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Summary. Asbestos exposure is a well-known risk factor for various lung diseases, and when they occur, workmen’s compen-
sation boards need to make decisions concerning the probability the cause is work related. In the absence of a definitive work
history, measures of short and long asbestos fibers as well as counts of asbestos bodies in the lung can be used as diagnostic
tests for asbestos exposure. Typically, data from one or more lung samples are available to estimate the probability of asbestos
exposure, often by comparing the values with those from a reference nonexposed population. As there is no gold standard
measure, we explore a variety of latent class models that take into account the mixed discrete/continuous nature of the data,
that each subject may provide data from more than one lung sample, and that the within-subject results across different
samples may be correlated. Our methods can be useful to compensation boards in providing individual level probabilities of
exposure based on available data, to researchers who are studying the test properties for the various measures used in this
area, and more generally, to other test situations with similar data structure.

Key words: Asbestos exposure; Bayesian analysis; Diagnostic test; Hierarchical model; Latent class model; ROC curve;
Sensitivity; Specificity.

1. Introduction
Occupational asbestos exposure is a well-recognized risk fac-
tor for the development of serious lung diseases including ma-
lignant mesothelioma. Reaching a conclusive decision on the
association between asbestos exposure and lung diseases for
the purpose of occupation related compensation is a process
that may become arduous when a reliable work history is
unavailable. Nevertheless, a decision must be made, and the
impacts of such decisions can be substantial, affecting the fi-
nancial welfare of families.

When limited information is available concerning the like-
lihood of asbestos exposure, compensating agencies rely on
lung fiber counting and analysis as an exposure assessment
tool. This practice is supported by a number of studies which
have related lung fiber burden to asbestos exposure (Gylseth
et al., 1981; Mowé et al., 1985; Dufresne et al., 1996). Sev-
eral benchmarks of lung fiber retention have been proposed.
For example, a lung fiber concentration of more than one
million per gram of dried lung tissue is thought to be in-
dicative of occupational exposure to asbestos (Gylseth et al.,
1981).

Short asbestos lung fibers are less than 5 micrometers (μm)
in length, whereas long fibers are greater than or equal to 5 μm

in length. Long fibers are better predictors of diseases such
as mesothelioma compared to short fibers, but short fibers
are usually found in greater numbers. Although the associ-
ation between short fibers and disease is less strong, short
fibers may also expose an occupational history, as, like long
fibers, they are found in higher concentrations in exposed in-
dividuals compared to a reference population. Asbestos bod-
ies are asbestos fibers that have been coated with ferritin by
macrophages.

Although data on all three types of lung fibers can provide
useful information regarding the likelihood of occupational as-
bestos exposure, the numbers of short or long lung fibers or
asbestos bodies counted can vary substantially between tis-
sue samples both within and between individuals. This is an
important concern for inferences about exposure because de-
cisions based on lung fiber analysis based on a single block
of lung tissue may lead to misclassification of a truly exposed
or unexposed individual. In the past, evaluation boards re-
lied on the analysis of only a single block of lung tissue in
classifying occupational asbestos exposures. In recent years,
however, it has become more common to examine three or
four blocks of lung tissue to decrease the probability of expo-
sure misclassification.

C© 2009, The International Biometric Society 603



604 Biometrics, June 2010

Whether using one or more tissue blocks, very little has
been published about the properties of lung fiber counts as
diagnostic tests for asbestos exposure history. Here we develop
Bayesian latent class models to evaluate and compare the test
properties of asbestos exposure classification from all three
types of fiber counts discussed above. We consider each fiber
type used singly, as well as when information from all three
types of data are used in combination. We compare the test
properties when only a single block of lung tissue is analyzed
relative to when data from two to four blocks of lung tissue
are available per subject. The problem is rendered especially
difficult because, in the absence of a strong work exposure
history, there is no gold standard method by which to classify
each subject into truly exposed versus truly nonexposed cat-
egories. An additional complication is that the data provided
by the three types of fiber counts do not follow standard dis-
tributions, in large part because there is always a value below
which tests are not sensitive, leaving a mass of probability
at that value. Further, the data within the different types
of fiber counts may be correlated within individuals, indicat-
ing lack of conditional independence between blocks within
each of these three tests. Although past literature has been
divided about the importance of accounting for such depen-
dence among diagnostic tests (Dendukuri and Joseph, 2001;
Gustafson, 2005), we derive inferences from dependent as well
as independent models, and compare results. Our model thus
accommodates all important features of the data, and sum-
marizes the inferences in several useful ways. In addition to
standard diagnostic testing properties, such as sensitivity and
specificity leading to receiver operating characteristic (ROC)
curves, we provide methods for calculating the individual level
probabilities of exposure given the test values on one or more
tests and using data from one or more tissue blocks.

