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SUMMARY

Statistical issues in conducting randomized trials include the choice of a sample size, whether
to stop a trial early and the appropriate analysis and interpretation of the trial results. At
each of these stages, evidence external to the trial is useful, but generally such evidence
is introduced in an unstructured and informal manner. We argue that a Bayesian approach
allows a formal basis for using external evidence and in addition provides a rational way
for dealing with issues such as the ethics of randomization, trials to show treatment
equivalence, the monitoring of accumulating data and the prediction of the consequences
of continuing a study. The motivation for using this methodology is practical rather than
ideological.
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1. INTRODUCTION

The accepted statistical techniques for the design, monitoring and reporting of
controlled clinical trials are based on the frequentist theory of hypothesis testing
developed by Neyman and Pearson (see, for example, Pocock (1983)). The impact
of the frequentist approach is reflected in the established use of type I and type II
error for clinical trial design and p-values and confidence intervals for analysis, and
in the demand by both medical journals and regulatory authorities for reporting within
this framework.

Our paper is about the use of an alternative, Bayesian, theory of statistical inference
in clinical trials. Clinical investigation is an essentially dynamic process, in which any
individual study takes place in a context of continuously increasing knowledge. New
information emerges not only from a trial as it progresses but also from other studies
that are relevant to the questions addressed by the trial. Furthermore, it is unlikely
that a single trial will provide a definitive clinical conclusion, whether in industry in
which drug registration is the goal, or in publicly funded research in which influencing
clinical practice is the main objective. It therefore seems vital to acknowledge the
context in which a study takes place, and to emphasize that the data from a single
trial report add to available evidence, rather than form the basis for decision-making
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in themselves. The Bayesian method is naturally dynamic, in that prior distributions
of belief regarding treatment differences may be modified by new data in a formal
way by using Bayes theorem.

Such an approach is standard in diagnostic testing (Ingelfinger et al., 1987). The
practical value of a diagnostic test cannot be decided on the basis of its sensitivity
and specificity alone—to make decisions we need the prior probability of disease,
and the perceived threshold of belief that would make intervention worthwhile. We
follow others (e.g. Peto et al. (1976)) in arguing that the same is true for clinical
trials: the conclusions to be drawn from a classically positive or negative result depend
on the degree of scepticism concerning the efficacy of the new treatment based on
evidence external to the study, and the level of improvement required before it is
considered clinically superior.

Bayesian methods will not, however, be adopted in the absence of a clear
demonstration of the practical advantages which accrue from their use. Moreover
their practical application requires that the statistician moves into statistical
territories which may be unfamiliar, particularly the appropriate choice of a prior
distribution. The aim of our paper is therefore twofold: first, to highlight some
advantages of Bayesian methods over current practice in clinical trials and, second,
to familiarize statisticians with the concepts and practical methods involved in their
application. In Section 2 we comment briefly on the classical hypothesis testing
approach to clinical trials, and in Section 3 we give an overview of the alternative
Bayesian framework using the simplest formulation. In Sections 4 and 5 we discuss
prior distributions, analysis and monitoring, including suggestions for formal
specification of priors representing scepticism and enthusiasm. Section 6 deals with
possible roles for prediction methods with sample size calculation as a special case,
while Section 7 contains applications to real trials. In Section 8 we discuss issues arising
in monitoring and reporting of results. Some technical details are given in Appendixes
A and B.

The practical emphasis of this paper means that Bayesian techniques will not be
claimed to be superior simply on the basis of foundational arguments. We do not
consider alternative trial designs such as adaptive allocation rules, and we fully accept
the need for randomization. However, we do question the standard basis for drawing
inferences following a classical randomized trial, and the next section introduces some
of our misgivings.

2. HYPOTHESIS TESTING AND CLINICAL TRIALS

2.1. Null Hypothesis and Ranges of Equivalence

Suppose that a trial is comparing two treatments, which we shall term the ‘new’
and the ‘old’, and that the true treatment difference is summarized by a parameter
6, where large values of 6 correspond to superiority of the new treatment. Statistical
analysis usually centres on a significance test of a null hypothesis H,: §=0.
However, in some circumstances the treatments may be so unequal in their ‘costs’,
e.g. in their toxicity, inconvenience or monetary cost, that it is commonly accepted
that the more costly treatment will be required to achieve at least a certain margin of
benefit, 6;, before it can be even considered: hence 6§ <§; corresponds to clinical
inferiority of the new treatment (Schwartz et al., 1980). Another value, 65, may be
postulated, where 6> s indicates clinical superiority of the new treatment: g is
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sometimes termed the ‘minimal clinically worthwhile benefit’. We call (6;, 65) the
range of equivalence (Freedman et al., 1984), such that if we were certain that 6 lay
within this interval we would be unable to make a definitive choice of treatment.
Clearly the specification of 6; and &g is not straightforward, but the concept is
becoming recognized as being both feasible and useful (Armitage, 1989; Fleming and
Watelet, 1989). We note that it is quite reasonable that the range of equivalence will
change as a trial progresses.

As we shall discuss further in Section 5.1, conclusions may be drawn by relating
evidence on 6 to the three intervals 6 <é;, 6; <6 <dg and 6> ds. This formulation also
includes trials that aim to demonstrate equivalence of treatments (Dunnett and Gent,
1977; Makuch and Simon, 1982), where we may set the range of equivalence as
(—6g, +6g) for a specified dg.

2.2. Alternative Hypothesis

Current statistical practice in clinical trial design is to formulate a point alternative
hypothesis H,, and a sample size is chosen which guarantees, under H;, an
acceptably high statistical power (e.g. 90%) of rejecting H, by using a specified
statistical test at a given significance level (e.g. 0.05). Usually H, corresponds to
6=0. Medical statisticians continue to use different prescriptions for specifying the
value 6, which should represent H, (Spiegelhalter and Freedman, 1986). The main
variants are that 6, should represent

(a) the smallest clinically worthwhile difference (Lachin, 1981), or
(b) a difference that the investigator thinks is ‘worth detecting’ (Fleiss, 1981) or
(c) a difference that is thought likely to occur (Halperin et al., 1982).

The first variant corresponds to taking 6, as 8, whereas the second leaves the
choice to the investigator, who may well choose 6, to be unrealistically large to
reduce the required sample size. Approach (c) differs in stressing the importance of
plausibility as a concept for choosing H; (Peto ef al., 1976). Suppose that we set 6,
as the expectation of the benefit of a new treatment. In practice, clinicians participating
in trials often have such expectations close to the demands that they would make
of the treatment before using it routinely—in our notation, 6, will be near d5. This
similarity provides a sound basis for randomization but often leads to confusion
between expectations and demands.

In heart disease and cancer research, trials with much larger sample sizes than were
previously common have now been conducted to detect relatively small but clinically
worthwhile treatment differences, using the argument that only such relatively small
differences are likely (Yusuf et al., 1984). Having accepted the role of the plausibility
of a given improvement, it is a short step to an explicit expression of prior belief,
and to a Bayesian perspective.

2.3. Sequential Analysis
Interim analyses are becoming increasingly popular both in public sector and
pharmaceutical industry trials, with an accompanying large body of statistical literature:
see, for example, Jennison and Turnbull (1990) and Whitehead (1992). Within the
frequentist framework it is necessary to specify a stopping rule before the trial analysis
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begins, spending the overall type I error at the interim analyses through the course
of the trial. The formal use of these methods raises many serious conceptual and
practical difficulties (Cornfield, 1966; Berry, 1987; Freedman and Spiegelhalter, 1989),
even if they are only considered to be stopping guidelines rather than strict rules.

3. BAYESIAN FRAMEWORK

The basic paradigm of Bayesian statistics is straightforward. Initial beliefs concerning
a parameter of interest, which could be based on objective evidence or subjective
judgment or a combination, are expressed as a prior distribution. Evidence from further
data is summarized by a likelihood function for the parameter, and the normalized
product of the prior and the likelihood form the posterior distribution on the basis
of which conclusions should be drawn (see, for example, Lee (1987)). In this paper
we shall illustrate each of these steps with practical examples, and later in Section 6
we emphasize additional properties related to prediction of future outcomes.

This inferential process is often extended to a theory for decision-making by the
introduction of utilities for certain outcomes. Although there have been many attempts
to place clinical trials within such a decision theoretic framework, in our formulation
we specifically do not include utility assessments. Our reason (Spiegelhalter and
Freedman, 1988) is that when the decision is whether or not to discontinue the trial,
coupled with whether or not to recommend one treatment in preference to the other,
the consequences of any particular course of action are so uncertain that they make
the meaningful specification of utilities rather speculative. Since we are dealing with
a society with considerable freedom of choice of treatment, the implications of
reporting a ‘conclusive’ trial result cannot currently be accurately modelled.

3.1. Prior to Posterior Analysis
To emphasize conceptual rather than technical issues we deliberately present only
the simplest analysis which can be carried out without specialist software. More
elaborate analyses are briefly discussed, although our formulation can cope with a
wide variety of problems. Throughout this paper we use the notation that p( ) and
¢( ) are density functions.

3.1.1. Likelihood
We shall assume that our data after m observations can be summarized by a statistic

X,,, whose distribution is
P(Xm) = DX | 8, 0% /m), 1)

where ¢ represents a Gaussian distribution with mean & and variance ¢2/m, § is the
parameter of interest and ¢? is assumed known: in comparative trials § is the true
treatment difference and x,, is the sample difference.

