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SUMMARY 
This paper develops and implements a fully Bayesian approach to meta-analysis, in which uncertainty about 
effects in distinct but comparable studies is represented by an exchangeable prior distribution. Specifically, 
hierarchical normal models are used, along with a parametrization that allows a unified approach to deal 
easily with both clinical trial and case-control study data. Monte Carlo methods are used to obtain posterior 
distributions for parameters of interest, integrating out the unknown parameters of the exchangeable prior 
or ‘random effects’ distribution. The approach is illustrated with two examples, the first involving a data set 
on the effect of beta-blockers after myocardial infarction, and the second based on a classic data set 
comprising 14 case-control studies on the effects of smoking on lung cancer. In both examples, rather 
different conclusions from those previously published are obtained. In particular, it is claimed that widely 
used methods for meta-analysis, which involve complete pooling of ‘0-E values, lead to understatement of 
uncertainty in the estimation of overall or typical effect size. 

1. INTRODUCTION 

Meta-analysis has been defined as the ‘statistical analysis of a collection of analytic results for the 
purpose of integrating the findings’.’ The last five years have seen rapidly increasing interest in 
meta-analysis in the medical research literature, an important early work being the study of Yusuf 
et aL2 When used for estimation rather than for significance testing, the methodology proposed in 
that paper (the ‘Peto method’) leads effectively to a complete pooling of effect-size estimates, 
assuming the target of analysis is a common, constant, ‘true effect’. (This assumption is avoided in 
classical significance testing with the Pet0 method, since sampling distributions are then based on 
the assumption of a null effect throughout, with an explicit alternative hypothesis not required. 
The Bayesian perspective of this paper addresses estimation throughout.) An alternative ap- 
proach, due to DerSimonian and Laird,’ invokes a random effects model, thus allowing for 
variation among the true effects of the different studies. There has been considerable discussion in 
the literature on the relative merits of these two approaches, and on many other less directly 
statistical issues involved in the conduct of meta-ana1y~e.s.~ Berlin et at? conducted an empirical 
comparison of the two methods; their paper is also a good source of references for a number of 
published meta-analyses. 

This paper develops a conceptually new approach to meta-analysis, closely related to the 
random effects methodology of DerSimonian and Laird’ but based on Bayesian principles and 
emphasizing the assessment of uncertainty in meta-analytic conclusions. After introducing two 
archetypal examples from the fields of clinical trials and of case-control studies (Section 2), and 
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then reviewing methods for single-study analysis in each of these contexts (Section 3), I discuss the 
conceptual underpinning of meta-analysis in Section 4, emphasizing the need for clarity in the 
stated aims of any effort to integrate study results. In the following section, the specific framework 
of hierarchical normal models is developed and in Section 6 this is used to provide detailed 
illustrations of the Bayesian approach based on the two examples. 

2. EXAMPLES 

The ideas of the paper will be developed in the context of two specific examples. Not only do the 
two examples illustrate rather divergent meta-analytic conclusions (Section 6), but they span two 
major fields of epidemiological research: case-control studies and clinical trials. 

The first example is taken from Yusuf et a1.’ and is an analysis of 22 long-term clinical trials of 
the prophylactic use of beta-blockers after myocardial infarction. Principal interest lies in the 
comparison of mortality between treated and control groups. The data for analysis are shown in 
the third and fourth columns of Table I, and consist of a standard 2 x 2 table for each trial 
included in the meta-analysis. Mortality varies from 3 per cent to 21 per cent across all the studies, 
most of which show a modest, though not statistically significant, benefit from the use of beta- 
blockers. Yusuf et al.’s analysis concludes that on combining the study results, there is strong 
evidence of a reduction of approximately 20 per cent in mortality due to beta-broker treatment. 

The second example involves a now classic data set in the epidemiological literature. Cornfield5 
analysed a collection of 14 case-control studies that address the question of association between 
smoking and lung cancer. See Table I1 for a summary of the data. The same data have 
subsequently been analysed by Gart6 and  COX.^ Each of these analyses addressed meta-analytic 
issues, that is, the extent to which the effect estimates in the different studies agree with each other 
and, to the extent that homogeneity is plausible, methods for pooling the study results to enable 
an overall estimate of lung cancer risk in smokers compared with non-smokers. 