Bayesian latent class models for dichotomous diagnostic
data arising from laboratory tests in the absence of a gold
standard have been discussed by many, including Gastwirth,
Johnson, and Reneau (1991); Joseph, Gyorkos, and Coupal
(1995); Demissie et al. (1998); Johnson, Gastwirth, and Pear-
son (2001); and Gustafson (2005). Similar models for continu-
ous data and ROC curves have been investigated by Zou and
O’Malley (2005), although they assumed availability of a gold
standard test result for each patient. Scott et al. (2008)consid-
ered normally distributed diagnostic test data in the absence
of a gold standard, but considered only a single continuous
test result from each subject, and did not account for the
possibility of discrete probability masses in the test result
distribution. Choi, Johnson, and Thurmond (2006)estimated
disease prevalence and predictive probabilities for individual
level continuous test results in the absence of a gold standard,
but only considered results from a single test, and assumed
the availability of a training sample of known positive and
negative test results to estimate the distributions of truly dis-
ease positive and truly disease negative subjects. Erkanli et al.
(2006) proposed a nonparametric analysis using mixtures of
Dirichlet processes to model distributions within diseased and
nondiseased subjects, leading to nonparametric ROC curve
estimation, but again assumed a gold standard test. Because
it is often the case in practice that results are available on
more than one test per subject, including both repeated mea-
sures of the same test and results from different tests, the

models developed extend the methodology available to date
in important directions.

Section 2 describes the study setting, whereas Section 3
presents our models, discusses estimation of the test proper-
ties, and calculation of the probability of asbestos exposure.
The results of applying our models to our fiber count data are
in Section 4, and we conclude with a discussion.

2. Study Setting and the Source of Data
Occupational exposure to asbestos typically involves a mix-
ture of mineral fibers of amphibole (banned since the early
1980s) or serpentine origin. Between 1996 and 2000, lung fiber
retention analyses were conducted for 78 Quebec workers who
had died of lung diseases potentially caused by occupational
asbestos exposure. As previously described (Dufresne et al.,
1996), lung retention data for the numbers of long and short
fibers and asbestos bodies per milligram of dry lung tissue
were collected. Seventy-five of these cases were men, and in
total, 35 workers had three and 43 workers had four blocks
of lung tissue examined. We also were able to obtain data
on a limited number (N = 41) of controls. These data were
from lung tissue of either accidental death or death caused by
acute myocardial infarction in men autopsied between 1990
and 1992. These results will help estimate distributional pa-
rameters for our tests for nonexposed individuals.

3. Statistical Methods
Examining the available data for our three types of fiber
counts revealed clear patterns. For short fibers, data ranged
from 35 fibers per milligram (f/mg) to over 164,000 f/mg.
The smallest values among our data set of controls was
70 f/mg, but in the data set of possible cases the lower limit
was 35 f/mg, the next lowest value being over 100 f/mg. In
each case, the lower limits (i.e., 35 or 70 f/mg) were reported
for many subjects, making it clear that this was the minimum
possible value. We therefore modeled these lowest values as
a probability mass, and considered a lump sum probability
as representing all values ≤70 f/mg. Once these lowest values
were removed, a histogram of the logarithms of the remaining
values looked approximately normal, both within the data sets
of controls and among possible cases, the latter being simi-
lar to a binormal mixture of cases and controls. Near identical
patterns were seen for long fibers, where the data ranged from
70 f/mg to almost 80,000 f/mg. Using a lowest cutoff value
of 70 f/mg and taking logarithms again revealed approximate
normality. For asbestos bodies, the lower cutoff limit was 40
bodies per gram (b/g), and the range of data was 40 b/g to
almost 83,000 b/g.

