 
dying for patients receiving placebo. This is assumed to be independent of the prior 
distribution used for the treatment effect of beta-blockers. In the Results section, 
a non-informative uniform distribution is used for the treatment effect. In interpreting 
the results (Discussion section), a mixture prior distribution is used to obtain Figure 6. 
This distribution is uniform apart from a probability spike of variable mass for a log 
odds ratio of 0. The distributions obtained in Figure 7 use prior distributions, one of 
which is based on a meta-analysis of similar trials reported in Hayes et al." and 
assumes a common treatment effect in all trials; the other prior distribution reflects the 
pooled beliefs of this trial's investigators, derived using the approach of Spiegelhalter 
and Freedman6 as adapted by Gore'. 

Results 

Of the patients receiving beta-blockers, 40 (15.7 per cent) died compared with 55 (21.6 
per cent) receiving placebo: an observed odds ratio of 0.68. Figure 5 shows the 
distribution of treatment effects that are supported by these data: 90 per cent (lighter 
shading) and 70 per cent (darker shading) probability intervals emphasize the effects 
having greatest support. The probability of an odds ratio less than 1, corresponding 
to a beneficial effect of beta-blockers, is 0.957; the probability of an odds ratio greater 
than 1, corresponding to an adverse effect on survival, is 0.043. The probability ratio of 
the treatment giving a benefit compared to an adverse effect is 22: 1. 

Discussion 

The results of this study provide some support that primary prophylaxis with beta- 
blockers in cirrhotic patients with oesophageal varices reduces the odds of dying during 
two years of treatment, although the evidence is by no means conclusive. Whilst the 
results favour a beneficial effect on survival as compared with an adverse effect by 
a probability ratio of 22: 1, more substantial effects on survival may be required in order 
to outweigh the established adverse effects of beta-blockers and so justify their use for 
primary prophylaxis. For example, when surveyed individually prior to this study, the 
largest odds ratios we felt acceptable before considering the use of beta-blockers in our 
routine practice ranged from 095 to 0.80. Support from this trial, shown by Figure 5, for 
such beneficial effects is weaker (a probability ratio of 14: 1 for an odds ratio of 0.95 or 
better and a ratio of only 3 :  1 for an odds ratio of 080  or better). 

Figure 6 shows how the median effect and the 70 and 90 per cent probability intervals 
are moderated for varying degrees of prior scepticism regarding whether beta-blockers 
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Figure 5. Distribution of effects of the beta-blocker relative to placebo having support from the data obtained in the 
BAYREP trial 

have an effect on survival. Interested readers might quantify their own beliefs (held prior 
to reading this article) for beta-blockers having any effect on survival (adverse or 
beneficial) relative to their beliefs that they have no effect. For example, if prior belief in 
no effect is high, say 0-5, then the data do not move the median away from an odds ratio 
of 1 and the post-trial belief in a beneficial effect is weak (probability 0.31). Indeed, the 
upper bounds for the probability intervals shown include an odds ratio of one for all 
except those with very low prior beliefs (prior probability less than 0.06) in no treatment 
effect. 

Figure 7 shows the results of updating both the pooled pre-trial beliefs of the study 
investigators and the distribution obtained from pooling the results of previously 
published studies. l 1  As these distributions are very similar, the updated distributions 
are also similar. Compared with the standardized likelihood (also shown in Figure 7), 
these distributions discount the possibility of larger beneficial effects (for example, odds 
ratios smaller than about 0-5) but give slightly more support for the possibility of 
a beneficial effect (odds ratios of less than 1). However, there is still a reasonable 
probability that the beta-blocker effect is less than that considered worthwhile by the 
trial's investigators. For example, the post-trial belief for an odds ratio of greater than 
0.9 ranges from 0.066 when using the prior distribution based on previous studies to  
0.105 for the standardized likelihood. 