3. SINGLE-STUDY ANALYSIS 

Each of the examples involves data in the form of several 2 x 2  tables, the simplest type of 
comparative epidemiological data. In the clinical trials, with no subjects in the control group and 
n, in the treatment group, giving rise to xo and x1 deaths in treatment and control groups, 
respectively, the usual sampling model involves two independent binomial distributions with 
risks of death xo and n,, respectively. The target of inference may be one or other of the risk 
difference, x1 - no, the risk ratio (or relative risk), x , / x o ,  or the odds ratio, 

P = El(1  - xo)/no(1 - XI). 
In a similar notation, for the case-control study we suppose that sampling results in n, cases 

and no controls, of whom x1 and xo, respectively, have been exposed to the putative etiologic 
agent in question. Again, the binomial model is assumed, whereby the ‘risk’ of exposure is 7c1 

among cases and x,, among controls. The difference in exposure risks, n1 - no, is of no interest, 
but the odds ratio, p, defined as before, is of interest for well-known reasons related to Bayes’ 
Theorem (see, for example, Greenland and Thomas’ for a thorough review of this area). Because 
of its common interpretability in both prospective and case-control designs, I concentrate in the 
following on inference for the odds ratio, p. or more specifically, the log odds ratio, A = log@). 

Before treating methods for combining study results, I briefly review two methods for 
asymptotic inference in single studies based on crude analysis cp  a 2 x 2 table. In the clinical trials 
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Table I. Results of 22 clinical trials of beta-blockers for reducing mortality after myocardial infarction, from 
Yusuf et al.,' with approximate posterior mean and standard deviation of the log odds ratio, under three 

methods of analysis 

Basic data Effect estimates 
(deathsltotal) Study Crude EB(ML1-r Bayesl 

Study number* Treated Control weight Mean SD Mean SD Mean SD 

1 (5.1) 
2 (5.2) 
3 (5.3) 
4 (5.4) 
5 (5-5) 

7 (5.7) 

9 (5.9) 

12 (5.12) 

6 (5.6) 

8 (5.8) 

10 (5-10) 
11 (5-11) 

13 (5-13) 
14 (5.14) 
15 (5-15) 
16 (2.1) 
17 (2.3) 
18 (2.4) 
19 (2.5) 
20 (4.1) 
21 (4.2) 
22 (4.3) 

3/38 
711 14 
5/69 

10211533 
281355 

4/59 
981945 
601632 
251278 

138119 16 
641873 
451263 
9/29 1 

571858 
251154 
331207 
281251 
81151 
61174 

321209 
27/39 1 
221680 

3/39 
1411 16 
11/93 

12711520 
271365 

6/52 
1521939 
481471 
371282 

18811921 
521583 
471266 
161293 
451883 
311147 
381213 
121122 
61154 
31134 

4012 18 
431364 
391674 

0.1 1 
0.35 
0.27 
2.40 
0.85 
0.18 
2.43 
1.41 
0.9 1 
2.89 
1.49 
1.19 
0.44 
1.42 
0.78 
096 
056 
0.25 
0.16 
0.98 
1.02 
095 

0.03 
- 0.71 
- 0.51 
- 0.24 

0-07 
- 0.57 
- 0.50 
- 0.08 
- 042 
- 0.33 
- 0.22 
- 0.04 
- 0.58 

0.28 
- 032 
- 0.14 

0.14 
0.32 
0-42 

- 0.22 
- 058 
- 0.59 

0.84 
0.46 
053 
0.14 
0.28 
066 
0.14 
0.20 
0.27 
0.12 
0.20 
0.23 
0.4 1 
0.20 
0.30 
026 
0.36 
0.55 
0.68 
0.26 
0.25 
0.26 

- 0.24 0.13 
- 0.28 0.13 
- 0.26 0.13 
- 025 0.10 
- 0-20 012 
- 0.26 013 
- 0.36 0.09 
- 0.21 0.11 
- 0-28 0.12 
- 0.29 0.09 
- 0.24 0.11 
- 0-20 0.12 
- 0.2'1 013 
- 012 0.11 
-0.26 012 
- 0.23 0.12 
- 0.21 0.12 
- 0.22 0.13 
- 0.23 0.13 
-0-24 012 
- 0-31 0.12 
- 030 0.12 

- 023 0.20 
- 0.31 0.19 
- 0.27 0.19 
- 0.25 0.11 
-0.16 0.16 
- 0.27 0.19 
- 0.40 0.12 
- 0.18 0.14 
- 0.29 0.15 
- 0.30 0.10 
- 0.23 0.14 
- 0.17 0.15 
- 0.30 0.18 
- 0.03 0.17 
- 0.27 0.16 
-0.21 016 
- 0.17 0.17 
- 0.18 0.19 
- 020 0.19 
- 0.24 0.15 
- 035 0.16 
- 0.35 0.16 