All of our models assume that none of our tests provide per-
fectly accurate results, i.e., that no test is a gold standard for
asbestos exposure. Our basic Bayesian latent class model con-
sisted of a latent indicator of exposure status, and, conditional
on this latent variable, the logarithms of the fiber count data
were assumed to follow normal distributions with additional
point masses representing all values equal to or below the
relevant minimum possible value. Conditional on the latent
exposure status, we first assumed that the counts from each
type of fiber were independent from each other both within
and between individuals. In a second similar model, we al-
low for within-individual correlations across tissue blocks for
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each test. We also fit a hierarchical model that assumed con-
ditional independence both between and within subjects, but
only after further conditioning on a distinct mean value for
each fiber type within each subject, these means assumed to
be drawn from a common distribution between subjects. This
model is a Bayesian version of a random effects model. We
now provide the details of our models, starting with a model
for each test used singly, and then show how the model can
be extended when more than one type of fiber count is used,
and/or there are several repeated values from eachsubject.

3.1 One Mixed Discrete/Continuous Diagnostic Test
Let θ be the true asbestos exposure rate in the population
of interest. Let Zi represent the latent true exposure history
for individual i, i = 1, 2, . . . , n. That is, Zi = 1 if individ-
ual i was truly exposed to asbestos, and Zi = 0 otherwise.
Let X i , i = 1, 2, . . . , n represent the logarithms of the fiber
counts across the n individuals in the study, and let C repre-
sent the cutoff value representing the minimum value for the
test. For the remaining values above this cutoff, let μE and
σE represent the mean and standard deviation (SD) of the
fiber count distribution conditional on a positive true (latent)
asbestos exposure status, and let μNE and σNE represent the
same quantities among the truly not asbestos exposed. Fi-
nally, let pE and pNE denote the probabilities of obtaining
the minimum possible value in the exposed and nonexposed
groups, respectively.

Let X∼ and Z∼ be vectors of fiber counts and latent exposure
history on n subjects, respectively. Assuming for the moment

that just a single observation is available per subject, the
likelihood function of the data X∼ and augmented data Z∼ for
a model using results from any one fiber test is

f
(
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)
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where I{·} is the indicator function.
The estimation problem is similar to that of fitting a nor-

mal mixture model, with the extra complication of the point

masses, which adds two parameters to be estimated, pE and
pNE . We will use Bayesian methods, and thus require prior
distributions over the parameter space (θ, μE , σ2

E , μNE , σ2
NE ,

pE , pNE ). We will use beta prior distributions for θ, pE and
pNE , which includes the beta(1,1) or uniform distribution as a
special case, useful when little prior information will be incor-
porated into the analysis. Normal prior distributions are used
for μE and μNE , and uniform distributions over a suitably cho-
sen finite range for σE and σNE . As there is no closed form
solution for the posterior distributions, we will use the Gibbs
sampler as implemented in WinBUGS version 1.4.1 (Lunn
et al., 2000). We used 5000 iterations for burn-in and ran a
further 20,000 iterations for use in inferences. Convergence of
the Gibbs sampler algorithm was assessed by examining his-
tory plots across all iterations and by running the sampler
several times from different starting values.

Of course, once all of the above parameters are estimated,
one can estimate any function of these parameters, includ-
ing the sensitivity and specificity of the fiber count test for
any given cutpoint for positivity, which in turn leads to ROC
curves (Hanley, 1996), although these ROC curves are not
quite of the usual form because of the point masses. ROC
curves plot the false positive rate (1 − specificity) versus the
true positive rate (sensitivity) across the range of possible
cutoff values for the test. In addition, it is of great clinical
importance to know the probability of being exposed given
any fiber count value, xi . Once (θ, μE , σ2

E , μNE , σ2
NE , pE , pNE )

have been estimated, the posterior probabilities P (exposed |
xi , θ, μE , σ2

E , μNE , σ2
NE , pE , pNE ) are obtainable via the

formula
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when xi > C , and P (exposed |xi , θ, μE , σ2
E , μN E , σ2

N E , pE ,
pN E ) = pE θ

pE θ+pN E (1−θ ) when xi ≤ C . These formulae arise from
the probability of obtaining the given fiber count value con-
ditional on true exposure status, using the prevalence as a
prior probability of being exposed, and converting these to
probabilities of being truly exposed through Bayes’ theorem.

