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CHAPTER 5

Hierarchical models

Many statistical applications involve multiple parameters that can be regarded
as related or connected in some way by the structure of the problem, implying
that a joint probability model for these parameters should reflect the depen-
dence among them. For example, in a study of the effectiveness of cardiac
treatments, with the patients in hospital j having survival probability 6;, it
might be reasonable to expect that estimates of the 6;’s, which represent a
sample of hospitals, should be related to each other. We shall see that this is
achieved in a natural way if we use a prior distribution in which the 6;’s are
viewed as a sample from a common population distribution. A key feature of
such applications is that the observed data, y;;, with units indexed by i within
groups indexed by j, can be used to estimate aspects of the population distri-
bution of the ;’s even though the values of §; are not themselves observed. It
is natural to mode!l such a problem hierarchically, with observable outcomes
modeled conditionally on certain parameters, which themselves are given a
probabilistic specification in terms of further parameters, known as hyperpa-
rameters. Such hierarchical thinking helps in understanding multiparameter
problems and also plays an important role in developing computational strate-
gies.

Perhaps even more important in practice is that nonhierarchical models are
usually inappropriate for hierarchical data: with few parameters, they gen-
erally cannot fit large datasets accurately, whereas with many parameters,
they tend to ‘overfit’ such data in the sense of producing models that fit the
existing data well but lead to inferior predictions for new data. In contrast, hi-
erarchical models can have enough parameters to {it the data well, while using
a population distribution to structure some dependence into the parameters,
thereby avoiding problems of overfitting. As we show in the examples in this
chapter, it is often sensible to fit hierarchical models with more parameters
than there are data points.

In Section 5.1, we consider the problem of constructing a prior distribution
using hierarchical principles but without fitting a formal probability model
for the hierarchical structure. We first consider the analysis of a single experi-
ment, using historical data to create a prior distribution, and then we consider
a plausible prior distribution for the parameters of a set of experiments. The
treatment in Section 5.1 is not fully Bayesian, because, for the purpose of sim-
plicity in exposition, we work with a point estimate, rather than a complete
joint posterior distribution, for the parameters of the population distribution
(the hyperparameters). In Section 5.2, we discuss how to construct a hierar-
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chical prior distribution in the context of a fully Bayesian analysis. Sections
5.3-5.4 present a general approach to computation with hierarchical models
in conjugate families by combining analytical and numerical methods. We de-
fer details of the most general computational methods to Part ITT in order
to explore immediately the important practical and conceptual advantages
of hierarchical Bayesian models. The chapter concludes with two extended
examples: a hierarchical model for an educational testing experiment and a
Bayesian treatment of the method of ‘meta-analysis’ as used in medical re-
search to combine the results of separate studies relating to the same research
question.

5.1 Constructing a parameterized prior distribution
Analyzing a single experiment in the context of historical data

To begin our description of hierarchical models, we consider the problem of
estimating a parameter § using data from a small experiment and a prior
distribution constructed from similar previous (or historical) experiments.
Mathematically, we will consider the current and historical experiments to
be a random sample from a common population.

Example. Estimating the risk of tumor in a group of rats

In the evaluation of drugs for possible clinical application, studies are routinely
performed on rodents. For a particular study drawn from the statistical litera-
ture, suppose the immediate aim is to estimate 6, the probability of tumor in a
population of female laboratory rats of type ‘F344’ that receive a zero dose of the
drug (a control group). The data show that 4 out of 14 rats developed endome-
trial stromal polyps (a kind of tumor). It is natural to assume a binomial model
for the number of tumors, given 8. For convenience, we select a prior distribution
for 6 from the conjugate family, § ~ Beta(a, 3).

Analysis with o fized prior distribution. From historical data, suppose we
knew that the tumor probabilities § among groups of female lab rats of type
F344 follow an approximate beta distribution, with known mean and standard
deviation. The tumor probabilities  vary because of differences in rats and exper-
imental conditions among the experiments. Referring to the expressions for the
mean and variance of the beta distribution (see Appendix A), we could find values
for a, 3 that correspond to the given values for the mean and standard deviation.
Then, assuming a Beta(c, 8) prior distribution for 8 yields a Beta(a+4, 3 +10)
posterior distribution for 8.