* In parentheses, number used by Yusuf et dz 
t Conditional posterior mean and SD based on the ML estimate ui = 0.0178. 
$ Estimates based on Monte Carlo simulation using 5000 drawn values. This assures a standard error for the mean of, 
at most, about 0.003, and for the standard deviation of about 1 per cent. 

literature, the approach to meta-analysis proposed by Yusuf et al.' is based on ideas that go back 
to the paper of Mantel and Haenszel.' It corresponds, in a single study, to estimating the log odds 
ratio as 

- 0 - E  
A, = - v '  

where 0 = xl, E = n, (xo + x l ) / N ,  and V = n,no(xo + x l ) ( N  - xo - x l ) / [ N 2 ( N  - I)], and 
approximate normal-based confidence intervals are obtained using the estimated standard error 

A 

vS(As) = V-'".  (2) 
The estimate (1) may be motivated as the first Newton-Raphson step from zero towards the 
maximum likelihood (ML) lo The asymptotic validity of the confidence interval 
depends on the approximate normality of the score statistic in a binomial or hypergeometric 
model under the null hypothesis that A = 0. From a Bayesian point of view, the estimate and 
standard error can be regarded as approximating a posterior mean and standard deviation for the 
parameter A, as long as sample size is large and prior information is relatively weak, and 
assuming that A is reasonably small. 
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Table 11. Results of 14 case-control studies of the association between smoking and lung cancer,'. ' with 
approximate posterior mean and standard deviation of the log odds ratio, under three methods of analysis 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

83/86 
90193 

1291136 
70182 

4 121444 
5971605 

88/93 
1350/1357 

60163 
4591477 
7241728 
49915 18 
45 11490 
2601265 

Basic data Effect estimates 
Study (number of smokersltotal) Study Crude W M L H  Bayesz 
number Cases Controls weight Mean SD Mean SD Mean SD 

72/86 0555 1.683 0.656 1.552 0.378 1.574 0420 
2271270 0.612 1-737 0.610 1.576 0.368 1.597 0.408 
81/100 0851 1.464 0464 1.481 0328 1.474 0.354 

3971522 1.161 0-608 0.329 0.934 0268 0874 0311 
2991430 1.481 1.730 0.211 1.685 0.192 1.694 0197 
6661780 1.058 2.547 0.370 2.101 0.289 2.166 0.352 
1741186 0.702 0.194 0548 0.998 0.353 0.881 0444 

29611357 0.985 2.206 0.401 1.876 0.303 1.934 0345 
1061133 0586 1-628 0.630 1.538 0.372 1.536 0.420 
5341615 1.324 1-353 0.268 1.392 0.232 1.385 0.242 

4621518 1.310 1.158 0.273 1.255 0.235 1.240 0.245 
72912365 1.582 1.448 0.173 1.454 0.162 1.456 0.161 
2591287 0.795 1.727 0.493 1.595 0.337 1.614 0.372 

2461300 - 3.682 0.523 - - - - 

t Conditional posterior mean and SD based on the ML estimate cr; = 0.186 
1 Estimates based on Monte Carlo simulation using 5000 drawn values 

In the case-control context, tradition favours estimates based on empirical logits. Thus we may 
estimate A as 

with approximate standard error'' 
1 +-+-I 1 1 1/2 . 

o,(AJ= -+- " x1 nl - x1 xo no - xo (4) 

Cox' discusses refinements of these estimates that improve the asymptotic normality of the 
sampling distributions involved (in particular, it is often recommended to add 1/2 to each of the 
four counts in the 2 x 2 table), but for practical purposes, where study-specific sample sizes are 
assumed moderately large, such details need not concern us. The estimate (3) should in general be 
preferred to (l), since it is asymptotically unbiased and consistent' for all values of A. 

4. MODELS FOR META-ANALYSIS 

In considering a formal meta-analysis of the type of data introduced above, it is important first to 
reconsider the underlying logic of the inferential process for the single study. This involves a belief, 
at least notionally, in a population from which the study sample was drawn, such that the effects 
of interest (risk, odds ratio, and so on) can be conceptualized as actual population values that 
could theoretically be measured by exhaustive enumeration. The sample provides limited 
information, the uncertainty in associated inferences being gauged by posterior measures of 
variance, as approximated by the standard error formulae above. 