This assumption of a normal likelihood covers many situations: if individual
responses are assumed Gaussian with variance ¢2/2, § is the true difference in mean
response, and Xx,, is the difference in group sample means where m individuals are
allocated to each treatment; in survival analysis with proportional hazards, if m is
the total number of events observed, x,,=4L,/m where L, is the log-rank test
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statistic (observed — expected events in a treatment group), and é is the log-hazard
ratio, then x,, has approximately a distribution given by equation (1) with ¢2=4
(Tsiatis, 1981). For rare events, we have a similar approximation in which & is the
log-odds ratio, m is the number of events, x,, is the observed log-odds ratio and
o2=4. For binomial responses with higher event rates, x,, is the difference in sample
response rates and, strictly speaking, o> depends on the unknown response rates, but
in this case and in that of normal responses with unknown variance an estimate of
o2 may be used in equation (1) which for sufficiently large m will be adequate. Rate
ratios can also be handled within this framework (Pocock and Hughes, 1989).
Whitehead (1992) exploited the use of normal likelihoods for efficient score statistics
as the basis for sequential monitoring, and showed the wide applicability of this
approach.

3.1.2. Prior distribution

We denote the prior distribution py(6), indicating our belief having made zero
observations in our trial. With a normal likelihood it is mathematically convenient,
and often reasonably realistic, to make the assumption that p,(6) has the form

Do(8)=(8|80, 0%/np) )

where §, is the prior mean. This prior is equivalent to a normalized likelihood arising
from a (hypothetical) trial of 7, patients with an observed value §, of the treatment
difference statistic. We shall use this normal assumption for the expressions shown
below and in our examples: although it could be argued that a symmetric distribution
will not adequately reflect opinion about a treatment benefit, it should be remembered
that it is only the shape of the prior in the area supported by the likelihood that is
important.

In general, to accommodate asymmetric distributions, we have found it convenient
to use ‘mixture’ priors with two normal components, each of which may have an
upper or lower bound. Either of the components may have zero variance, formally
corresponding to n, = oo, thus making a lump of probability on &,. The resulting
family is both flexible and mathematically tractable (see Appendix A). We note that
Carlin et al. (1993) describe more elaborate analyses within a proportional hazards
regression model.

3.1.3. Posterior distribution
For the prior given in equation (2) and likelihood (1), we obtain by Bayes theorem
a posterior distribution

DPm(8) & p(x,,| 8) po(8)

B nydo+mx, o
—¢<61 n0+m ’”0+m) (3)

where the subscript indicates our belief after m observations. The posterior mean
serves as a point estimate, while 100y% credible interval estimates take the form of
regions 7, such that | I, DPm(8)dé=+. For equation (3), 95% estimates, for example,
are formed simply from the posterior mean + 1.96 posterior standard deviations.
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3.2. Example 1: Medical Research Council Neutron Therapy Trial
3.2.1. The trial ,
Errington et al. (1991) reported a trial of high energy neutron therapy for treatment
of pelvic cancers. An ad hoc independent data monitoring committee was set up by
the Medical Research Council (MRC) in January 1990 to review the interim results
after 151 patients with locally advanced cancers had received either neutron therapy
(90 patients) or conventional radiotherapy (61 patients).

3.2.2. Range of equivalence

Interviews were conducted in March 1988 with 10 selected clinicians and physicists,
knowledgeable about neutron therapy, before the disclosure of any of the trial results.
On average, respondents reported that they would require a change in one-year survival
from 50% (assumed for standard photon therapy) to 61.5% for neutron therapy to
be recommended as routine treatment. Under a proportional hazards assumption such
a change corresponds to a hazard ratio of log 0.50/10og 0.615 = 1.426 against photon
therapy. Using the log-hazard scale, we therefore take log 1.426 =0.355 as our upper
limit of the range of equivalence, &5, and 6;=0 as our lower limit: each is shown
as a dotted line in Fig. 1.

i ' . < : .
s <equv - 0279 H 1 < equiv: 0.945
H 1 = equiv. 0461 ' 1 =equiv - 0.054
© ~ H i >equiv 0.260 L H + > equiv: 0.002
/ \ : { <equiv: 1 H :
~ / \ H t=equv- 0 [ : H
H E >equiv. 0 H H
© o

-1.0 05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0
<- photons superior * log(hazard ratio) * neutrons superior -> <- photons superior * log(hazard ratio) * neutrons superior ->
(a) (b)
M E E <equv 0786 M f < observ : 0.066
A\ : {=equiv. 0209 H > observ : 0934
“ / : > equiv 0.004 o '
\ E <equv 1 : < observ . 0.701
o / \ t=equiv: 0 o~ : > observ : 0.299

§>equw:
H

-1.0 -0.5 0.0 05 1.0 -1.0 -05 0.0 05 1.0
<- photons superior * log(hazard ratio) * neutrons superior -> observed log(hazard ratio)
(c) (d)

Fig. 1. Neutron therapy prior, likelihood and posterior distributions (the predictive distributions are
discussed in Section 6.3) ( , prior based on clinical opinion; ———, prior based on an overview
of trials; the range of equivalence is indicated by the two vertical dotted lines; the probabilities of falling
below, within and above the range of equivalence are shown in the top right-hand corner, first for the
clinical prior and then for the overview prior): (a) prior; (b) likelihood (m =59, x= —0.416); (c) posterior;
(d) predictive distribution
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3.2.3. Prior distributions

Prior information regarding the effect of neutron therapy was available from two
sources. First, the consensus belief of those interviewed gave a 28% belief that 6<0
(neutrons worse than photons) and 26% belief that 6> 65 (neutrons preferable to
photons), with the remaining 46% lying in the range of equivalence. We have
constructed, as an approximation, a normal prior distribution with mean log-hazard
ratio 6,=0.169 and equivalent number of events n,=48. We can think of this prior
distribution as equivalent to having already observed 48 deaths, of which 22 were
in the neutron therapy group and 26 in the photon therapy group. This prior is shown
in Fig. 1(a) (full curve) and represents a group clinical opinion.

The second source of prior information was a statistical analysis of the combined
results of previous randomized trials, conducted using different dosage regimens, which
gave an estimated odds ratio for one-year mortality of 0.47 (95% interval 0.30-0.73)
in favour of photon therapy. Relative to the assumed base-line survival of 50% under
photons, this can be translated to an approximate normal prior, on the log-hazard-
ratio scale, with 6,= —0.569 and n, =138. This prior distribution is particularly
sceptical and, in view of the different regimens, might reasonably have been viewed
with caution at the start of the trial.

3.2.4. Likelihood

The interim analysis, based on 59 observed deaths, showed an estimated hazard
ratio of 0.66, with 95% interval (0.40, 1.10), comparing the death-rate in the
conventional radiotherapy group with that in the neutron therapy group. Thus we
have an estimated log(hazard ratio) = —0.416 with standard error 0.260, and using
the notation of Section 3.1.1 for log-hazard ratios we obtain a likelihood with
X,= —0.416, =2 and m=59. This likelihood is shown in Fig. 1(b).

3.2.5. Posterior distributions

The probability that the effect of neutron therapy exceeds the minimal clinically
worthwhile benefit dg is small (0.004) even under the more enthusiastic prior
distribution. Moreover, the results of the current trial agree very closely with
the combined results from previous trials. The data monitoring committee ratified
the decision of the principal investigator to suspend entry of patients into the trial.
The Bayesian analyses we have presented certainly support that decision.

4. PRIOR OPINION

4.1. What Type of Prior?

The term prior is used here to denote opinion based on evidence that is external
to the trial: at the design stage this will be genuinely ‘prior’, in the temporal sense,
but as the trial continues it is quite feasible that this prior will change because, for
example, of the publication of related studies. Such changes should preferably be
carried out by translating other studies into appropriate likelihoods.

When reporting studies we should acknowledge that different individuals or groups
hold different prior beliefs. There is therefore no reason to select one particular
specification, and instead we may consider a community of priors (Kass and
Greenhouse, 1989) covering the perspectives of a range of individuals. This may
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encompass a reference prior intended to add as little as possible to the data and a
clinical prior expressing reasonable opinions held by individuals or derived from
overviews (meta-analyses) of similar studies. However, it is also useful to develop
‘off the shelf” priors corresponding to a formal expression of sceptical and enthusiastic
belief—these may be thought to provide reasonable bounds to the community of priors.

4.1.1. Reference priors

Reference priors are supposed to represent minimal prior information, and for our
simple normal likelihood they are obtained as the limit of the prior (2) as ny—0,
leading to an improper uniform prior over the entire range of é, and an identification
of the posterior distribution with the normalized likelihood.

In some ways this is the most unrealistic of all possible priors. It represents, for
example, a belief that it is equally likely that the relative risk associated with neutron
therapy (Section 3.2) is above or below 10. However, it could be argued that such
a prior is the least subjective and as such plays a useful role as a base-line against
which to compare other more plausible priors.

4.1.2. Clinical priors

A clinical prior is intended to formalize opinion of well-informed specific individuals,
often those taking part in the trial themselves. Deriving such a prior requires asking
specific questions concerning a trial, and a variety of sources of evidence may be
used as a basis for the opinion (see Sections 4.2 and 4.3).

4.1.3. Sceptical priors

One step towards incorporation of knowledge into a prior is an attempt to formalize
the belief that large treatment differences are unlikely. Such an opinion could be
represented by a symmetric prior with mean §,=0 and suitably spread to include a
range of plausible treatment differences. Kass and Greenhouse (1989) explicitly
considered several such priors in their reanalysis of the extracorporeal membrane
oxygenation data and introduced the concept of a ‘cautious reasonable sceptic’ who,
if they held such a prior opinion, would consider it ethical to randomize patients since
they did not hold a strong preference in favour of either treatment. This correspondence
between belief in clinical superiority and the ethics of randomization is discussed further
in Section 5. Sceptical priors may be particularly appropriate for regulatory authorities
who are considering new drug applications.