To obtain unconditional posterior probabilities of exposure,
P (exposed | xi ), one integrates over the posterior densities
of all unknown parameters. This is easily accomplished by
averaging P (exposed | xi , θ, μE , σ2

E , μNE , σ2
NE , pE , pNE ) over

iterations in the Gibbs sampler.

3.2 More than One Diagnostic Test
Similar methods apply when there is more than one form of
fiber counts used in the analysis. For example, where data
from all three tests (long and short fibers and asbestos bod-
ies) are available, the likelihood function of the data and aug-
mented data (1) extends to

f (X∼1
, X∼2

, X∼3
, Z∼|Θ)

=
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and j indicates the j th test, j = 1, 2, 3. This model assumes
conditional independence of results across three tests within
each individual. Conditional independence is a much weaker
condition compared to unconditional independence, in that
results are assumed independent conditional on the (latent)
true disease state for each individual. In Section 3.3 below,
we describe two different models that account for correlations
between repeated measurements of the same test within in-
dividuals, but we chose not to also account for any possi-
ble correlations between different tests, for two reasons: First,
correlations between different tests seemed much lower than
those within the same test within each individual. Second, to
account for both types of correlations within the same model
requires inverting a nine by nine (or larger) matrix, where
each entry of the matrix is a very complex function of param-
eters of the model. Thus, the model becomes very unwieldy,
making it difficult to estimate parameters, even using Monte
Carlo techniques.

Although there are now many more parameters, the forms
of the prior distributions can be chosen to be identical to the
case of a single test. Of course, similar models can be created
when any two tests are used rather than all three tests.

3.3 More than One Measurement Per Test for Each Individual
The above models assume just a single observation from each
of the three tests is analyzed from each individual. Assuming
independence of the observations both between and within in-
dividuals, conditional on the latent true state for each subject
and given the values for all unknown parameters relating to
the normal distributions and probabilities of values below the
cutoffs, within subject observations for repeated observations
on a single test can easily be accommodated. The likelihood
function given in equation (2) can be used, the only addition
being a further product term over the numbers of observations
from each subject.

In our data set, some subjects had three observations for
each fiber count type (i.e., three different tissue samples were
taken), whereas others had four. As discussed in the introduc-
tion, it is of great interest to compensation boards to compare
test properties as larger numbers of tissue samples are taken.
In Section 4, we report on the evolving probabilities of expo-
sure as more tissue samples are available to be analyzed.

All of the models discussed so far assume that the data
across different blocks within each subject are conditionally
independent. That is, given the true exposure status, there is
no information about the results from one block given the re-
sults of the other blocks. However, this assumption likely does

not hold for these data, as we found within subject across-
block correlations above 0.3 within all three types of fiber
counts. These approximate correlations were calculated after
dividing the subjects into exposure classes “by eye,” except
for the 41 subjects who were a priori known to be nonexposed.

Some have argued that correlations may not always have a
strong effect on final inferences (Dendukuri and Joseph, 2001;
Gustafson, 2005), and sometimes a simpler model not includ-
ing correlations may perform better. To investigate this issue,
we created two distinct models that explicitly accommodate
such correlations, and compared inferences from these mod-
els to those assuming independence. One model added specific
correlation parameters within a multivariate normal distribu-
tion, whereas the other model handled correlations implic-
itly, via addition of a hierarchical component. As discussed
in the next section, results were very similar between the two
types of models accommodating correlations, but there were
substantial differences between correlated and noncorrelated
inferences. Given the observed correlations, the multivariate
normal and hierarchical models are more plausible. Therefore,
although we report results from both independent and corre-
lated models, those from the independent models are included
mostly for comparison purposes. Given the large number of
different models run, and because results from our multivari-
ate normal and hierarchical models are so similar, in Section 4
we present detailed results only from the hierarchical model.