To perform a meta-analysis, we need to consider what it is that we wish to estimate. I approach 
this question within the usual meta-analysis context where we have a collection of (in some sense) 
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comparable studies whose results are to be combined. Many authors have discussed issues 
involved in determining whether studies should be regarded as worthy of inclusion in a formal 
meta-analy~is.~ Given, however, the basic assumption of comparability of the studies, there are 
three conceptual possibilities. The first is that we view the studies as identical repeats of each 
other, in the sense that they may be regarded as samples from the same population, with the same 
outcome measures and so on. The second possibility is that the studies are regarded as 
exchangeable, in other words we view them as each bearing on the same general question, with 
some differences from study to study, but such that the differences are not expected a priori to 
have predictable effects favouring one study over another. The third possibility is that the studies 
each bear on such unrelated questions that the notion of combining their results to estimate some 
common quantity is not reasonable. Clearly, the second possibility in fact represents a continuum 
between the two extremes, and it is this exchangeability model that I propose to pursue as the 
most reasonable for meta-analysis in the context of examples such as those introduced above. 

Using de Finetti's Theorem,' the assumption of exchangeability translates in modelling terms 
to an exchangeable prior distribution for the effects in the different studies. Such a model assumes 
that the effects are independently and identically distributed conditional on the values of certain 
hyperparameters. Notice that this result emerges directly from the judgment of a symmetric or 
exchangeable relationship between the study effects (although the resulting model is formally 
equivalent to a 'random effects' model, which from a non-Bayesian point of view would perhaps 
require a narrower rationale, in terms of random sampling from a population). 

Given this conceptual framework, we may seek to identify the object of estimation in meta- 
analysis. The first target is the location of the effect-size distribution, since this represents the 
overall 'average' effect across all studies that could be regarded as exchangeable with those 
examined. Other possible targets are the effect size in any of the specific studies and the effect size 
in another, comparable (exchangeable) study. As Rubin13 points out, the real aim would in 
general to be to estimate a response surface such that we could predict an effect based on known 
characteristics of a population and its exposure to risk. In assuming exchangeability I have 
discounted the possibility of modelling and hence of estimating such a response surface, but this 
assumption appears close to the common meta-analysis approach, where studies are only 
included on the basis of their assumed comparability. 

Exchangeability gives no guidance, unfortunately, on the form of the joint distribution of the 
study effects. In this paper I provide some illustrative analyses utilizing the convenient assump- 
tion of a normal distribution for the random effects, in conjunction with the approximate normal 
sampling distribution of the study-specific effect estimates given above. Further discussion of 
model assumptions and model checking is given in Sections 6 and 7. 

5. NORMAL-NORMAL ANALYSIS 

Let Di represent generically the point estimate of the effect Ai in the ith study, obtained from either 
(1) or (3), where i = 1, . . . , k. The first stage of a hierarchical normal model assumes that 

Di 1 Ai, ~2 - N(Ai, G?), 

where oi represents the corresponding estimated standard error, from (2) or (4), and is assumed 
known without error in the following. The latter is a common assumption with underfying 
binomial sampling distributions. Our modelling effort concentrates on the Ai because these are 
the parameters of ultimate interest. Attaching a prior distribution to the a: independently of the 
Ai or the underlying binomial parameters is not appropriate because of the functional relation- 
ship between the variance and mean of the binomial. In similar hierarchical normal models where 
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the u: are free to vary independently of the A,, inferences about the means are relatively 
insensitive to assumptions about the variances; but further investigation of the assumption of 
known variances in this context would be important (see further discussion of the normal 
approximation to the binomial likelihood in Section 7). 

At the second stage, an exchangeable normal prior is introduced: 

where pA and af are unknown hyperparameters. 
For Bayesian analysis, the model requires a third stage where a prior distribution is specified 

for p, and of. For practical purposes it seems reasonable to assume a non-informative or locally 
uniform prior for p,, that is, a prior density that is constant over the region where the likelihood 
function has appreciable magnitude (see Box and Tiao14, Section 1.2.5). The rationale is that even 
with quite a small number of studies (say 10) the combined data become relatively informative 
about the location of the effect-size prior distribution (so that prior information would have to be 
quite strong to exert much influence). In the following I also assume a locally uniform prior for of, 
essentially for convenience, although it is easy to modify the analysis to allow a more informative 
prior distribution. 

With the framework of normal sampling distributions (with variances assumed known) and 
exchangeable normal prior, with non-informative prior on its mean, standard results readily yield 
closed form solutions for the posterior distributions of quantities of interest, conditional on the 
variance hyperparameter, of. All of these distributions are normal, since both prior and 
likelihood are normal, and so they are fully characterized by their moments, as given below, 
where the notation D denotes the observed data, D,,  . . . , D,. The outline derivation given here 
follows the simple treatment given by Rubin;" see Berger16 for a general account with many 
further references. 