A natural form of scepticism is to consider that the trial designers were optimistic
in their expectation regarding the new treatment. This leads to a particularly simple
form for the prior. Suppose that the trial has been designed with size  and power
1 - to detect an alternative hypothesis 6, . Then we have the standard relationship

2
az(zl—a/Z;Z'zl—Q) =n (4)
A

between the proposed sample size n and 6, , where zg=®(8). We express scepticism
concerning 6 by having a prior distribution which is normal with mean 0 and such
that p(6>6,) is a small value v. Such a distribution is shown as a full curve in Fig. 2
and has the property that
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Fig. 2. Sceptical ( ) and enthusiastic (----- ) priors for a trial with alternative hypothesis 8, :
the sceptics’ probability that the true difference is greater than 8, is v (shown shaded), which is also
the enthusiasts’ probability that the true difference is less than 0
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Equating 6, in equations (4) and (5) gives

2

o _ (______Zl—v ) :

n \Zi—ont2i-
Reasonable values might be & =0.05, 8=0.1 and v=0.05, which gives ny/n=0.257.
Thus a formal expression of scepticism is obtained by assuming a prior equivalent
to already having observed a quarter of the trial with a zero treatment difference.
Such a prior will obviously provide a considerable handicap to the data showing a
positive difference: the interesting consequence of this particular handicap will be
explored in Section 8.1. Choosing n, in this manner only makes sense if the trial
design is based on a realistic value for é,. If, as is often the case, 8, is unrealistically
large, then n, will no longer reflect the scepticism intended.

4.1.4. Enthusiastic priors

To counterbalance the sceptical prior discussed above, it is natural to introduce
an enthusiastic prior representing individuals who are reluctant to stop when results
supporting the null hypothesis are observed. Such a prior may have mean 6, and
the same precision as the sceptical prior, and hence provides a prior belief p(6 <0) =+.
This prior is shown in Fig. 2. In practice this formally derived prior is often similar
to the clinical prior derived from investigators’ opinions (see, for example, Section 4.3).

4.2. Sources of Evidence for Clinical Priors
4.2.1. Evidence from other randomized trials
If the clinical prior distribution is to represent current knowledge accurately, we
should base it, where possible, on objective information. When the results of several
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similar clinical trials are available, a statistical overview of those results can be used
as the basis of a prior distribution. For example, the design of the beta-blocker heart
attack trial (BHAT) was based on the results of five European trials of different beta-
blocker drugs for the treatment of patients with recent acute myocardial infarction
(BHAT Research Group, 1981). The investigators assumed that the drug propanalol
would reduce mortality by 28% on the basis of these results. Although the researchers
did not comment on the precision of this prior estimate, data from Yusuf et al. (1985)
on these same five trials indicate that the standard error was approximately 10%.
It is interesting that the final trial results showed a 28% reduction in mortality
associated with propanalol.

Results from previous randomized trials should generally form the basis for a prior
distribution but should not specify the distribution completely.. As Kass and
Greenhouse (1989) pointed out, a Bayesian who took this past evidence directly as
his prior would be treating the historical and experimental subjects as exchangeable
and essentially pooling the results. In the case of the BHAT, the evidence from previous
studies might itself have been considered sufficiently strong to call into question the
necessity for a further trial. However, it seems reasonable to combine previous data
with some initial scepticism. Belief in heterogeneity of treatment effects across trials
or patient subgroups, combined with reasonable scepticism, should suggest either
shrinking the apparent treatment effect, expanding the variance or both. Random
effects models in meta-analysis might be an appropriate tool, in which case the prior
distribution would correspond to the predictive distribution for the effect in a new
trial (Carlin, 1992).

4.2.2. Evidence from non-randomized studies

Often, however, no relevant randomized trial results are available, but non-
randomized studies may have been conducted. The difficulty of constructing a prior
distribution from the results of such studies is related to the assessment of the possible
biases that can exist in such studies (Byar et al., 1976). Such difficulty may often
lead quite reasonably to a prior distribution with a large variance.

4.2.3. Subjective clinical opinion

We have emphasized that even when evidence in the form of randomized studies
is available the prior distribution should be constructed by using that evidence but
possibly applying a subjective adjustment. It may happen that there are no similar
previous studies, in which case the distribution needs to be based on subjective
judgment alone. One approach to eliciting opinion is to conduct individual interviews
with clinicians who will participate in the trial.

We have reported this for several trials including the MRC trial of thiotepa for
superficial bladder cancer (MRC Urological Working Party, 1985) and the European
osteosarcoma intergroup trial of two adjuvant chemotherapy schedules for
osteosarcoma (Spiegelhalter and Freedman, 1988). Two statisticians (Freedman and
Spiegelhalter) interviewed individual clinicians in the manner described in Freedman
and Spiegelhalter (1983). Interactive graphics could enhance this elicitation procedure,
by providing fast quantitative feed-back and easy adjustment of distributional shape
(Chaloner et al., 1993).

Individual interviewing is time consuming and it may be preferable to use telephone
or postal elicitation. A form for postal elicitation of prior opinion has been designed
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TABLE 1
Summary of results of questionnaires completed by nine clinicians in the MRC CHART trial for head
and neck cancer

Clinician Range of Prior distribution (absolute advantage of CHART over
equivalence standard therapy in 2-year % disease-free survival)

—-10to -5 —-5t00 0-5 5-10 10-15 15-20  20-25 25-30

1 5-10 10 30 50 10

2 10-10 10 10 25 25 20 10

3 5-10 40 40 15 5

4 10-10 20 40 30 10

5 10-15 20 20 60

6 15-20 S 5 10 15 20 25 10 5

7 5-10 10 20 40 30

8 20-20 10 20 40 20 10

9 10-15 10 50 30 10
Group mean 10-13 3 5 18 19 22 20 10 3

and is being used in several trials currently being co-ordinated from the MRC Cancer
Trials Office. Below we report results from this questionnaire: similar techniques were
used by Gore in trials of artificial surfactant (Ten Centre Study Group, 1987) and
neutron therapy (Errington et al., 1991).

4.3. Example 2: Continuous Hyperfractionated Accelerated Radiotherapy Study
in Head and Neck Cancer

Our second example is a trial currently comparing standard therapy with continuous
hyperfractionated accelerated radiotherapy, CHART (Parmar et al., 1994). In
designing the CHART study, base-line two-year disease-free survival under control
therapy was estimated to be 45%. Nine individual prior distributions are summarized
in Table 1, which presents the proportions of each distribution falling within intervals
for treatment difference provided on the questionnaire.

As expected there are differences in the positions and shapes of the individual
distributions. The opinions of clinicians 1 and 9 do not even intersect, whereas clinician
5 has a very confident (narrow) distribution, in contrast with clinician 6. How should
we combine these individual distributions to arrive at a prior distribution for the group?
Many methods have been proposed (Genest and Zidek, 1986). The two simplest
methods are arithmetic and logarithmic pooling, corresponding to taking the arithmetic
and (normalized) geometric mean respectively within each column of Table 1. The
former takes the opinions as data and averages, whereas the latter takes the opinions
as representing data and pools those implicit data. Our strong preference is for
arithmetic pooling, to obtain an estimated opinion of a typical participating clinician.

Arithmetic pooling for the CHART study gives a median of 11% improve-
ment, with a prior probability 0.08 that there is a deterioration (). Assuming
a 45% two-year disease-free survival rate under standard therapy, and trans-
forming to a log-hazard-ratio scale this corresponds to p,(6) having a median of
log(log 0.45/10g 0.56) =0.32, with py(6<0)=0.08. Assuming a normal prior
distribution with these characteristics gives parameters 6,=0.32 and ny=77. This



368 SPIEGELHALTER, FREEDMAN AND PARMAR [Part 3,

20

<equiv' 0448
=equiv. 0156
> equiv ' 0396

1.5

1.0

0.5
1

/ .
. el \“YI

T T - T T
0.5 0.0 0.5 1.0

In(control hazard / CHART hazard)

Fig. 3. Prior for log(control hazard/CHART hazard) derived from elicited subjective opinions

prior distribution is shown in Fig. 3, superimposed on a histogram derived from the
group distribution shown in Table 1—it can be seen that the normal approximation
is adequate, and we have generally found this to be the case. The mean of the ranges
of equivalence that were elicited from the same nine clinicians, (10%, 13%), is shown
transformed to (0.29, 0.38) on the 6-scale. The ethical basis for the randomization
is clear, since the prior probabilities of being on either side of the range of equivalence
are almost equal (0.45, 0.40). Such a juxtaposition of prior opinion and range of
equivalence formalizes a grouped version of the ‘uncertainty principle’ (see, for
example, Byar et al. (1990)), under which it is considered ethical to randomize a patient
if the clinician has reasonable uncertainty about which is their most appropriate
treatment.

Section 6.2 contains an example of the use of this distribution in pretrial power
calculations.

5. MONITORING OF TRIALS

5.1. Bayesian Monitoring Criteria

Ethical considerations place an obligation on organizers to take into account all
sources of evidence when considering the continuation of a trial (Pocock and Hughes,
1989), not purely the data from the trial itself. A rational way to do this is to use
the trial data to provide the likelihood and have all external evidence concerning the
effect of treatment on the main clinical outcome represented by a prior distribution.
Their combination into a posterior distribution yields the intervals that can be
contrasted with the range of equivalence, which combines evidence regarding the
relative differences between the treatments in toxicity, cost and inconvenience.
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Fig. 4. Possible situations at any point in a trial’s progress, derived from superimposing an interval
estimate (say 95%) on the range of equivalence (see the text for the relationship between situations A,
B, C, C*, D and E and monitoring trials)

In this way internal and external evidence on the relative benefits and risks of the
treatments are being combined and weighted quantitatively.

Our proposal for monitoring simply extends the preceding discussion on ethical
randomization, the judgment being based on the posterior rather than the prior
distribution. If clinicians are essentially certain that one treatment is clinically superior,
then they should not randomize further patients; if they are almost certain that one
treatment is not superior, and may be inferior, then they should carefully consider
stopping randomization. This approach has already been illustrated by the neutron
therapy example in Section 3.2, but is illustrated in generality in Fig. 4.