Approzimate estimate of the population distribution using the historical
data. Typically, the mean and standard deviation of underlying tumor risks
are not available. Rather, historical data are available on previous experiments
Lo on similar groups of rats. In the rat tumor example, the historical data were in
o fact a set of observations of tumor incidence in 70 groups of rats (Table 5.1). In

the jth historical experiment, let the number of rats with tumors be y; and the

total number of rats be n;. We model the y;’s as independent binomial data, given
sarmple sizes n; and study-specific means 6;. Assuming that the beta prior distri-
bution with parameters (a, 3) is a good description of the population distribution
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Previous experiments:
0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/19 0/19 0/19
0/19 0/18 0/18 0/17 1/20 1/20 1/20 1/20 1/19  1/19
1/18 1/18  2/25 2/24  2/23  2/20 2/20 2/20 2/20  2/20
2/20 1/10  5/49 2/19 5/46  3/27 2/17 7/49 7/47  3/20
3/20 2/13  9/48 10/50 4/20 4/20 4/20 4/20 4/20  4/20
4/20 10/48 4/19 4/19  4/19 5/22 11/46 12/49 5/20 5/20
6/23 5/19  6/22 6/20 6/20 6/20 16/52  15/47 15/46 9/24

Current experiment:
4/14

Table 5.1 Tumor incidence in historical conirol groups and current group of rats,
from Tarone (1982). The table displays the values of y;/n;: (number of rats with
tumors) /(total number of rats).

Pz

0, 62 93 . 970 (971

Y1 Y2 Y3 <o Yo Y

Figure 5.1 Structure of the hierarchical model for the rat tumor ezample.

of the ;s in the historical experiments, we can display the hierarchical model
schematically as in Figure 5.1, with 671 and y71 corresponding to the current
experiment. :

The observed sample mean and standard deviation of the T0 values y;/n; are
0.136 and 0.103. If we set the mean and standard deviation of the population
distribution to these values, we can solve for @ and 8—see (A.3) on page 582 in
Appendix A. The resulting estimate for (a, 8) is (1.4,8.6). This is not a Bayesian
calculation because it is not based on any specified full probability model. We
present a better, fully Bayesian approach to estimating (o, 8) for this example in
Section 5.3. The estimate (1.4, 8.6) is simply a starting point from which we can
explore the idea of estimating the parameters of the population distribution.

Using the simple estimate of the historical population distribution as a prior dis-
tribution for the current experiment yields a Beta(5.4, 18.6) posterior distribution
for 61 the posterior mean is 0.223, and the standard deviation is 0.083. The prior
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information has resulted in a posterior mean substantially lower than the crude
proportion, 4/14 = 0.286, because the weight of experience indicates that the
number of tumors in the current experiment is unusually high.

These analyses require that the current tumor risk, 071, and the 70 historical
tumor risks, 61,...,607, be considered a random sample from a common distri-
bution, an assumption that would be invalidated, for example, if it were known
that the historical experiments were all done in laboratory A but the current
data were gathered in laboratory B, or if time trends were relevant. In practice,
a simple, although arbitrary, way of accounting for differences between the cur-
rent and historical data is to inflate the historical variance. For the beta model,
inflating the historical variance means decreasing (c -+ 3) while holding «/f con-
stant. Other systematic differences, such as a time trend in tumor risks, can be
incorporated in a more extensive model.

Having used the 70 historical experiments to form a prior distribution for
071, we might now like also to use this same prior distribution to obtain
Bayesian inferences for the tumor probabilities in the first 70 experiments,
01,...,070. There are several logical and practical problems with the approach
of directly estimating a prior distribution from existing data:

¢ If we wanted to use the estimated prior distribution for inference about
the first 70 experiments, then the data would be used twice: first, all the
results together are used to estimate the prior distribution, and then each
experiment’s results are used to estimate its 6. This would seem to cause
us to overestimate our precision.

¢ The point estimate for o and 3 seems arbitrary, and using any point esti-
mate for o and 3 necessarily ignores some posterior uncertainty.

e We can also make the opposite point: does it make sense to ‘estimate’ & and
B at all? They are part of the ‘prior’ distribution: should they be known
before the data are gathered, according to the logic of Bayesian inference?