First, for the overall mean effect, p,, letting jlA = E(pA I D, 03, we have: 

and 

4 var(p,lD,of) =-, c;= 1 W j  

where wj = (1 + (or oL2 in the limiting case where of = 0). These results are not 
difficult to obtain, by writing down the (approximate) normal likelihood and collecting terms 
appropriately. 

For the individual study effect in the ith study, it is simplest to begin with the independent 
normal posteriors for the Ai that arise when we condition on pA as well as o&(These are also used 
in the Monte Carlo computations below.) Because of the conditional independence of the Di)s, the 
posterior mean of A, is a simple weighted combination of D, and p,: 

var(Ai I D, p,, 03 = w,o;. (10) 
The posterior distribution of the Ai conditional only on 02 may then be obtained by mixing the 

independent normals described by (9) and (10) over the posterior for p,, described by (7) and (8). 
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The resulting moments are: 

and 

var(AiID,oa = wit$ + (1 - w ~ ) ~ - - - - - - - .  gi xi”= 1 wj  

Formula (1 1) reflects the familiar shrinkage or regression to the mean of Bayesian estimation. An 
expression similar to the second term in (12) gives the posterior covariance between two study 
effects ’. 

Finally, we consider inference for a ‘predicted effect’, denoted Aj, representing an effect that is 
exchangeable with those that have been studied in the meta-analysis: the effect that ‘would have 
arisen’ in a (k + lyl study. The (conditional) posterior mean of Aj is just PA from (7). The 
corresponding posterior variance is the variance in (8) with the addition of oi, reflecting the well- 
known difference between inference for the mean and prediction of a new value of the Ais. 

A simple empirical Bayes approach’ would proceed by using the formulae above with the 
substitution of a point estimate of o;, typically obtained by maximum likelihood, as in the 
examples below. (Various alternative approaches to the estimation of oi are of course possible; 
see, for example, DerSimonian and Laird.’) Such an approach entails the danger of under- 
estimating uncertainty in resultant inferences since the prior variance can rarely be precisely 
estimated from the data. At the extremes, if 0; is assumed 0, we obtain complete pooling of effect 
estimates, which is essentially the approach adopted by the Pet0 method. On the other hand, as 
ci -, co we reach a model that assumes all effects are unrelated and should best be estimated 
completely independently of each other. These correspond, respectively, to the first and third 
possibilities of the conceptual schema in the previous section. Both may be regarded as ‘fixed 
effects’ approaches in the sense that under the first approach all estimates are pooled to obtain a 
single common estimate (equivalent to a Bayesian model for a common effect with a non- 
informative prior) while under the second approach each effect is estimated by study-specific data 
alone (equivalent to a Bayesian model for k unrelated effects each with non-informative priors). 
Note, however, that the fixed/random distinction is not very meaningful within the Bayesian 
paradigm where all unknowns are represented by probability distributions. 

A fully Bayesian analysis requires integration of each of the conditional posterior distributions 
summarized by (7), (8), (11) and (12) over the posterior distribution of cri. Unfortunately, such 
integrations cannot be performed in closed form. Several options exist for approximate solution, 
both asymptotic and n~mer ica l . ’~- ’~  Here I adopt a Monte Carlo approach similar to that of 
Rubin,” since although it is computationally expensive relative to more efficient quadrature 
schemes, it is very simple to programme and also enables the immediate generation in graphical 
form of approximate posterior distributions for all quantities of interest. (A quadrature scheme 
requires that we choose in advance a limited range of parameters of the posterior distribution, for 
example particular moments and quantiles.) Computational efficiency is not an issue in the 
typical meta-analysis, which is concerned with only a small number of summary statistics, each 
arising from lengthy and costly data collection. 

The approximate posterior density of ~2 (based on the normal distribution assumptions) may 
be written 
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where n(o:) is a prior density for af and L(oi;D) is the likelihood function: 

with appropriate modification at a: = 0. Formula (14) may be obtained by integrating pA out of 
the joint marginal density of D, or by the device of Rubin.I5 

The first step in the Monte Carlo-based analysis used below is to obtain the value of cri with 
maximum posterior density: this may be achieved, for example, by the derivative-free method of 
Brent." Next we obtain suitable lower and upper bounds on the parameter such that the 
posterior density at each extreme is 100 times lower than at the maximum (the lower bound may 
default to zero). The resulting range is discretized, in the present implementation to 100 equal- 
width intervals, and the posterior density approximated by the corresponding discrete distribu- 
tion. The Monte Carlo proceeds by drawing from this distribution (using the alias method"). For 
each drawn value of t~:, a value of pA is drawn from its normal posterior with mean and variance 
given by (7) and (8). For selected individual study effects, posterior sample values are then drawn 
using the conditional mean and variance in (9) and (10). For a new study effect, values are drawn 
similarly from the appropriate normal distribution. The resulting approximate posterior distribu- 
tions may be displayed graphically and summarized as desired by descriptive statistical methods. 