In Fig. 4 are shown six hypothetical credible intervals for the treatment difference
(i.e. intervals containing a nominal percentage, say 95%, of the posterior distribution)
in relation to the range of equivalence. Each interval corresponds to a different
statement that may be made regarding the comparison of the treatments. If the interim
analysis yields (credible) intervals which have the same form as A or E, then a
recommendation to terminate the trial would generally be indicated (Armitage, 1989).
Intervals of the form of B or D may also warrant termination, depending on the nature
of the two treatments. Errington ef al. (1991) described a trial that was stopped in
situation B. Interval C* is of particular interest within equivalence studies. Meier (1975)
has discussed similar procedures for monitoring trials.

From a posterior distribution it is straightforward to calculate the probability content
of the three crucial areas: below, within and above the range of equivalence. Using
the intervals B or D focuses attention on whether the area above or the area below the
range of equivalence has become a sufficiently small value ¢ to consider stopping the
trial. We are reluctant to express a firm opinion about what this critical size e
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should be, since the choice should, in principle anyway, be made from decision theoretic
considerations of expected utility. But we have already said that this is unrealistic,
and so we are left with the conventional bench-marks such as 2.5% and 5%. However,
the selected values can be informally varied according to the perceived importance
of the conclusion: for trials of therapy likely to have wide implications for health
care, we recommend a stringent criterion. Mehta and Cain (1984) have described
essentially this procedure for use in phase 2 studies.

5.2.  Which Prior to Use?

The preceding discussion has presupposed that a single posterior distribution is
available. However, we have already argued that a community of prior distributions
should be considered, and hence monitoring will give rise to a range of possible posterior
distributions, possibly based on reference, clinical, sceptical and enthusiastic priors.

Although tail areas based on a clinical prior may best reflect the opinions of the
trial organizers and participants, they should keep in mind the need for a trial to
provide convincing evidence to a spectrum of reasonable opinion. This fits with the
recommendation within, for example, the AXIS study (United Kingdom Coordinating
Committee on Cancer Research, 1989) that the data monitoring committee should
only alert the steering committee if there is

‘both (a) “‘proof beyond reasonable doubt’’ that for all, or for some, types of patient one
particular treatment is clearly indicated . . ., and (b) evidence that might reasonably be
expected to influence the patient management of many clinicians who are already aware
of the results of other main studies’.

Therefore we recommend that when considering stopping a trial on the basis of
results that indicate an effect, either beneficial or harmful, of a new treatment, a
sceptical prior should be examined; when confronted with data that indicate little
or no effect of the new treatment an enthusiastic prior should be considered (see
Section 7 for examples of this approach). In this way the trial will only stop early
if sufficient evidence has been provided to counterbalance the prior opinions of
someone who would doubt the observed results. In part, the prior is set up as
representing an adversary who will need to be disillusioned by the data to stop further
experimentation—for a formalization of this process see Lindley and Singpurwalla
(1991).

6. PREDICTIONS

6.1. Making Predictions
A major strength of the Bayesian approach is the ease of making predictions
concerning events of interest. Suppose that we have observed m observations and
are interested in the possible consequences of continuing the trial for a further n
observations. If we denote our future statistic by X,, then it has predictive
distribution

PuXo)= | P(X,18) (@) db
and it is straightforward to show that given the posterior distribution (3) we obtain

n060+mxm’02< 1 +l>}. (6)
ny+m nyo+m n

pm(Xn) =¢ {Xn
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As a special case, if we have not observed any data so far (m =0) we have that

1,1
pO(Xn)=¢{Xn|60’02<_+_>}- )]
N n
The use of this expression in sample size determination is described in Section 6.2.
Section 6.3 concerns a measure of conflict between the prior distribution and the
likelihood, and interim predictions are discussed in Section 6.4.

6.2. Pretrial Predictions

Suppose that at the start of a trial (m =0) we wish to assess the chance that the
trial will arrive at a firm positive conclusion, i.e. the final interval will exclude a value
8 in favour of the new treatment. Here we assume that the target final interval will
be based on the reference posterior, equivalent to the normalized likelihood. As
outlined in Section 2.2, the standard recommended procedure in this context is to
select an alternative hypothesis 6, and to use the resulting ‘power’ calculation as a
basis for selecting a suitable sample size. We have argued that this alternative hypothesis
should reflect realistic expectation, and hence it is a natural extension to acknowledge
the uncertainty in the anticipated treatment difference expressed in the full prior
distribution. Power over the plausible range of 6 should be calculated, and a summary
measure might be the expected power.

This can be derived as follows. The critical value of X, is

Xn>6[ _LZGO':X‘*

Vn

which from equation (7) will occur with probability

PolXs > %) =260 J () +ze\/ ()] ®

where z,(8;) = (6, — 6;)Vno/ 0 is the standardized distance of the prior mean from §;.
As n,— o we obtain the classical power curve

@{(ao—al)ia’—’ +zél.

This use of the full prior distribution for power calculations leads to what has been
termed predictive power (Spiegelhalter et al., 1986), expected power (Brown et al.,
1987) or the strength (Crook and Good, 1982) of the study. Spiegelhalter and Freedman
(1986) provided a detailed example of the predictive power of a study using subjective
prior opinions from a group of urological surgeons to form the prior distribution,
whereas Moussa (1989) discussed the use of predictive power with group sequential
designs based on ranges of equivalence. Brown ef al. (1987) have also suggested the
use of prior information in power calculations, but conditioning on 6> g, i.e. the
predictive probability of concluding the new treatment is superior, given that it truly
is superior.

6.2.1. Example 2 (continued)

The CHART trial was originally designed with an alternative hypothesis of an
absolute 15% improvement of CHART over the 45% two-year disease-free survival
estimated for the standard therapy, equivalent to 6, =log(log 0.45/log 0.60) =0.45.
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With a two-sided 5% test the trial had 90% power for the 218 events expected. Using
the prior shown in Fig. 3, the predictive probability that a final 95% interval will
exclude 0 is 83%, 62% that it will be in favour of CHART and 21% that it will be
in favour of control. However, the ranges of equivalence provided by the clinicians
should warn us that simply proving ‘significantly better than no difference’ may not
be sufficient to change clinical practice. In fact, at the first interim analysis the data
monitoring committee extended recruitment to expect 327 events. This decision was
made independently of knowledge of interim results: using the same prior opinion
the predictive probability of concluding in favour of CHART is now 68%, and in
favour of control 25%.

Spiegelhalter and Freedman (1988) noted that the predictive power (8) could be
expressed as the power against a fixed alternative §,, where

oo Jl)]on Jl)

a weighted average of the prior mean and the point of 50% power (6, s is the value
which, if observed, would just lead to rejection of the null hypothesis). Thus the
predictive power will always lie between 0.5 and the power calculated at the prior
mean. Predictive power is a useful addition to simple power calculations for a fixed
alternative hypothesis and may be used to compare different sample sizes and designs
for a proposed trial, and as an aid to judge competing trials considering different
treatments.

6.3. Checking Prior-Data Compatibility

We have suggested that, before a trial starts, there should be extremely careful
consideration of what the treatment difference is likely to be, and that this should
be used as an important component for trial design. However, it may easily happen
that these initial judgments are misguided and the data do not fit the stated
expectations. Far from invalidating the Bayesian approach, such a conflict between
prior and data only emphasizes the importance of pretrial elicitation of belief: having
these opinions explicitly recorded will help a monitoring committee to focus on the
difference between expected and actual results. It is useful to have a formal means
of assessing the confict between the prior expectations and observed data, although
the precise action to be taken in the face of considerable conflict will depend on the
circumstances.

Box (1980) suggested using the prior to derive a predictive distribution, and then
to calculate the chance of a result with lower predictive ordinate than that actually
observed. In our context we would use the form of equation (7) but substituting m
for n, to give a pretrial predictive distribution

poXn) =6 [ Xnlso,o*( L+ L)), ©

0

Given observed x,,, Box’s generalized significance test is given by

po{po(Xm)ng(xm)}=Zmin{PO(xm)’ I_Po(xm)}’

since the predictive distribution is unimodal.
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For example, in Fig. 1 the predictive distributions py(X,,) are drawn for the two
priors, and the dotted line indicates the sample log-hazard ratio. Under the clinicians’
prior there was only a 2 X 0.07 =0.14 probability of observing such an unlikely statistic,
whereas under the overview prior the observed statistic was quite unsurprising.

We deliberately do not specify the action to take on observing substantial conflict
between prior and data. As with any global significance test, this must depend on
individual circumstances.

6.4. Interim Predictions

A frequent question asked by investigators at interim analyses is: given the data
so far, what is the chance of obtaining a ‘significant’ result? Many researchers have
considered an appropriate response under the heading of stochastic curtailment
(Halperin et al., 1982; Spiegelhalter ef al., 1986, Choi and Pepple, 1989; Ware et
al., 1985), and this work is reviewed by Jennison and Turnbull (1990). Within a
Bayesian framework the question arises whether the prior opinion is included in making
the predictions and in the analysis (the fully Bayesian case), just in making the
predictions (the mixed case) or ignored completely (the likelihood case). The
appropriate formulae for each of these options are given in Appendix B. We emphasize
that this analysis assumes that future summary statistics are drawn from exactly the
same distribution as for those statistics observed so far. However, often the predictions
are made over an extension of the follow-up of recruited patients, rather than for
extending the numbers of new patients. Hence the adequacy of the predictions depends
on a strong, and possibly unwarranted, assumption of proportional hazards.