The likelihood function for our correlated model using data
from each of the three tests is similar to that given by equa-
tion (1) of Section 3.1, modified by considering m observations
per subject from the test via an m-dimensional multivariate
normal distribution, with a distinct correlation parameter for
each test. Within each test, however, we assumed the same
correlation parameter between each pair of measures, because
these represent different samples from the same lung. Thus,
the multivariate normal distribution used a single mean pa-
rameter across blocks, with variance-covariance matrix hav-
ing just a single covariance parameter for all off-diagonal el-
ements (compound symmetry). For the ith subject, and for
data across blocks j, j = 1, . . . , m, and test k we have

xi.k ∼ MV N

⎛
⎝μk

⎛
⎝ 1

...
1

⎞
⎠

m ×1

, Σk

⎞
⎠ ,

where the “.” represents j = 1, . . . , m, and where Σk is an
m × m variance-covariance matrix with σ2

k on the diagonal
entries, and all off diagonal entries equal to ρk σ2

k , where ρk is
the between-block correlation parameter for test k.

In our hierarchical model, all observations, both within and
between subjects were again considered as independent, but
conditioned on distinct individual level mean parameters for
the logarithms of each type of fiber count. These parameters,
in turn, are tied together through a hierarchical normal dis-
tribution across individuals for each fiber type. This allows
for the correlations that occur within individuals if only a
single overall mean is used. Therefore, at the first level of
our hierarchical model, the test results within each block for
each test type are considered as independently normally dis-
tributed, but now each subject has their own unique mean
value within each test. In turn, at the second level of the
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hierarchical model, the mean values belonging to each sub-
ject within each test type are assumed to follow a normal
distribution, with common mean and variance across all sub-
jects. Thus, we have xijk ∼ N (μik , σ2

k ,within), and μik ∼ N (μk ,
σ2

k ,between), where σ2
k ,within is the within-subject variance across

blocks and σ2
k ,between is the between-subject variance.

In Section 4, we compare results from a wide variety of
models, including those that use data from only one test at
a time, and then from models that accommodate all three
tests together. When more than one tissue block per sub-
ject is considered, we discuss models with both independent
and correlated observations, the correlations modeled either
through a multivariate normal model, or through a hierarchi-
cal structure. In addition, we compare results using m = 1,
2, 3, or 4 tissue samples per subject.

3.4 Prior Distributions
The prior distributions we used were roughly flat over the
range of plausible values for each parameter. Throughout all
models, we used uniform prior distributions on the range [0,
1] for the prevalence of asbestos exposure, equivalent to a
beta(1,1) density. For the means of the three types of as-
bestos fiber counts on the log scale, we used independent
normal prior distributions. For long fibers, we used N(5,1)
and N(8,1) prior distributions for the unexposed and exposed
populations, respectively. Similarly, for both short fibers and
asbestos bodies, we used N(6,1) and N(8,1) distributions for
the unexposed and exposed log means, respectively. Although
these distributions help to focus the normal curves for the
observed data within a reasonable range, avoiding possible
convergence problems when using the Gibbs sampler, they
are low in information on the log scale. For example, 95%
of the range for a N(8,1) distribution is approximately 400 to
22,000 f/mg when transformed back on the original scale, and
the mean must be well within this range. Again on the log
scale, we used uniform distributions on the range [0, 2] and
[0, 6] for the SDs of long fibers in the unexposed and exposed
populations, respectively, and similar uniform densities were
used for both short fibers and asbestos bodies, with ranges [0,
2] and [0, 3] for unexposed and exposed groups, respectively.
We also used uniform prior distributions over the range [0,
1] for the probabilities of being at the lowest possible value.
In the correlated models, we used uniform prior distributions
for the correlation parameters between all observations on the
range [0, 0.95]. Correlations higher than 0.95 were not only
implausible, but sometimes created convergence problems in
running the Gibbs sampler, and so were eliminated a priori.

For our hierarchical models, we used normal prior distri-
butions to represent the fiber count means across individuals.
Again on a log scale, for short fibers and asbestos bodies, we
used N(6, 1) and N(8,1) distributions within the nonexposed
and exposed groups, whereas we used N(5, 1) and N(8,1) dis-
tributions for nonexposed and exposed means for long fibers.
For within- and between-subject SDs for all three tests, we
used uniform prior distributions covering the range [0.1, 3]
and [0.01, 3], respectively. Lower SDs were not only implau-
sible, but again occasionally caused convergence problems.

Although we did not always use the familiar flat prior distri-
butions over a very wide range, our choice of prior parameter

values are very low in information compared to the informa-
tion in our data set. Varying the prior distributions produced
no noticeable changes in results, so we do not report further
on these robustness checks here.