In conclusion, although this study has substantially increased the experience from 
randomized controlled clinical trials regarding the use of beta-blockers for primary 
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Figure 6. Relationship in the BAYREP trial of the median effect and the 70 per cent (lighter shading) and 90 per cent 
(heavier shading) probability intervals for the effect of the beta-blocker versus the pretrial belief in no effect 

prophylaxis, the evidence for a beneficial effect is encouraging but not yet sufficiently 
conclusive to recommend their routine use in clinical practice. Since our analyses do not 
discount the possibility of a moderate beneficial effect, further study is warranted. 

6 .  DISCUSSION 

Any clinical trial report should provide information in a form that can convince clinicians of 
a treatment’s worth, or otherwise, Bayesian analyses can be valuable aids in achieving this: 
graphical displays of post-trial probability distributions allow clinicians to assess for themselves 
the likely size of effect and also illustrate sensitivity of interpretation to a range of prior beliefs. 
Comparison of corresponding figures for the AIMS and BAYREP trials (for example: Figures 
I and 5; Figures 4 and 6) show the differences between trials with strong versus weak evidence for 
a beneficial effect. However, if different choices of the prior distribution do affect interpretation, 
then it is important to avoid presenting only those which favour one particular view. Thus 
identifying appropriate prior distributions to illustrate sensitivity is crucial if Bayesian methods 
are to gain acceptance as aids in clinical trial reporting. 

Using a non-informative, uniform prior distribution to give the standardized likelihood 
distribution stems from a desire that prior beliefs contribute very little to the inference relative to 
the data obtained. However, non-informativeness is not a straightforward concept and care must 
be taken before routinely adopting a uniform prior to express it. An important consideration is 
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Figure 7. Post-trial probability distributions for the effect of the beta-blocker compared with placebo for prior distribu- 
tions based on the investigators’ pooled opinions and on the results from previous trials, showing also the standardized 

likelihood (as in Figure 5 )  

the scale on which such prior beliefs are expressed. In the AIMS and BAYREP examples, using 
a log odds ratio scale ensures that effects equally distant (on either side) from the point of no effect 
(a log odds ratio of zero) indicate equivalent differential effects of one treatment over the other, 
and also that the prior distribution is symmetric about that point. In contrast, the odds ratio scale 
does not have this symmetry about the point of no effect so a uniform prior distribution could not 
be considered non-informative. In general, a simple transformation will often be available to  give 
a scale on which positive and negative departures of equal magnitude from the point of no effect 
imply an equal benefit of one treatment over the other, and on which prior probabilities can be 
distributed symmetrically about that point. Of course, there may be more than one scale which 
captures this concept of symmetry. In this case, expressing non-informativeness on the scale most 
naturally associated with practice would probably be preferable. Alternatively, the choice be- 
tween scales might be motivated by one of the criteria put forward, for example, by Jeffreys’ or 
Bernardo.” In a practical context, the choice will rarely make a marked difference to  the 
probabilities obtained and the consequent inferences drawn, unless the study is particularly small. 
In the latter case, the interpretation of the study will also be very sensitive to different degrees of 
scepticism. 

When using non-informative improper prior distributions, the integral of the likelihood 
function may not be finite and so the standardized likelihood distribution cannot be obtained. In 
most practical applications this is unlikely to be a problem. If it does arise, then presentation of 
the likelihood function itself would guide the reader as to the range of values that are supported 
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by the data. Proper prior distributions can then be used to illustrate the sensitivity of the 
conclusions to different forms of prior belief. 