An important issue concerns the use of such predictions. We follow Armitage (1989)
in claiming that the decision on whether there is sufficient evidence to warrant stopping
a study should be based on the current opinion summarized by the posterior
distribution. Predictions concerning the consequences of continuing, although
superficially attractive, give an undue weight to achieving ‘significance’ and are of
secondary importance.

7. EXAMPLES OF BAYESIAN ANALYSIS

Most published Bayesian analyses are re-examinations of trial results originally
published after using conventional techniques. Examples include the APSAC
intervention mortality study trial of APSAC against a placebo (AIMS Trial Study
Group, 1988) for which Pocock and Hughes (1989) showed the shrinkage of the
observed treatment effect brought about by considering a plausible prior distribution;
they also considered the consequences of a range of priors. Pocock and Spiegelhalter
(1992) showed a similar use of shrinkage after an extreme result was reported in a
trial of home thrombolytic treatment. A trial in colorectal cancer originally reported
by Poon et al. (1989) has been reanalysed and discussed by Dixon and Simon (1992),
Freedman and Spiegelhalter (1992) and Greenhouse (1992). Here we consider two
further examples in detail.

7.1. Example 3: Levamisole and 5-fluorouracil in Bowel Cancer
7.1.1. The trial
Moertel et al. (1990) have reported results from a randomized clinical trial
investigating the effect of the drug levamisole (LEV) alone or in combination with
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S-fluorouracil (5-FU) for patients with resected cancer of the colon or rectum. Patients
entering the trial were allocated one of the three treatments LEV, LEV + 5-FU or
control. The main outcome measure of treatment was the duration of survival. Moertel
et al. (1990) planned their study with an alternative of 6, =log 1.35=0.30, and to
have 90% power for a one-sided test with 5% size required 380 deaths.

7.1.2. Range of equivalence

In this context Fleming and Watelet (1989) suggested a range of equivalence, on
a control-to-treatment relative hazard scale, of (1.0, 1.33), so that on a log-hazard-
ratio scale 6;=0 (log 1.0) and 65=0.29 (log 1.33), i.e. the control treatment would
be clinically preferable provided that it had no excess mortality, whereas the new
treatment, with its ‘inconvenience, toxicity and expense’, would only be clinically
superior if it reduced the hazard by at least 25% (1 —1/1.33).

7.1.3. Prior distributions

Since we are conducting a retrospective analysis of this trial it is reasonable to
investigate sceptical and enthusiastic priors: we note that in this study, as with many
others, the range of equivalence (6;, 6s) and the interval (0, 5,) essentially coincide.
We adopt a sceptical prior with mean 0 and probability 0.05 of exceeding 6, = 0.30,
and assuming o=2 gives a prior with §,=0 and n,=120; this prior is quite
reasonable in view of the implausibility of dramatic gains in cancer adjuvant therapy.
The enthusiastic prior has the same precision and mean 0.30. These priors are shown
in Fig. 5(a).

7.1.4. Likelihood

From Moertel et al. (1990), x,,=0.04 and m =223 for LEV versus control, and
Xn,=0.40 and m=192 for LEV +5-FU versus control. The likelihood for
LEV + 5-FU versus control is shown in Fig. 5(b)—the reference posterior (normalized
likelihood) shows convincing evidence that 6 >0 (prob = 0.003), but moderate evidence
(prob=0.78) that the treatment is clinically superior. The predictive distribution shows
that there was only 4% chance of observing such a high result given the sceptical prior.

7.1.5. Posterior distributions

The sceptical and enthusiastic posterior distributions for LEV + 5-FU versus control
are shown in Fig. 5(c). Since the result is positive we should concentrate on the sceptical
prior to see whether the interim data are sufficient to convince someone holding this
opinion. The sceptical posterior distribution has mean 0.25 with standard deviation
0.11, corresponding to an estimate of 1.28 and 95% interval (1.03, 1.60) for the hazard
ratio. There is a small posterior probability (0.015) of the treatment difference being
less than 0, i.e. of the control treatment being superior to LEV + 5-FU, whereas the
posterior mean is within the range of equivalence. We might therefore argue that
the result has not yet achieved ‘practical significance’ to a reasonable sceptic, and
hence that the trial might have continued. This opinion is possibly supported by the
fact that this treatment has not become accepted in Europe where trials are still
continuing.
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Fig. 5. Prior, likelihood and posterior distributions for LEV + 5-FU versus control ( , sceptical
prior and posterior; ———, enthusiastic prior and posterior; the probabilities of falling below, within
and above the range of equivalence are shown in the top right-hand corner, first for the sceptical prior
and then for the enthusiastic prior): (a) prior; (b) likelihood (m = 192; x=0.4); (c) posterior; (d) predictive
distribution

Results are also available from an earlier study (Laurie ez al., 1989) which showed
an apparent reduction in the death-rate of patients receiving LEV + 5-FU, with an
estimated log-hazard ratio of 0.14 with standard error 0.17. If we include these data
in the analysis under the sceptical prior our hazard ratio estimate is changed to 1.25
with 95% interval (1.04, 1.49). Including these data thus increases certainty that 6 >0
(prob=0.007) but decreases the certainty that the treatment is clinically superior,
p(6>0.29 | combined evidence) =0.22, and so does not change the interpretation given
above.

7.1.6. Interim predictions

The investigators’ original plan was to include approximately 188 further deaths
in the comparison of control and LEV + 5-FU. Table 2 shows the predictive probability
of different conclusions being drawn at the end of this period, calculated under the
three assumptions

(a) a fully Bayesian analysis using our sceptical prior,

(b) that the prior is used for predictions but excluded from the final analysis and

(c) that the predictions and analysis are based solely on the data (equivalent to
using the reference prior throughout).
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TABLE 2
Predictive probability of the final 99% interval for the hazard of control
relative to LEV + 5-FU having different positions relative to the range
of equivalence, after observation of a further 188 eventst

Position of 99% interval Results for the following
modes of prediction:
Bayesian Mixed Likelinood

A: old superior 0.000 0.000 0.000
B: new not superior 0.004 0.001 0.000
C: equivocal 0.407 0.256 0.091
D: old not superior 0.590 0.737 0.845
E: new superior 0.000 ~ 0.006 0.064

tFor illustration of A, B, C, D and E see Fig. 3.

Ignoring the prior completely leads to a final interval that is very likely to exclude
5=0 (D or E), which might reinforce the decision to stop the trial. However, if the
prior is used for prediction then the chance that a final 99% interval includes O rises
to 0.26, whereas the chance that the sceptical posterior interval includes 0 is 0.41.
Thus the eventual result of the study is not a foregone conclusion (we emphasize the
strong dependence on the proportional hazards assumption for this analysis, as
observing future events depends on extending the follow-up of patients already in
the trial rather than new recruitment).

7.2. Example 4: Medical Research Council Misonidazole Trials

7.2.1. The trial

In the summer of 1979 the MRC decided to investigate in three randomized trials
the effect of the drug misonidazole (MISO) that was thought to enhance the effects
of radiotherapy. The trials involved the treatment of three different cancers (brain,
head and neck, and cervix cancer), for each of which X-ray therapy (XRT) was the
main therapy. Each trial compared the outcomes of patients treated by XRT plus
MISO with those treated by XRT alone. We focus here on the head and neck cancer
trial. For this trial the primary end point was the duration of control of the primary
tumour. Patients began to enter this trial in early 1979. The design required 292 events
in two studies, giving 90% power to obtain a significant result at the two-sided 5%
level under the alternative hypothesis 6, =0.38.

7.2.2. Range of equivalence

After about 1 year’s experience it became apparent that MISO carried a higher
risk of serious side-effects, mostly peripheral neuropathies, than had been thought
previously. Such neuropathy took its most severe form in complete numbness or cramp
of the limbs and extremities. The problem occurred more frequently in the head and
neck, and cervix cancer patients than in the brain cancer patients. Clinicians began
to express concern and wished to know whether the early results indicated any benefits
that would offset the increased toxicity due to MISO. In discussion with clinicians,
minimum clinically worthwhile treatment differences were defined that could act as
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decision points in interim analyses. For head and neck cancer this was an increase
in the two-year primary control from 25% to 40%, i.e. a hazard ratio of 1.513; we
may think of log 1.513=0.414 as the upper limit 65 of the range of equivalence on
a log-hazard-ratio scale.

7.2.3. Prior distributions

We consider three different prior distributions: a reference prior leading to an
analysis based on the likelihood alone, a sceptical prior with mean 0 and implicit
sample size equal to a quarter of the planned accrual in the trial (n,=73) (i.e. a
‘handicap’ of 0.25 in the language of Section 8.1) and a more enthusiastic prior with
the same standard deviation as the sceptical prior but centred on the alternative
hypothesis 6, =0.38.

7.2.4. Likelihood

Interim analyses were conducted approximately once per year. The third such
analysis was completed in September 1981 based on 108 events, which gave a hazard
ratio estimate of 0.90 (95% interval 0.62-1.31), corresponding to a log-hazard-ratio
estimate of —0.108 with standard error 0.193.

7.2.5. Posterior distributions

Table 3 shows the consequences of assuming each type of prior opinion. The hazard
ratio estimate for the sceptical posterior is 0.94 (95% interval 0.70-1.26), whereas
for the enthusiastic posterior we obtain 0.897 (95% interval 0.82-1.46). These analyses
indicate that, even with the more enthusiastic prior opinion, the chances are very small
that MISO leads to benefits that the clinicians considered to be sufficient to justify
the risk of toxicity.

Following the September 1981 interim analysis the MRC decided to terminate this
trial (and the other two trials). The analyses presented here support that decision,
although we note that Bayesian methods were not used at the time. Final reports of
these trials may be found in references MRC Working Party on Misonidazole in
Gliomas (1982), MRC Working Party on Misonidazole in Head and Neck Cancer
(1983) and MRC Working Party on Misonidazole in Cancer of the Cervix (1983).