Logic of combining information

Despite these problems, it clearly makes more sense to try to estimate the
population distribution from all the data, and thereby to help estimate each
8;, than to estimate all 71 values f; separately. Consider the following thought
experiment about inference on two of the parameters, 626 and 027, each corre-
sponding to experiments with 2 observed tumors out of 20 rats. Suppose our
prior distribution for both 8,4 and 657 is centered around 0.15; now suppose
that you were told after completing the data analysis that 026 = 0.1 exactly.
This should influence your estimate of fy7; in fact, it would probably make
you think that a7 is lower than you previously believed, since the data for
the two parameters are identical, and the postulated value of 0.1 is lower than
you previously expected for fag from the prior distribution. Thus, A6 and
627 should be dependent in the posterior distribution, and they should not be
analyzed separately.

We retain the advantages of using the data to estimate prior parameters
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and eliminate all of the disadvantages just mentioned by putting a probability
model on the entire set of parameters and experiments and then performing
a Bayesian analysis on the joint distribution of all the model parameters. A
complete Bayesian analysis is described in Section 5.3. The analysis using
the data to estimate the prior parameters, which is sometimes called empir-
ical Bayes, can be viewed as an approximation to the complete hierarchical
Bayesian analysis. We prefer to avoid the term ‘empirical Bayes’ because it
misleadingly suggests that the full Bayesian method, which we discuss here
and use for the rest of the book, is not ‘empirical.’

5.2 Exchangeability and setting up hierarchical models

Generalizing from the example of the previous section, consider a set of experi-
ments j = 1,...,J, in which experiment j has data (vector) y; and parameter
(vector) 6;, with likelihood p(y;|0;). (Throughout this chapter we use the
word ‘experiment’ for convenience, but the methods can apply equally well to
nonexperimental data.) Some of the parameters in different experiments may
overlap; for example, each data vector y; may be a sample of observations
from a normal distribution with mean p; and common variance 0%, in which
case 8; = (uj,0?). In order to create a joint probability model for all the pa-
rameters #, we use the crucial idea of exchangeability introduced in Chapter
1 and used repeatedly since then.

Ezchangeability

If no information—other than the data y—is available to distinguish any of
the §;’s from any of the others, and no ordering or grouping of the parameters
can be made, one must assume symmetry among the parameters in their prior
distribution. This symmetry is represented probabilistically by exchangeabil-
ity; the parameters (61,...,0) are exchangeable in their joint distribution if
p(b1,...,07) is invariant to permutations of the indexes (1,...,J). For exam-
ple, in the rat tumor problem, suppose we have no information to distinguish
the 71 experiments, other than the sample sizes n;, which presumably are not
related to the values of 0;; we therefore use an exchangeable model for the
93"8.

We have already encountered the concept of exchangeability in construct-
ing iid models for unit- or individual-level data. In practice, ignorance implies
exchangeability. Generally, the less we know about a problem, the more confi-
dently we can make claims of exchangeability. (This is not, we hasten to add, a
good reason to limit our knowledge of a problem before embarking on statisti-

cal analysis!) Consider the analogy to a roll of a die: we should initially assign

equal probabilities to all six outcomes, but if we study the measurements of
the die and weigh the die carefully, we might eventually notice imperfections,
which might make us favor one outcome over the others and thus eliminate
the symmetry among the six outcomes.
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The simplest form of an exchangeable distribution has each of the param-
eters 6; as an independent sample from a prior (or population) distribution
governed by some unknown parameter vector ¢; thus,

J
p(61¢) = [T p(6sl¢). (5.1

In general, ¢ is unknown, so our distribution for # must average over our
uncertainty in ¢:

J
20) = [ |T]#(610)| sis)as, 65:2)

This form, the mixture of iid distributions, is usually all that we need to
capture exchangeability in practice.

A related theoretical result, de Finetti’s theorem, to which we alluded in
Section 1.2, states that in the limit as J — oo, any suitably well-behaved
exchangeable distribution on (61,...,0;) can be written in the iid mixture
form (5.2). Formally, de Finetti’s theorem does not hold when J is finite (see
Exercise 5.2). Statistically, the iid mixture model characterizes parameters 4 as
drawn from a common ‘superpopulation’ that is determined by the unknown
hyperparameters, ¢. We are already familiar with exchangeable models for
data, yi,...,Yn, in the form of ‘id’ likelihoods, in which the n observations
are independent and identically distributed, given some parameter vector 4.