6. EXAMPLES 

6.1. Beta-blocker clinical trials 

In Figure 1 is shown the approximate likelihood function (14) for the parameter a;, based on the 
data in Table I, and using the Pet0 or score-type definition of Di and ai. (In fact, almost identical 
results obtain if the empirical logit definition is used instead.) The likelihood peaks at a non-zero 
value of a:,0.0178, although zero is clearly a plausible value. These studies are in fact relatively 
homogeneous. To assess the adequacy of the normal approximations used in the analysis, a 
weighted normal plotz2 of the estimated random effects, at the maximum likelihood estimate of 
the effect-size variance, was obtained: see Figure 2. Since patient numbers are large in most of the 
studies, thus ensuring a good approximation to normality for the sampling distribution of the 
Di)s, the diagnostic plot is primarily a test for normality of the random effect distribution. There is 
little evidence in the plot of substantial departures from normality, although there is clearly some 
skewness to the left. 

Figure 1 also shows the dependence of the usual point estimate, or posterior mean, and 
posterior standard deviation, of pA (both conditional on a:) on the value of a:, superimposed on 
the likelihood function. The posterior mean of the mean effect size spans a very small range, from 
- 0.26 to just over - 0.24, but the posterior standard deviation changes by a factor of more than 

two across the range of plausible values of 0:. This illustrates a common feature of inferences in 
this situation: posterior variance may be underestimated if effect variation is assumed zero, or 
even if it is assumed adequately described by the maximum likelihood value of the effect variance. 
(The posterior standard deviation of p A  is 0-050 and 0.060, respectively at a: = 0 and 0-0178, while 
upon integration using a uniform prior distribution we find a value of 0.071). 

Table I compares crude, empirical Bayes, and fully Bayesian estimates, with corresponding 
standard deviations, for each study effect. Note that the empirical Bayes estimates are equivalent 
to those that would be obtained by applying the method of DerSimonian and Laird' to the 
logistic difference parameter, rather than to the risk difference. Study weights wj, as defined 
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MEAN 
-0.230 

- - - - - _ _ _ _  - _  - _  
- 0.265 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 
EFFECT VARIANCE 

STDEV 
0.12, 

- - - - - - - - -  _ _ _ _ _ -  
0.04 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 
EFFECT VARRNCE 

Figure 1. (a) Conditional posterior mean (solid line), from (7), of the mean treatment effect, pA, based on 22 beta-blocker 
trials in Table I, against the effect prior variance, u& with the likelihood for u;, from (14), superimposed (dotted line). 
(b) As in (a) replacing the conditional posterior mean with the posterior standard deviation, from (8). n.b. The scale for the 
likelihood function is not shown, but the rescaling used ensures that the horizontal axis represents true zero for this 

function. 

following (8) and using the ML value of o;, but normalized to average to unity, provide a quick 
indication of the precision of the individual study. Since the ML estimate of variance is quite 
small, considerable shrinkage is evident in the empirical Bayes estimates, especially for those 
studies with low internal precision (for example, studies, 1,6, 18). Rather less shrinkage towards 
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Figure 2. Weighted normal plot of empirical Bayes point estimates of effect size for 22 beta-blocker trials in Table I. 

the overall mean is evident in the fully Bayesian estimates, an effect particularly pronounced for 
the strongest negative study, 14. The substantial degree of homogeneity between the studies is 
further reflected in the large reductions in posterior variance obtained upon going from the study- 
specific estimates to the Bayesian ones, which borrow strength from each other. Equally 
importantly, however, the naive empirical Bayes standard deviations are rather too small 
compared to the fully Bayesian ones. 

Interpretation of the fully Bayes means and standard deviations is not straightforward because 
of the skewness in the corresponding posterior distributions. In Figure 3 are shown histograms of 
the simulated posteriors for four of the individual effects, as well as for the overall mean and for a 
predicted effect. Considerable skewness, away from the central value of the overall mean, is 
apparent for each of the individual effects, while the distributions of the overall mean and 
predicted effect show greater symmetry. The weaker studies, 2 and 18, exhibit longer tailed 
posterior distributions than the more precise ones, 7 and 14. 

