sues Blocker: random effects meta-analysis of

clinical trials

Carlin (1992) considers a Bayesian approach to meta-analysis, and includes the following examples of 22 trials
of beta-blockers to prevent mortality after myocardial infarction.

Study Mortality: deaths / total
Treated Control
1 3/38 3/39
2 71114 14/116
3 5/69 11/93 Lot
4 102/1533 127/1520
20 321209 40/218
21 27/391 43/364
22 22/680 39/674

In a random effects meta-analysis we assume the true effect (on alog-odds scale) § in a trial j is drawn from
some population distribution.Let rCi denote number of events in the control group in trial i, and
rT; denote events under active treatment in trial /. Our model is:

1 ~ Binomial(pC, nC)
r; ~ Binomial(pT, nT)
logit(p%) = p

logit(pT) = +§;

d; ~ Normal(d, 1)

"Noninformative" priors are given for the Hj's and d; two alternative "noninformative” priors are considered for the

random effects variance: prior 1 uses a Gamma(0.001, 0.001) prior on the precision T, while prior 2 assumes a
proper uniform prior on the standard deviation &. The graph for this model (with prior 2) on is shown below. We
want to make inferences about the population effect d, and the predictive distribution for the effect Opew iNa
new trial. Empirical Bayes methods estimate d and T by maximum likelihood and use these estimates to form
the predictive distribution P(8y,ey | Ahats That )- Full Bayes allows for the uncertainty concerning d and T.

Graphical model for blocker example (with prior 2):
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BUGS language for blocker example:

model
{
for(iin1:Num){
rcfi] ~ dbin(pcfi], ncli])
rt[i] ~ dbin(pt[i], nt[i])
logit(pc[i]) <- mu[i]
logit(pt[i]) <- mufi] + delta]i]
mu[i] ~ dnorm(0.0,1.0E-5)
delta[i] ~ dnorm(d, tau)
}
d ~ dnorm(0.0,1.0E-6)
# Choice of priors for random effects variance
#tau ~ dgamma(0.001,0.001)
#sigma <- 1 / sqrt(tau)
tau<-1/(sigma*sigma)
sigma~dunif(0,10)
delta.new ~ dnorm(d, tau)

Data =

list(rt =c(3, 7, 5, 102, 28, 4, 98, 60, 25, 138, 64, 45, 9, 57, 25, 33, 28, 8, 6, 32, 27, 22),
nt=c(38, 114, 69, 1533, 355, 59, 945, 632, 278,1916, 873, 263, 291, 858, 154, 207, 251, 151, 174, 209, 391, 680),
rc=c(3, 14, 11, 127, 27, 6, 152, 48, 37, 188, 52, 47, 16, 45, 31, 38, 12, 6, 3, 40, 43, 39),
nc =c(39, 116, 93, 1520, 365, 52, 939, 471, 282, 1921, 583, 266, 293, 883, 147, 213, 122, 154, 134, 218, 364, 674),
Num = 22)<&




2 /9
Inits2 =

list(d = 0, deita.new = 0, sigma=1, mu=¢(0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0),
delta=¢(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0)) <=

Inits =

fist(d =0, delta.new =0, tau=1, mu=¢(0, 0,0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0),
delta =¢(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) <=

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates using the gamma
prior on T

| node mean sd MC error | 2.5% gmedian 97.5% | start sample
d -0.2489 | 0.06282 | 0.002297 | -0.3734 | -0.248 -0.1239 | 1001 10000
delta.new -0.2496 | 0.1578 0.002582 | -0.5773 | -0.2514 | 0.07974 | 1001 .+k0000
siama 0.1243 0.06834 | 0.002835 | 0.02878 | 0.1142 0.2796 1001 10000

¢

Our estimates are lower and with tighter precision - in fact similar to the values obtained by Carlin for the
empirical Bayes estimator. The discrepancy appears to be due to Carlin's use of a uniform prior for o2 in his
analysis, which will lead to increased posterior mean and standard deviation for d, as compared to our use of a
gamma(0.001, 0.001) prior on the precision which is approximately equivalent to assuming p(csz) ~1/c? (see
his Figure 1).

If we use a uniform prior on &, the estimate of ¢ is slightly increased but there is little influence on the overall
conclusions.

node mean sd MC error 2.5% median 97.5% start sample
d -0.2484 0.06517 0.002568 -0.3699 -0.2493 -0.1161 1001 10000
delta.new -0.2489 0.1692 0.002666 -0.5963 -0.2532 0.1073 1001 10000
sigma 0.1334 0.07934 0.00502 0.009759 0.1263 0.305 1001 10000

In some circumstances it might be reasonable to assume that the population distribution has heavier tails, for
example a t distribution with low degrees of freedom. This is easily accomplished in BUGS by using the dt

distribution function instead of dnorm for & and 8, -