TABLE 3
Analysis of head and neck trial of MISO therapy with different prior assumptions for 6= log(control
hazard/treatment hazard)t

Prior Prior for 6 Prior Posterior Posterior P, (62=0g)
mean standard deviation mean standard deviation

Reference 0.0 © -0.108 0.193 0.004

Sceptical 0.0 0.234 —0.064 0.149 0.001

Enthusiastic 0.380 0.234 0.088 0.149 0.016

tFor the definitions of the various priors see the text.
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8. PRACTICAL CONSIDERATIONS

The long running debate between frequentist and Bayesian approaches to clinical
trials (Cornfield, 1966; Berry, 1987; Whitehead, 1992) has largely been ideological
but in this paper we are attempting to be pragmatic. Since the differences between
the two approaches are greatest in the monitoring and reporting of clinical trial results,
we concentrate on those issues here.

8.1. What about Type I Error (a-levels)?

Frequentist sequential schemes aim to control the overall type I error a. An
important consequence is conservatism, particularly at the early stages of a trial, where
the degree of conservatism depends on the stopping rule chosen. Some have advocated
that this choice should be determined by the plausible size of the treatment difference:
for example, a Pocock-type rule (Pocock, 1977) may be suitable when large differences
are more plausible, whereas when large differences are unlikely an O’Brien-Fleming-
type rule (O’Brien and Fleming, 1979) may be appropriate (Armitage, 1985). Freedman
and Spiegelhalter (1989) showed that explicit representation of such scepticism as a
prior distribution centred on zero difference leads to conservative behaviour similar
to frequentist group sequential schemes. (We are assuming here that the range of
equivalence is itself centred on 0 and is very narrow. If its centre is non-zero, and
the prior distribution has mean equal to this non-zero value, a simple transformation
of the scale will result in a monitoring scheme with the same statistical properties.)

If we are very concerned about sampling properties of trial monitoring procedures
it is possible (Grossman et al., 1994) to consider the frequentist properties of a Bayesian
monitoring procedure in which the trial is terminated at an analysis if a Bayesian
interval excludes 0. Table 4 shows the handicaps, expressed as a fraction of the total
sample size, which fix the type I error to be 0.05 (when monitoring with a 95% posterior
interval) and 0.01 (when using a 99% interval). As an example, if there are five planned

TABLE 4
Fraction of study size (the handicap) which is
assumed to underlie a prior distribution with
mean 0 that produces Bayesian stopping rules
based on posterior 100(1 — o) % intervals which
have total type I error o

No. of analyses Handicaps giving the
following values of a:

a=0.05 a=0.01

1 0 0
2 0.16 0.11
3 0.22 0.15
4 0.25 0.17
5 0.27 0.18
6 0.29 0.20
7 0.30 0.21
8 0.32 0.22
9 0.33 0.22
10 0.33 0.23
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analyses and we wish to preserve the overall type I error at 0.05, we could use a 95%
posterior interval assuming a prior equivalent to having already conducted a trial
in which 27% of the currently planned total sample size had been entered and no
treatment difference was observed. This particular degree of sceptical prior was derived
by other means in Section 4.1.2. We note that the handicap is fairly insensitive to
the exact number of looks, so this Bayesian monitoring scheme for a typical trial
with 3-5 analyses will have type I error roughly corresponding to the associated critical
tail area of the posterior distribution. Grossman et al. (1994) have shown that such
Bayesian—frequentist rules have good properties in terms of average sample number.

8.2. Can We Let People Stop When They Want?

An extreme example of optional stopping is provided by the theoretical possibility
of ‘sampling to a foregone conclusion’, in which asymptotically we are guaranteed
at some point to obtain a significant result even if the null hypothesis is true
(McPherson, 1974). Cornfield (1966) argued that, if you are worried by this, it must
reflect consideration of the null hypothesis as having a distinct probability of being
true. It follows that we should put a lump of probability (however small) on the null
hypothesis, and then the phenomenon will not occur.

Pocock and Hughes (1989) ‘feel that control of the overall type I error is a vital
aid to restricting the flood of false positives in the medical literature’. From a Bayesian
perspective control of the type I error is not central to making valid inferences and
we would not be particularly concerned with using a sequential scheme with a type
I error that is not exactly controlled at a specified level. In fact, if it were not for
reporting bias, we would see no objection to optional stopping. For example, if we
were carrying out an overview of all randomized trials of a given question, and we
knew the current results of all trials taking place, the type I error of any individual
trial would be of little interest.

However, there are two pragmatic reasons why we might wish to employ monitoring
schemes that have low type I error. First, reporting bias makes it more likely that
trials with ‘significant’ results are published in journals with high reputations, and
also more likely that ‘non-significant’ trials remain unpublished (Easterbrook et al.,
1991). Hence a high type I error rate would lead to greater numbers of published
false positive results, some of which may remain uncountered by published negative
reports. Second, a monitoring scheme that does not protect against early stopping
is likely to lead to earlier publication of a false positive result that will only be countered
several years later by a negative trial that has gone its full course. Similar arguments
hold for trials which are conducted in the pharmaceutical industry where each trial
is not necessarily published but is included in a submission to obtain a licence for
a new treatment. Thus, from a practical point of view, we are largely in agreement
with Pocock and Hughes, although it should be emphasized that sequential analysis
was not intended as a counterbalance to publication bias.

However, it must be understood that the two concerns above arise from a
background in which many, perhaps most, new experimental treatments are found
to be ineffective. It is this same context that leads us to recommend the use of sceptical
prior distributions, which both reflect the background information and provide a
conservative approach to early terminations of trials. In a research environment where
new treatments are usually found to be effective, the conservatism implicit in group
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sequential schemes and explicit in a sceptical prior distribution could be unattractive.
Likewise, in exceptional circumstances, there may be such compelling evidence for
a new treatment that the background scepticism is overcome and a less conservative
approach to monitoring may reasonably be adopted. Such a situation may arise in
a confirmatory trial, i.e. a trial that seeks to reproduce positive results in one or more
previously conducted randomized studies.

8.3. Which Prior Should We Use and When?

An issue that is central to the application of Bayesian methods is the choice of
prior distribution. Clearly the ‘stronger’ (i.e. the more informative) the prior
distribution, the more influence it has on the analysis. In particular, in monitoring
trials, the prior distribution will have considerable influence in the early stages of
a trial when relatively little data are available. Rosenbaum and Rubin (1984) have
also pointed out that with optional stopping the coverage properties of the final
Bayesian intervals are sensitive to the chosen prior distribution.

These considerations lead us to recommend that a community of priors should be
used in monitoring and reporting. These should include, for monitoring, a reference,
sceptical and enthusiastic prior. The sceptical prior should have mean 0 and precision
discussed in Section 4.1.3: the effect will be to put a brake on early stopping in favour
of a treatment difference. The enthusiastic prior might be an assessed clinical prior,
or a prior from a meta-analysis or possibly a prior with mean 6,, the alternative
hypothesis, and precision the same as the sceptical prior. Such a prior tends to act
against early stopping in favour of no difference or in favour of the control. Other
options may be discussed when reporting the final results.

8.4. How Can Subjective Judgments be Allowed into Reporting Trial Results?
The methods that we have introduced are to aid interpretation of the trial results.
Thus we suggest explicit separation of the results of a trial from their interpretation.
In reporting, we suggest that the results are placed in their own traditional section,
presenting means, standard errors, survival curves etc., whereas the Bayesian methods
would be included in an additional formal section on ‘interpretation’. In this
interpretation section it would be important to describe the source of any prior
distributions used and to show the sensitivity of any conclusions to a community of
prior distributions such as that discussed earlier. This section would include interval
estimates based on posterior distributions and place particular emphasis on the
posterior probabilities of the treatment difference lying below, within and above the
range of equivalence. This answers the crucial question: what is the chance, given
evidence both internal and external to this trial, that a specific treatment is clinically
superior?

8.5. How Can Bayesian Calculations be Performed?

One of the main blocks against the use of Bayesian techniques has been the lack
of suitable software. The calculations and plots for this paper were all carried out
by using a set of functions written in S (Becker et al., 1990). These functions are
available from the first author on request. The software considerably reduces the
time and effort required to perform Bayesian analyses, to the extent that there
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is only a slight addition to the time required for the standard analysis. It also provides
the best means of presenting the results—graphically.

8.6. Conclusions

We have suggested a pragmatic set of tools to help in the design, monitoring and
reporting of clinical trials. In deciding whether to start a trial, how large to make
it, whether to stop and whether the results of the trial and other studies are together
convincing to practising clinicians, a team will generally make informal assessments
of many factors, e.g. the likely variability, the plausible benefit and what is sufficient
evidence to render randomization inappropriate. All that we are proposing is that
such assessments are made more formal, to clarify the issues and to provide a rational
and explicit basis for both discussion of the issues and for decision-making. In our
experience such tools can only help in the communication between statisticians and
their clinical colleagues.
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APPENDIX A: MORE GENERAL FAMILY OF PRIOR DISTRIBUTIONS

In Section 3 we introduced a simple Gaussian prior distribution and described how a flexible
family of distributions may be obtained by allowing a two-component mixture of Gaussian,
truncated Gaussian and degenerate distributions (known as ‘lump’ priors). Applications of
such priors are contained in Sasahara ef al. (1973) and Freedman and Spiegelhalter (1992).
Here we provide the technical details for using this prior family for prior-to-posterior analysis,
prior-likelihood comparison and those predictive statements that are available in closed form,
assuming a normal likelihood given in equation (1).

A.l. Lump Priors
Let p{'™P(5) denote a prior with a degenerate mass on §=8,. Observing data x,, leads to
a posterior distribution that is unchanged from the prior. The predictive ordinate of the data
may be obtained by letting ny— o in expression (9), giving

PEMP (X)) = D(X,p, | 89, 02/m).