Table 111 gives a summary of posterior inferences for the overall mean and predicted effect. 
Several features are worth noting. First, an approximate 95 per cent highest posterior density 
interval for pa, when converted to the odds ratio scale gives the interval 0.68 to 0.91, which should 
be compared with the interval 0.70-085, give in Table 10 of Yusuf et a1.’ as a ‘95 per cent 
confidence interval for the true odds reduction [in mortality]’. The latter interval was obtained by 
complete pooling, equivalent to assuming 02 = 0 in the model used here. Thus, from this author’s 
point of view, part of the explanation for the ‘unusually narrow range of uncertainty’ claimed by 
Yusuf et al. seems to be the use of an inappropriate model. 

A related concern is that commonly used analyses tend to place undue emphasis on inference 
for the overall mean effect. Uncertainty about the probable treatment effect in a particular 
population where a study has not been performed (or indeed in a previously studied population 
but with a slightly modified treatment) might be more reasonably represented by inference for a 
new study effect, exchangeable with those for which studies have been performed, rather than for 
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2 -  

Table 111. Summary of empirical Bayes and fully Bayesian inferences for the overall mean, and for the 
predicted effect in a new study, from meta-analysis of the beta-blocker trials in Table I 

~~ ~ ~ ~ ~ ~~ 

EB(ML) Fully Bayes 

Mean SD Mean SD Lower 2f% (OR) Upper 24% (OR) 

Mean, pLa - 0.247 0060 - 0.243 0.071 - 0.382 (0.68) - 0.096 (0.91) 
Predicted effect, Aj  - 0.247 0.132 - 0.245 0203 - 0.653 (0.52) 0.185 (1.20) 

EFFECT 
ESTIMATE 

i . . .  
. .  

- 1  0 1 2 
0 
-2 

NORMAL QUAMILE 

Figure 4. Weighted normal plot of empirical Bayes point estimates of effect size for all 14 lung cancer case-control studies 
in Table 11. 

the overall mean. This is a view also adopted recently by Skene and Wakefield.23 In this case, 
uncertainty is of course much greater (see ‘Predicted effect’ in Table 111; similarly, uncertainty for 
an individual patient would include yet another component of variation). In particular, with the 
above data, there is just over 10 per cent posterior probability that the effect in a new study would 
be negative. 

6.2. Lung cancer casecontrol studies 

Since the case-control study data in Table I1 come from a variety of investigations using differing 
protocols in a range of settings, it is not surprising that the results are less homogeneous than 
those of the randomized beta-blocker trials. Initial application of the hierarchical normal model, 
using the empirical logit definition of the Di)s, revealed a substantial lack of fit especially with 
regard to study number 1 I. This may be seen in Figure 4, which shows the weighted normal plot 
including all 14 studies, at the maximum likelihood estimate 6; = 0.42. 

The best approach in the face of this lack of fit might be to invoke a longer-tailed prior 
distribution than the normal. Further work is required to develop computational strategies for 
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Figure 5. Weighted normal plot of empirical Bayes point estimates of effect size for 13 lung cancer case-control studies in 
Table I1 (study 1 excluded). 

such an approach. Meanwhile, we adopt the more expedient method of omitting the discrepant 
study (a policy that might have more external support given particular knowledge of character- 
istics of the studies). In Figure 5, the weighted normal plot omitting study 11 and using the new 
ML estimate of 3:, 0-186, suggests a substantially improved model fit. It should be noted that 
under the Bayesian or random effects approach, there is little ground for excluding more than the 
one study from the meta-analysis, in contrast with Cox,’ who suggests excluding three studies 
(6, 8, 1 l), and C~rnfield,~ four studies (4, 6, 7, 11). 

Continuing the analysis in the same fashion as for the previous example, we see in Figure 6 a 
more dispersed approximate likelihood (or posterior density) function. The value 0 for D: would 
not be regarded as plausible, unless there were strong prior evidence to overrule that provided by 
the data. As usual (Figure 6(a)), the posterior mean for the mean effect size is insensitive to the 
unknown scale parameter, but the standard deviation varies substantially. Because of the greater 
heterogeneity when compared with the previous example, the empirical and fully Bayesian 
estimates in Table I1 are shrunk less towards the overall mean (1-50), and there is correspondingly 
less scope for the fully Bayesian analysis to show substantially different results from the naive 
analysis. As we should expect, conclusions in those studies with more extreme results (for 
example, study 6) and/or low internal precision (for example, study 7) are affected most by the 
Bayesian analysis. Table IV gives summary estimates for the lung cancer meta-analysis (based on 
13 studies) along the same lines as in Table I11 for the beta-blocker trials. 