4. Results
4.1 Descriptive Statistics and Fiber Count Distributions
The data collected included 78 persons with unknown as-
bestos exposure status that are to be classified, and 41 control
subjects assumed to be asbestos free. Although the control
subjects each contributed one block of tissue, among the 78
possible cases, 35 contributed three tissue blocks, whereas 43
contributed four blocks. The mean age was 64.5 years, with
SD equal to 11.2 years. There were over 25 different primary
diagnoses, the most common being adenocarcinoma (21 cases
or 27%) and epidermoid (20 cases or 26%).

In order to appreciate the contributions from increasing
amounts of data, we compare results from the situation with
the least data, that is, a single observation from a single test,
to cases with increasing amounts of data, up to results using
three tests with four observations per subject per test. We
refrain from discussing the prevalence of exposure, because
with our specially selected sample, this parameter has little
clinical meaning. Rather, we first draw inferences about distri-
butions of test results in exposed and unexposed populations,
and then closely examine how the test properties (sensitiv-
ity and specificity at various test cutpoints leading to ROC
curves) and individual probabilities of exposure change using
different tests and changing numbers of samples taken from
each subject for each test.

Table 1 contains fiber count distributional results from our
hierarchical latent class model including all of the data (i.e.,
three or four samples for subjects having more than one ob-
servation). For long fibers, there is a clear separation of the
distributions in exposed versus unexposed subjects. Although
under 4% (1 − 0.966 = 0.034) of exposed subjects have val-
ues at the lower limit of detection, almost 60% of unexposed
subjects are at this value. For subjects above this threshold,
the means on the log scale are also well separated (7.72 −
5.44 = 2.28, see also Figure 4). In addition, exposed subjects
have larger variation compared to unexposed subjects (SD =
1.42 versus 0.3). The area under the ROC curve (AUC) for
long fibers is 0.92, although with a relatively wide credible
interval, because unlike the other estimates in this table, this
value is based only on one block of data. ROC curves are not
well defined when two or more blocks of data are used, be-
cause the choice of cutoff to use is not unique for two or more
dimensional data.

Short fibers may be slightly less diagnostic than long fibers,
with only 32% of unexposed subjects estimated to have val-
ues at the lower limit, compared to almost 60% in the case
of long fibers. However, those above the lower threshold are
widely separated, with a larger mean difference compared to
long fibers. On the other hand, asbestos bodies have larger
estimated SDs, and so the distributions of the exposed and
unexposed will have larger overlap compared to long fibers.
Therefore, we might expect the sensitivities and specificities
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Table 1
Posterior medians and 95% credible intervals for the means and SDs of the three continuous tests for asbestos
exposure, within both exposed and unexposed groups. P (above lowest value) represents the probability that a
score for that test will not be at the lowest possible detectable value. Results are from the hierarchical model

using all available data, except for estimating the AUCs, which are only well defined when one sample is used
from each subject.

Variable Posterior median 95% credible interval

Long fibers (on a log scale)
Mean for exposed subjects 7.72 (7.23, 8.15)
SD for exposed subjects 1.42 (1.14, 1.79)
P (above lowest value) in exposed subjects 0.966 (0.928, 0.991)
Mean for unexposed subjects 5.44 (5.18, 5.85)
SD for unexposed subjects 0.30 (0.03, 0.76)
P (above lowest value) in unexposed subjects 0.423 (0.324, 0.517)
Area under the ROC curve 0.92 (0.76, 0.98)

Short fibers (on a log scale)
Mean for exposed subjects 8.78 (8.38, 9.17)
SD for exposed subjects 1.33 (1.07, 1.68)
P (above lowest value) in exposed subjects 0.973 (0.937, 0.995)
Mean for unexposed subjects 6.30 (5.98, 6.65)
SD for unexposed subjects 0.43 (0.02, 0.90)
P (above lowest value) in unexposed subjects 0.680 (0.595, 0.756)
Area under the ROC curve 0.86 (0.74, 0.96)

Asbestos bodies (on a log scale)
Mean for exposed subjects 8.44 (7.95, 8.95)
SD for exposed subjects 1.73 (1.40, 2.18)
P (above lowest value) in exposed subjects 0.958 (0.910, 0.995)
Mean for unexposed subjects 6.23 (5.68, 6.72)
SD for unexposed subjects 1.24 (0.87, 1.74)
P (above lowest value) in unexposed subjects 0.512 (0.425, 0.600)
Area under the ROC curve 0.88 (0.76, 0.97)

for short fibers and asbestos bodies to be slightly lower com-
pared to long fibers.