A.2. Truncated Prior
We suppose a Gaussian density that has been truncated below at 6; and above at 6. The
prior density is denoted

pirunc(8) = (8|89, a2/ny, 8y, dy)
and is given by

Po(0)/ [®{20(61)} — ${20(bu)}] 6. <6<y,

trunc (§) =
P 0 otherwise

where p,(6) is from expression (2) and zy(8) = (6o — 8)Vny/ o (see equation (8)). Combined with
likelihood (1) we obtain the posterior distribution
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Pm(0)/ [2{2,(51)} — @{2n (5y)}] 6. <6<dy,

trunc =
Py (®) {0, otherwise

where p,,(6) is from expression (3) and

nydp + Mx,, _5 V(ny+m)
no+m

zm(a) = (

[

(see also equation (11)).
The predictive ordinate of the data is given by

{2, (81)}— Pl2m (Su)}
P{20(51)}— P{20(6v)}

Py (X)) = po(Xm)

where py(x,,) is from expression (9). This predictive distribution does not appear to be
integrable in closed form, and hence Box’s test of prior-likelihood compatibility (Section
6.3) is not easily available, and also the chance of falling in critical regions cannot be explicitly
calculated. Hence further predictive statements require numerical techniques for their
computation.

A.3. Mixture Priors
We suppose that we have a prior that is a weighted mixture

PR (8) = wg p(8) + wg p§ (8)
where the components p$ (6) and pf(8) may be standard, lump or truncated normal densities

and wj + w§ = 1. The posterior distribution is a mixture of the component posterior densities
but with revised weights w4 and w2, so that

P~(8)= Wi ps(®)+ WhPB()
where the weights are obtained from the odds version of Bayes theorem

W _ PG m) Wo

wh, Do (xm) Wo

where wA+wB=1, and the predictive ordinates pj(x,) and p§(x,) are obtained from
expressions given previously. The distribution function of this posterior distribution is trivially
obtained.

We also have the predictive ordinate

DB (X)) = Wh DB (X)) + WB DB (xpy).

However, Box’s procedure requires the distribution function of the predictive distribution,
and hence is unavailable in closed form if at least one of the components is a truncated normal.
After having observed data, predictive statements concerning future critical events may only
be explicitly calculated if the analysis is not to include the prior, or there is no truncation
in the prior.
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APPENDIX B: INTERIM PREDICTIONS

By obtaining predictive distributions we can assess the chances that future data fall in critical
regions such as A, B, D or E (Fig. 4). In our examples below, we consider the probability
that the old treatment is clinically inferior (situation D), but it should be clear how to derive
the formulae for other criteria of interest. We consider the fully Bayesian, mixed and likelihood
approaches.

B.1. Fully Bayesian Approach: Prior used in Predictions and Analysis
For the lower extreme of the range of equivalence 6;, we are interested in values of
(X,, x,,) that lead to P,,, ,(6;)<e, where P, , is the distribution function corresponding
to the future posterior density p,, , ,(8) =p(8| X, X,,). For a simple normal prior we have that

n060+mx +nX, 02
pm+n(6)=¢ = "’ ’
ng+m+n ng+m+n
and so this critical event will occur if
ny+m+n N(ng+m+n ny6y+ mx
Xn> 0 p 61— ( 0 - )zeo__ 090 m' (10)

A similar expression for the critical value that leads to P, ,(6s)>1—¢€ can be obtained.
Using the predictive distribution (6) we obtain that the predictive probability that the future
posterior tail area P, ,(6;) will be less than ¢ is

pmsz+,.(6I)<e}=¢{zm(al)\/(?B*—;”ﬂ)+zf\/<”°:m>} an

nydy+ mx,, 6)\/(no+m)
— 0

where

ny+m [

Zm(61)= <

is the statistic from which the current tail area is derived.

This analysis also yields useful expressions for those unwilling to incorporate prior
distributions into their predictions or analyses. If we take ny=0, the improper reference prior
that yields a posterior distribution that is identical with the normalized likelihood, we obtain
from equation (6) a predictive distribution

p;;f(X,.)=¢{X,.|xm, ,,2& +l>z. (12)

n

B.2. Mixed Approach: Prior used for Predictions but not Analysis
If we wish not to include prior opinion in reporting, then the final inference will be based
on a reference posterior distribution denoted p¢f, | (), and hence future critical regions are
derived by setting no=0 in inequality (10). Usmg the predictive distribution (6) gives
predictive probability

re = -
pm{Pmin(61)<e}—¢{ZO(5I)\/{(HO‘I' m)(n0+m+”)}

zref(a)\/{m(no+m+n)}+ze\/{(m+n)(no+m)

n(ny+m) n(ng+ m+n)

} (13)
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where
21 61) = (X — S)Vm/a

is the current standardized statistic using the reference prior. A particular example of equation
(13) occurs when we have no data so far (m =0) from which we obtain expression (8) used
in predictive power assessments. If a classical stochastic curtailment procedure is desired
(although it is not recommended by us), predictions conditional on a particular value ' are
obtained by placing a lump prior on &', in which case letting ny— oo in equation (13)

gives
(pg(a/_al)\_/_’_l. +fo(61)J<m)+ze\/<m+n>}' (14)
o n n

B.3. Likelihood Approach: Prior Ignored Both in Predictions and in Analysis
Choi and Pepple (1989), Grieve (1991), Frei et al. (1987) and Hilsenbeck (1988) all discussed
making predictions solely on the basis of the data so far. All effects of the prior can be removed
by setting ny=0 in either of expressions (13) or (11) to give

p;;f{P;:&,,(al)<e}=<I>{z;:f(sl) \/(”’;”)uﬁ \/(%)} (15)

which matches expression 4.6 of Jennison and Turnbull (1990). The interesting aspect of
equation (15), noted in Spiegelhalter et al. (1993), is that it can be expressed solely in terms
of the current standardized test statistic z=2z/(¢;) and the fraction f=m/(m+ n) of the trial
so far completed, to give the probability that the future tail area below §; is less than e:

z+zex/f}
Ja-10)°

This provides an exceptionally simple tool for those carrying out formal or informal interim
analyses, who wish to make predictions based solely on the data so far. Often the consequences
of such an analysis are depressing to investigators: if, say, they are half way through a study
(f=0.5), and their sample mean is currently one standard error from the null hypothesis (z=1),
they may feel that they are well on the way to success, whereas equation (16) will tell them
that there is only a $(v'2 — 1.96) = 29% chance that they will eventually be able to report that
the final tail area is less than 0.05. Graphical figures showing the predictive probability of
the eventual tail area falling below 0.025 for a range of current z-values and fractions of trial
completed are given in Spiegelhalter et al. (1993).

Expression (16) can give rise to other useful predictive statements. Setting e=®~1(-2)
provides the predictive probability that the eventual tail area below §; will be smaller than
its current value ®~1(—z), whereas e=0.5 gives the predictive probability that the sign of
Z will stay the same. We see, for example, that for our investigator with f=0.5 and z=1
there is a 34% chance, based just on the data so far, that the tail area will be larger than
its current value of 0.16, whereas there is an 8% chance that the final effect will point in
the opposite direction. It is also straightforward to derive the full predictive distribution
function for the future tail area by considering ¢ as a random variable in expression (15).

(16)

m+n

PP, (61)<e}=<1>{
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DISCUSSION OF THE PAPER BY SPIEGELHALTER, FREEDMAN AND PARMAR

A. P. Grieve (ZENECA Pharmaceuticals, Macclesfield): I welcome the opportunity that this paper
provides for a public debate of the appropriateness of the application of Bayesian ideas to clinical trials.
It is timely on two counts. First, there is these days a far greater acceptance of the use of Bayesian
methods in general. Second on the drug regulatory front there is now an explicit acceptance of Bayesian
methodology. To illustrate:

‘Agencies should also be receptive to the use of various newer statistical and pharmacometric
techniques such as Bayesian and population methods, modelling, and pharmacokinetic—
pharmacodynamic approaches’ (International Conference on Harmonisation, 1993).

‘Although this Note for Guidance is written largely from a classical (frequentist) viewpoint, the
use of Bayesian or other well-argued approaches is quite acceptable’ (European Committee for
Proprietary Medicinal Products, 1993).

I shall concentrate my remarks on the choice, and use, of prior distributions and on the monitoring
of studies as data accumulate.

Grieve (1994) points out that the statistician’s job is not over when the analysis of a trial has been
completed and a report written. At that stage thought must be given to the transmission of the information
to diverse groups of remote clients (Hildreth, 1963). Examples of remote clients are experimenters,
reviewers and individual doctors (Spiegelhalter and Freedman, 1988) all of whom will have different
motivations and knowledge and therefore, not surprisingly, will interpret results differently. Hildreth
proposes a number of packages of information which may be ‘efficiently’ transmitted to remote clients,
one of which is the set of posterior distributions derived from a series of ‘representative prior distributions’,
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the authors’ community of priors. It may be necessary to provide more than one parcel of information
and this is acknowledged by the authors in Section 8.4. I believe that this community should be as wide
as possible. In particular when only subjective clinical opinion is available I would prefer to see the
posterior from each of the individual clinical priors presented, as I find averaging of opinions difficult
to accept as an ‘estimated opinion of a typical participating clinician’. The priors in Table 1 suggest
that the group mean is only typical of clinician 6 who is, in a sense, extreme in having the most diffuse
prior. While on this example, surely sceptical and enthusiastic priors would be ‘better’ provided by
clinicians 1 and 9 rather than the artificial constructs in Sections 4.1.3 and 4.1.4?