The use of a mixture prior distribution which is ‘spiked’ at the point of no treatment effect 
allows analyses that illustrate sensitivity to different levels of prior scepticism. This gives graphs 
that are easily interpreted showing the strength of the results to overcome prior scepticism. These 
also allow readers to assess objectively the impact of the results on their own beliefs. Similarly, the 
investigators can use these graphs as an aid in discussing the results. Such discussion requires 
consideration of what degree of prior scepticism might exist in practice. Berger and Delampady13 
consider in detail the use of the spiked prior in testing point hypotheses and attach a prior 
probability of 0.5 to the spike. This leads them to conclude that the strength of evidence required 
to move opinion away from the point hypothesis of no treatment effect needs to be substantially 
larger than is suggested by classical p-values. In the discussion of that paper, Casella and Berger 
express an alternative view that, in undertaking an experiment, researchers expect a priori to find 
a difference and so a value closer to zero (they suggest 0 1 )  is more appropriate. However, in 
reporting clinical trials the views of practitioners not involved in the trial are important. Even 
with phase Ill trials, where there may be encouraging evidence from earlier phase trials, there may 
be substantial prior scepticism of a treatment’s effectiveness amongst clinicians external to the 
trial. This may be particularly true amongst clinicians treating diseases, such as cancer, where 
rather few of the many treatments that are tested are found to be effective in clinical practice. Thus 
it is important to show the full range of prior probabilities from zero to one that are associated 
with the spike, and discussion based on moderate prior probabilities (say, 0.3 to 0.5) would be 
appropriate except in diseases where therapeutic progress is particularly slow (when higher levels 
or prior scepticism would be important) or where it is more rapid (when lower degrees might be 
sufficient). 

A related issue concerns the choice of prior distribution used to describe beliefs under model 
M 1 ,  in which a treatment is believed to have some effect. In this paper, a non-informative uniform 
prior has been used as this gives a link to the analysis based on the standardized likelihood 
distribution. However, individuals having prior beliefs under model M1 that favour some sizes of 
effect more than others may be more readily convinced of a treatment’s effect than individuals 
who describe their prior beliefs under model MI  using the non-informative prior. This is true even 
if that individual’s prior is symmetric about the point of no effect because smaller observed effects 
are consistent with his beliefs under model M I  and so enable an easier transition from model M o  
to model M I .  On the other hand, individuals having a prior belief under model M1 that is 
predominantly in the opposite direction to that suggested by the data would have a post-trial 
belief in a beneficial effect that is less strong than portrayed in figures such as 3,4 and 6. Therefore 
the use of the non-informative prior is an intermediate choice. It provides a simple approach for 
assessing the strength of the results to overcome prior scepticism and requires that only one 
parameter be varied in order to describe the level of scepticism. 

Other, possibly more controversial, prior distributions might be considered. For instance, in 
the BAY REP example, prior distributions derived from combining results from similar previous 
trials and also from pooling the investigators’ own subjective opinions were used. However, the 
derivation of these prior distributions may raise many questions. Using previous trial results is 
effectively conducting a meta-analysis, and may raise questions about which trials were included 
and the type of model used (fixed or random effects). This might detract from the emphasis on 
reporting the current trial’s results. Suspicions that investigators may be overly optimistic about 
a treatment’s effect may lead to controversy if subjective opinions are used. Further problems 
may arise when clinicians involved in a trial fully understand the impact that their ‘prior opinions’ 
can have on this particular presentation of the results. Thus, whilst illustration of the sensitivity of 
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the conclusions drawn from using such priors may be helpful, this should be restricted to the 
discussion section of the paper. 

In conclusion, the methods described enable a clinical reader to more fully assess the support 
from the data of a trial for a treatment’s effectiveness than is provided by classical methods of 
analysis. A useful first step in moving toward acceptance of Bayesian analyses in trial reports 
would be the presentation of trial results using standardized likelihood distributions. This is 
unlikely to raise undue controversy amongst statisticians because of the use of a non-informative 
prior and wouid be intuitively appealing to clinicians because of the simplicity of understanding 
portrayed by probability intervals and tail probabilities. However, it would represent a major 
shift in presentation requiring careful guidance and education for clinical readers. In this respect 
an important objective of this paper is to generate discussion amongst statisticians and clinicians. 
I t  is important to realize the advantages of using the Bayesian approach while avoiding the 
problems that will arise if analyses are presented with a variety of ill-defined prior distributions. 
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