4.2 ROC Curves
Figure 1 displays ROC curves for short fibers, long fibers,
and asbestos bodies, based on data from block 1 only. ROC
curves are not well defined when two or more blocks of data
are used, because the cutoff to choose for each subject when
they provide two or more values is not unique. The small
jumps arise from the masses that represent the probability of
being at the lower limits of detection for each test.

The AUC represents the probability that a randomly se-
lected truly positive subject and a randomly selected truly
negative subject will be correctly ordered by the continuous
test. For long fibers the AUC is 0.92, although with a rel-
atively wide credible interval (see Table 1), in part because
this estimate is based only on one block of data. The AUC
for short fibers is 0.86, slightly less than the point estimate
for long fibers; however, the very wide credible intervals leave
much uncertainty. The AUC for asbestos bodies is 0.88, in-
termediate to the AUCs from the other two tests.

4.3 Individual Probabilities of Asbestos Exposure
Of most interest to compensation boards is the probability
of exposure, given data from any subject. A byproduct of
running any of the models described in this article are esti-
mates of the probabilities of exposure across all subjects. We
will provide examples of how these probabilities vary between
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Figure 1. ROC curves for short fibers, long fibers, and as-
bestos bodies, based on data from block 1 only.

subjects by selecting three prototypic subjects and examining
their exposure probabilities across the full range of models we
have developed.

Subject #1 has a mixof values both at and above the lower
limits of detection. Subject #2 has high values for each test,
with no observations at the lower limit. Subject #3 has mod-
erate values across the three tests, again with none at the
lower limit. The data (on a log scale) from all three tests and
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Figure 2. Posterior median estimates of the distributions for nonexposed and exposed subjects for short fibers, long fibers,
and asbestos bodies. Superimposed on each graph are the data values for each of our three subjects, as discussed in
Section 4.3.

all four time points from these three subjects are depicted in
Figure 2. The figure also displays the population distributions
for all three tests for unexposed and exposed groups, based
on the posterior medians for the mean and SD parameters for
each curve, as given in Table 1.

Subject #1 had all results for both long fibers and asbestos
bodies at the lowest possible value C, but four different val-
ues for short fibers, one at the lowest possible value C, and
three above this threshold. Depending on which model is used
for inferences and which subset of the data is included in the
analysis, one can obtain different estimates of the probability
that subject #1 has been exposed to asbestos. We have three
different tests, each having up to four blocks of tissue data
to analyze using each of the models we ran. Of course, one
would usually want to use all available data in any real case,
but here it is also of great interest to examine how our esti-
mates change as more data accumulate, and as more tests are
included. We display results only for the hierarchical model
that accounts for within-subject correlations, because the re-
sults for the multivariate normal model with correlation pa-
rameters were virtually identical to those from the hierarchical
model across all parameters of interest.

Figure 3 presents the probability of exposure for all three
subjects across all models and using increasing numbers of

tissue blocks. If one only looks at the results from subject
#1 short fibers (labeled as SF in the figure), one can say
very little about the probability of exposure, as even with all
four tissue blocks included in the analysis, the credible inter-
val for this probability ranges from close to zero to almost
0.9. Similarly, little can be concluded if only a single block
of data is used from long fibers or asbestos bodies for this
subject. However, as soon as data from two or more blocks
are included, the probability of exposure is concentrated very
near to 0, indicating no exposure. Only one block of data is
required if one combined data from all three tests, again indi-
cating a probability of exposure close to zero. For subject #1,
there is little difference between a model that assumed inde-
pendent observations within subjects, versus the hierarchical
model.