Example. Exchangeability and sampling

The following thought experiment illustrates the role of exchangeability in in-
ference from random sampling. For simplicity, we use a nonhierarchical example
with exchangeability at the level of y rather than 6.

We, the authors, have selected eight states out of the United States and recorded
the divorce rate per 1000 population in each state in 1981. Call these Yly- -+, Ys.
What can you, the reader, say about ys, the divorce rate in the eighth state?

Since you have no information to distinguish any of the eight states from the
others, you must model them exchangeably. You might use a beta distribution
for the eight y;’s, a logit normal, or some other prior distribution restricted to the
range [0, 1]. Unless you are familiar with divorce statistics in the United States,
your distribution on (yi1,...,ys) should be fairly vague.

We now randomly sample seven states from these eight and tell you their divorce
rates: 5.8,6.6,7.8,5.6,7.0,7.1,5.4, each in numbers of divorces per 1000 popula-
tion (per year). Based primarily on the data, a reasonable posterior (predictive)
distribution for the remaining value, ys, would probably be centered around 6.5
and have most of its mass between 5.0 and 8.0.

Suppose initially we had given you the further prior information that the eight
states are Mountain states: Arizona, Colorado, Idaho, Montana, Nevada, New
Mexico, Utah, and Wyoming, but selected in a random order; you still are not
told which observed rate corresponds to which state. Now, before the seven data
points were observed, the eight divorce rates should still be modeled exchange-
ably. However, your prior distribution (that is, before seeing the data), for the
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eight numbers should change: it seems reasonable to assume that Utah, with its
large Mormon population, has a much lower divorce rate, and Nevada, with its
liberal divorce laws, has a much higher divorce rate, than the remaining six states.
Perhaps, given your expectation of outliers in the distribution, your prior distri-
bution should have wide tails. Given this extra information (the names of the
eight states), when you see the seven observed values and note that the numbers
are so close together, it might seem a reasonable guess that the missing eighth
state is Nevada or Utah. Therefore its value might be expected to be much lower
or much higher than the seven values observed. This might lead to a bimodal or
trimodal posterior distribution to account for the two plausible scenarios. The
prior distribution on the eight values y; is still exchangeable, however, because
you have no information telling which state corresponds to which index number.
(See Exercise 5.4.)

Finally, we tell you that the state not sampled (corresponding to ys) was Nevada.
Now, even before seeing the seven observed values, you cannot assign an exchange-
able prior distribution to the set of eight divorce rates, since you have information
that distinguishes ys from the other seven numbers, here suspecting it is larger
than any of the others. Once y1, ..., Y7 have been observed, a reasonable poste-
rior distribution for ys plausibly should have most of its mass above the largest
observed rate.

Incidentally, Nevada's divorce rate in 1981 was 13.9 per 1000 population.

Exchangeability when additional information is available on the units

In the previous example, if we knew x;, the divorce rate in state j last year, for
i = 1,...,8, but not which index corresponded to which state, then we would
certainly be able to distinguish the eight values of y;, but the joint prior dis-
tribution p(x;,y;) would be the same for each state. In general, the usual way
to model exchangeability with covariates is through conditional independence:
p(Or,...,05lz1, ... w5) = [[T1]=, P(65]¢, @) p(l2)dg, with & = (21, ..., %)

In this way, exchangeable models become almost universally applicable,
because any information available to distinguish different units should be en-
coded in the z and y variables. For example, consider the probabilities of a
given die landing on each of its six faces, after we have carefully measured the
die and noted its physical imperfections. If we include the imperfections (such
as the area of each face, the bevels of the corners, and so forth) as explanatory
variables z in a realistic physical model, the probabilities 61, ..., 0 should be-
come exchangeable, conditional on . In this example, the six parameters 0;
are constrained to sum to 1 and so cannot be modeled with a mixture of iid
distributions; nonetheless, they can be modeled exchangeably.

In the rat tumor example, we have already noted that the sample sizes n;
are the only available information to distinguish the different experiments. It
does not seem likely that n; would be a useful variable for modeling tumor
rates, but if one were interested, one could create an exchangeable model for
the J pairs (n,v);. A natural first step would be to plot y;/n; vs. nj to see any
obvious relation that could be modeled. For example, perhaps some studies
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j had larger sample sizes n; because the investigators correctly suspected
rarer events; that is, smaller §; and thus smaller expected values of y; /n;. In
fact, the plot of y;/n; versus nj, not shown here, shows no apparent relation
between the two variables.