7. DISCUSSION 

This article has applied a Bayesian framework to the problem of meta-analysis, with the purpose 
both of clarifying the inferential aim of meta-analytic studies and of describing and implementing 
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Figure 6. (a) Conditional posterior mean (solid line), from (7), of the mean treatment effect, pd, based on 13 case-control 
studies in Table I1 (study 11 excluded), against the effect prior variance, ui, with the likelihood for ui, from (14), 
superimposed (dotted line) (b) As in (a) replacing the conditional posterior mean with the posterior standard deviation, 
from (8). n.b. The scale for the likelihood function is not shown, but the rescaling used ensures that the horizontal axis 

represents true zero for this function 

some appropriate computational tools. The analysis presented retains the usual assumption that 
studies to be combined are comparable, but this is held to translate naturally into an assumption 
of an exchangeable prior distribution for effects in different studies. It seems impossible, from the 
Bayesian point of view, to accept the notion that the effects being estimated in distinct studies are 
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Table IV. Summary of empirical Bayes and fully Bayesian inferences for the overall mean, and for the 
predicted effect in a new study, from meta-analysis of the lung cancer studies in Table I1 

~~ ~ 

EB(ML) Fully Bayes 

Mean SD Mean SD Lower 24% (OR) Upper 2t% (OR) 

Mean, PA 1.495 0.162 1.493 0.194 1.11 (3.02) 1-88 (653) 
Predicted effect, A, 1.495 0461 1.489 0617 0.25 (1.28) 2.74 (15.61) 

identical quantities, an assumption that appears implicit in the Pet0 method’ for meta-analysis, 
except when the latter is viewed as strictly a classical significance testing tool. The approach 
proposed has clear similarities to the random effects method of DerSimonian and Laird,’ but it 
extends their method in allowing for a full accounting of uncertainty involved in estimating 
hyperparameters such as the (prior) variance of the effects. The examples illustrate that the 
Bayesian analysis may produce different conclusions, certainly in terms of the width of confidence 
intervals and even in some of the point estimates. 

The methods described are based on the assumption of a hierarchical normal model, with 
either the empirical log odds ratio, or a score statistic-type estimate, used as the basic observation 
in each study. It is supposed that the sampling variance of each observation can be assumed 
known. The assumption of normally distributed observed values with known variance is likely to 
be reasonable in most situations, as long as the studies are large and observed counts are not too 
small. This approach ignores details associated with estimation of the usual nuisance parameter 
in the two-binomial model. A fully conjugate exact binomial approach, based on beta prior 
distributions, is possible (see, for example, Marshall,24 who discusses the analysis of a single 
table), but where primary interest resides in the treatment effects, independent (beta) prior 
distributions for the two proportions involved in each study may not be appropriate. In fact it 
seems likely that little is lost in the present approach, where the nuisance parameters are ignored. 
Further study of this question should not be difficult in the present context of rapid advances in 
computational methods for Bayesian analysis: in particular, see Skene and Wakefield,’3 who 
discuss the same binomial-normal model as used here. 

The validity of an assumption of a normal prior distribution for the true effects is more difficult 
to assess. In the examples, the use of a weighted normal plot for model checking was illustrated, 
but it is likely that alternative prior specifications would be difficult to distinguish on the basis of 
the data. A study of the sensitivity of conclusions to the choice of prior would be important. This 
study has concentrated on demonstrating the sensitivity of results to more basic aspects of the 
prior: whether or not its variance is zero and (if not) whether or not the variance can be precisely 
estimated from the data. The normal-normal analysis has the advantage of being relatively 
tractable. It would be possible to apply a similar analysis to the risk difference parameter, 
preferred by DerSimonian and Laird over the log odds ratio or logistic difference used here. The 
latter is preferred here because of its applicability to case-control studies as well as prospective 
designs; moreover, the assumption of a normal sampling distribution is more easily satisfied for 
estimators of the log odds ratio than for the risk difference. 

The analysis presented utilized Monte Carlo computational methods for obtaining posterior 
distributions of quantities of interest. This approach to computation is attractive in its flexibility 
(in particular, the ability to produce full posterior distributions for many parameters simul- 
taneously) and ease of programming, but for more extensive routine use it may be worth 
implementing more efficient algorithms. 
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