Subject #2 had generally high values across all three tests,
with no values hitting the lower threshold, C. Here, even a
single observation from any test is sufficient to classify this
subject as exposed, and these high probabilities remain near
one with very high probability regardless of which model is
run or how many data points are used. Note that the lower
limit of the y axis of this graph is at 0.992, so that even a
single short fibers observation provides very strong evidence
of exposure.
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Figure 3. From top to bottom, probability of asbestos expo-
sure for subjects #1, #2, and #3, respectively, from a wide
variety of models, and for changing values of tissue blocks used
in the analyses, ranging from m = 1 to m = 4 blocks. From left
to right, we have models using data from short fibers alone,
long fibers alone, asbestos bodies alone, all three tests with
independence assumed between observations within subjects,
and a hierarchical model using all three tests that accounts
for correlations within subjects. The dots represent posterior
medians.

In contrast to subjects #1 and #2, where clear decisions
are possible, the data from subject #3 shows that this is not
always the case, even when all available data are used. Re-
sults range from near certainty of exposure if one or two long
fiber observations are examined, to certainty of nonexposure
if all data are used, and the model assumes independence
between all observations. However, all other models indicate
great uncertainty about the probability of exposure, and be-
cause the independence model is probably not valid, one must
admit that the data are not sufficient to make a strong rec-
ommendation. This example also clearly shows the danger of
relying on only a single type of fiber count rather than all the
data, and illustrates that a model that assumes independence
can provide very different estimates from our correlated data
models, even though exactly the same data are input into
both models.

The contrasting results between correlated and noncorre-
lated models from subject #3 raises the issue of goodness-of-
fit or model selection procedures. Indeed, some authors (for
example Black and Craig, 2002) have performed formal model
selection procedures or averaged the results over several mod-
els. Here, however, we have very strong reasons to doubt mod-
els that do not incorporate dependence between blocks within
subjects, and both models that account for these correlations
provide virtually identical estimates. This is not surprising,
as correlations arise because data for each test within sub-
jects are more similar compared to data between subjects,
and both of our models account for this.

Figure 4 displays the mean exposed minus nonexposed
mean differences, μE − μNE across all models, which is in-
teresting for several reasons. First, this parameter is of im-
portance by itself, because the distance between exposed and
nonexposed distributions is a marker for the usefulness of a
continuous diagnostic test. Second, we can clearly see how ac-
curacy for this parameter is affected by the number of data
blocks used. For asbestos bodies, there is not much increase
in accuracy, as judged by the length of the credible inter-
val, as more data blocks are added. For both short and long
fibers, there is an increase in accuracy going from m = 1 to
m = 2 tests, but not much improvement after that. We can
also see smaller mean differences in the hierarchical model
as compared to a model that assumes independence of data
blocks within subjects, perhaps an indicator that the amount
of information is somewhat exaggerated in the independence
model. We can also see similar sized credible intervals for m =
2, 3, or 4 in the hierarchical model, indicating that there is ex-
tra variability accounted for here which does not substantially
decrease with increasing m.

5. Discussion
We have developed a series of Bayesian latent class models for
mixed continuous/discrete diagnostic test data, and applied
these models to determine the probability of asbestos expo-
sure from lung fiber count data. We have shown that incorrect
inferences may be made if only a single block of data is ana-
lyzed, and that for many subjects a clear decision is possible
using a model that uses all possible data. However, for some
subjects, even 12 data points are not sufficient for a definitive
assessment.

There is no substitute for a detailed work history in deter-
mining the likelihood of occupational asbestos exposure. This
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Figure 4. Posterior median and 95% credible intervals for the difference between means in the exposed minus nonexposed
populations from a wide variety of models, and for changing values of tissue blocks used in the analyses, ranging from m =
1 to m = 4 blocks. From left to right, we have models using data from short fibers alone, long fibers alone, asbestos bodies
alone, all three tests with independence assumed between observations within subjects, and a hierarchical model using all
three tests that accounts for correlations within subjects.

is particularly true for occupational exposure to chrysotile
fibers, which do not accumulate as readily in the lungs, and for
which the number of fiber-years of exposure is the best indica-
tor of lung fiber burden. Unfortunately, detailed occupational
exposure histories are not available for all suspected cases of
asbestos-related lung disease, and in such circumstances, lung
fiber retention analysis is one alternative method. Our models
provide direct estimates of the probability of exposure, given
all data collected, and have shown that collecting more than
one data block per subject improves these estimates, resulting
in better decisions concerning compensation.
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