Objections to exchangeable models

In virtually any statistical application, it is natural to object to exchangeabil-
ity on the grounds that the units actually differ. For example, the 71 rat tumor
experiments were performed at different times, on different rats, and presum-
ably in different laboratories. Such information does mot, however, invalidate
exchangeability. That the experiments differ implies that the 6;’s differ, but
it might be perfectly acceptable to consider them as if drawn from a common
distribution. In fact, with no information available to distinguish them, we
have no logical choice but to model the 8;’s exchangeably. Objecting to ex-
changeability for modeling ignorance is no more reasonable than objecting to
an iid model for samples from a common population, objecting to regression
models in general, or, for that matter, objecting to displaying points in a scat-
terplot without individual labels. As with regression, the valid concern is not
about exchangeability, but about encoding relevant knowledge as explanatory
variables where possible.

The full Bayesian treatment of the hierarchical model

Returning to the problem of inference, the key ‘hierarchical’ part of these
models is that ¢ is not known and thus has its own prior distribution, p(¢).
The appropriate Bayesian posterior distribution is of the vector (¢,0). The
joint prior distribution is

p(,0) = p(¢)p(0]9),

and the joint posterior distribution is

p(¢,0ly) o p(o,0)p(yle,0)
= p(e,Np(yld), (5.3)

with the latter simplification holding because the data distribution, p(yl¢, ),
depends only on 6; the hyperparameters ¢ affect y only through 6. Previously,
we assumed ¢ was known, which is unrealistic; now we include the uncertainty
in ¢ in the model.

The hyperprior distribution

In order to create a joint probability distribution for (¢,), we must assign a
prior distribution to ¢. If little is known about ¢, we can assign a diffuse prior
distribution, but we must be careful when using an improper prior density
to check that the resulting posterior distribution is proper, and we should
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assess whether our conclusions are sensitive to this simplifying assumption. In
most real problems, one should have enough substantive knowledge about the
parameters in ¢ at least to constrain the hyperparameters into a finite region,
if not to assign a substantive hyperprior distribution. As in nonhierarchical
models, it is often practical to start with a simple, relatively noninformative,
prior distribution on ¢ and seek to add more prior information if there remains
too much variation in the posterior distribution.

In the rat tumor example, the hyperparameters are («, 5), which determine
the beta distribution for §. We illustrate one approach to constructing an
appropriate hyperprior distribution in the continuation of that example in
the next section.

COMPUTATION WITH HIERARCHICAL MODELS

Posterior predictive distributions

Hierarchical models are characterized both by hyperparameters, ¢, in our no-
tation, and parameters §. There are two posterior predictive distributions that
might be of interest to the data analyst: (1) the distribution of future observa-
tions ¢ corresponding to an existing 6;, or (2) the distribution of observations
g corresponding to future ¢;’s drawn from the same superpopulation. We label
the future 6;’s as 6. Both kinds of replications can be used to assess model
adequacy, as we discuss in Chapter 6. In the rat tumor example, future obser-
vations can be (1) additional rats from an existing experiment, or (2) results
from a future experiment. In the former case, the posterior predictive draws
i are based on the posterior draws of 8; for the existing experiment. In the
latter case, one must first draw g for the new experiment from the popula-
tion distribution, given the posterior draws of ¢, and then draw § given the
simulated 8.

5.3 Computation with hierarchical models

Our computational strategy for hierarchical models follows the general ap-
proach to multiparameter problems presented in Section 3.8 but is more dif-
ficult in practice because of the large number of parameters that commonly
appear in a hierarchical model. In particular, we cannot generally plot the
contours or display a scatterplot of the simulations from the joint posterior
distribution of (6, ¢). With care, however, we can follow a similar approach
as before, treating # as the vector parameter of interest and ¢ as the vector
of nuisance parameters (though we recognize that both ¢ and 6 will be of
interest in some problems).

In this section, we present an approach that combines analytical and nu-

. merical methods to obtain simulations from the joint posterior distribution,

p(0, ¢ly), for some simple but important hierarchical models in which the
population distribution, p(8|¢), is conjugate to the likelihood, p(y|6). For the
many nonconjugate hierarchical models that arise in practice, more advanced
computational methods, presented in Part III of this book, are necessary. Even