What is a prior for? One use, as the authors rightly point out, is to allow a ‘formal basis for the
use of external evidence’. To illustrate, Smithells and Sheppard (1980) in reply to a comment on a paper
on vitamin supplementation to prevent neural tube defects, wrote:

‘In our paper we subscribe to no belief, reach no conclusions, and offer four possible interpreta-
tions ... . We are not trying to ‘‘convince the sceptics’’, amongst whom we count ourselves.’

In fact in the original paper Smithells et a/. (1980) demolished three of the possible four interpretations
on the basis of prior data and knowledge and this would seem an ideal case to merge prior beliefs with
data to judge the relative merits of the four interpretations.

A second use is as means of shrinkage or as a yardstick against which a surprising finding may be
measured (Pocock and Spiegelhalter, 1992). Browner and Newman (1986) used a somewhat similar
argument to counter the move in medicine to an unthinking use of confidence intervals:

‘Confidence intervals are entirely data-based . .. because they do not take into account the prior
likelihood of the results, confidence intervals that are inconsistent with scientific knowledge cannot
be viewed with confidence’.

Turning to monitoring, the concept of spending the type I error (Lan and DeMets, 1983) and the
exhortation to regard stopping rules only as guidelines (DeMets, 1984) have always seemed to me to
give rise to difficult issues. In most instances adjusting for the number of analyses undertaken has
concentrated on the danger of too many analyses. However, if we regard stopping rules solely as guidelines
then a monitoring committee may, for extremely good reasons, choose not to terminate a study despite
a significant result. Have we spent the allocated proportion of the type I error for this analysis? Should
we now use K — 1 rather than K for the number of interim analyses? Had we used K — 1 would previous
results which were not significant now be significant? The authors support the idea of monitoring schemes
which protect against early stopping, i.e. schemes in which the allocated type I error increases as the
amount of data increases. I would be interested in knowing how they view Pitman’s results, reported
by Freeman (1993), which suggest that, rather than increasing, the allocated type I error should decrease.

The authors have continued a recent tradition of eschewing controversy in favour of an exposition
highlighting the practical advantages of a Bayesian approach. I have always felt this to be more fruitful
than an ideological slanging match, though the latter is often more entertaining. This view is not new.
Over 300 years ago the following advice was given:

‘And I think Mr. Bayes, when he hath had time to cool his thoughts, may be trusted yet with that
consideration, and to compute whether the good that he hath done by Railing do countervaile the
damage which both he in particular and the cause he labours, have suffered by it’ (Andrew Marvell—
The Rehearsal Transpros’d—1672).

It gives me great pleasure to propose a vote of thanks to the authors.

Stuart J. Pocock (London School of Hygiene and Tropical Medicine): I am delighted to have this
opportunity to second the vote of thanks to the authors. We have received a splendid paper illustrating
all the good things about the role of Bayesian methods in the design, monitoring, analysis and
interpretation of clinical trials.

However, I think that it is appropriate for me to adopt a constructively critical stance, under the
heading ‘thoughts of a frequentist sceptic’. In reality, this is made somewhat difficult by the existence
of my own Bayesian track record, albeit erratic. My first Bayesian article in 1976 was followed by a
12-year lapse into frequentism. A burst of Bayesian papers in the late 1980s, in collaboration with our
unit’s resident Bayesian, Michael Hughes, culminated in a letter on the Sellafield case—control study
to the British Medical Journal (which was rejected!). A further lapse into frequentism might have been
long term but for the stimulus of brief collaboration with one of today’s authors, leading to another
letter in the British Medical Journal (successful this time!).
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So one might consider whether we traditional frequentists are prone to become Bayesians when faced
with practical research questions, especially in clinical trials, which do not readily lend themselves to
frequentist solutions. Indeed one might adopt the term ‘closet Bayesian’ for statisticians and other
scientists who adopt strategies in study design and data interpretation which include concepts of prior
belief, but who do not explicitly express them in a formal Bayesian framework.

Before concentrating on my more negative comments, may I express three specific positive views?

(a) Bayesian conceptualization is very useful in study design, and in particular the oversimplification

of frequentist power calculations might usefully be enhanced by methods of sample size
determination that incorporate prior belief. Perhaps the authors might have given more space
to this topic.

(b) Itis useful to be a temporary Bayesian when faced with a surprising frequentist result. For instance,

()

the Grampian region early anistreplase trial compared home versus hospital thrombolysis after
myocardial infarction and the mortality comparison of 13/163 versus 23/148 deaths respectively
lead to an exceedingly promising 49% risk reduction (p=0.04). Help, cries the knowledgeable
cardiologist! Such a great benefit from giving the same treatment earlier simply does not make
sense. In steps the Bayesian, in this case Pocock and Spiegelhalter (1992), to incorporate
retrospectively a ‘realistic prior’ which pulls back the posterior distribution into more moderate
territory. The trouble is that this is rather a Bayesian afterthought (creating the prior after the
data have arrived which might be deemed ‘cheating’) but the principle is nevertheless a valuable
quantitative reinforcement of common sense.

It is useful that every medical statistics unit should have a resident Bayesian. Their philosophical
stimulus is a valuable adjunct to the frequentist’s armoury of techniques, which can appear
cumbersome (control of type I error in multiple look-at data) and is often misinterpreted (how
many non-statisticians really understand p-values and confidence intervals?).

However, I do see several practical and philosophical limitations in the Bayesian approach which
need to be addressed.

(a) The specification of priors raises practical problems. We have heard a helpful account of how

priors can be elicited (Section 4) but it is difficult to specify a meaningful prior that will be accepted
by all interested parties. Incorporating clinical opinion takes a large effort and is of course heavily
dependent on who is asked. The hardened sceptical trialist, the hopeful clinician and the optimistic
pharmaceutical company will inevitably have grossly different priors. Averaging priors may cover
up discrepancies, while handling multiple priors is cumbersome.

(b) The Bayesian approach lacks objectivity and reproducibility in that no two Bayesian analyses

()

of the same data need agree because of different choices of prior. Hence, it is undesirable to have
Bayesian methods replacing frequentist inference, since the objective rigour of the latter is vital
in separating factual evidence from clinical opinion. An interesting quote from Fisher (1950) may
be of relevance:

‘We should recognise Bayes’ greatness in perceiving the problem (of inference) to be solved,
in making an ingenious attempt at its solutions, and finally in realising more clearly than many
subsequent writers the underlying weakness of his attempt’.

I endorse the authors’ plea to separate results in journal papers from Bayes interpretation
(Section 8.4). However, I think the former still needs frequentist methods and, given that journal
space is always at a premium, Bayesians need to enhance the art of concise presentation, e.g.
graphs of prior, posterior and predictive distributions will often not be allowable.

Both frequentist and Bayesian inference face difficulties as regards repeated looks at accumulating
data. I do not wish to underrate the inadequacies of frequentist juggling of p-values. However,
I do feel that Bayesian inference is flawed in this context in not facing the fact that inference
and decision-making on any particular analysis should not be done in isolation but need to take
account of the whole trial process, i.e. what previous and future analyses and related decisions
were and will be intended. In the extreme, how can Bayesian inference over the course of a whole
trial restrain the enthusiast who analyses his accumulating data daily in the continual search for
a treatment difference? Although analogies between Bayesian and frequentist monitoring schemes
have been made, Bayesian decision-making regrettably still lacks an equivalent to the frequentist
control of type I error.
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(d) Many statisticians working on clinical trials are very busy in coping with the design, analysis and
interpretation of a wide range of studies. Hence, to function efficiently we need concise, well-
understood non-controversial techniques for everyday statistical life. In practice, Bayesian methods
take up too much time and space to be used routinely in clinical trials. Thus, I envisage Bayesian
methods as primarily for ‘special occasions’, i.e. major trials in which detailed planning or
interpretation can valuably incorporate prior belief or information as an aid to overall and personal
decision-making.

(e) Given that it is inevitably difficult (if not impossible) to function as a total Bayesian in applied
clinical trials, the real battleground is to persuade frequentists to incorporate Bayesian methods
into their armoury of techniques. Thus, non-Bayesians need greater help in overcoming
computational difficulties, in adapting Bayesian methods to more complex problems (e.g. covariate
adjustment and repeated measures) and in learning how to communicate Bayesian findings to
non-specialists. Although Bayesians can reply that software exists, complex problems are solvable
and doctors think like Bayesians anyway, I feel that these practicalities are major deterrents to
a more widespread use of Bayesian methods.

(f) One commendable aspect of this paper is that it brings Baye51an methodology closer to the real
world of clinical trials. In the past, there have sometimes been expressions of a more naive Bayesian
philosophy that have not given sufficient concern to the value of randomization, the need to avoid
bias and other essentials of clinical trials.

(g) There is always a possibility that my sceptical remarks reflect an underlying feeling of envy.
Bayesians appear often to have more fun (and that is not fair, is it!). The very essence of Bayesian
thinking is to adopt a personal attitude to data. Expressions of prior belief involve a more
philosophical outlook which is perhaps more relaxing than the frequentist’s worry about his overall
type I error. I suspect also that most Bayesians are less worn down by data analysis, deadlines
and doctors.

In conclusion, I would actively encourage a wider use of Bayesian methodology in clinical trials since
only by such practical experience can its true potential be properly evaluated. This paper is a most valuable
step in the right direction; I hope that it will provoke more trialists into experimenting with Bayes and
I am pleased to second the vote of thanks.

The vote of thanks was passed by acclamation.

Keith Abrams (University of Leicester): I would like to congratulate the authors on a splendid review
and demonstration of how Bayesian methods can be applied to clinical trials. I wish to raise two points.

The first regards the use of the predictive distribution in the stopping of a trial. Although I do not
entirely agree with the authors in Section 6.4 when they state that the monitoring of a trial should be
based on the posterior distribution rather than the predictive distribution, I would like to give an example
of a trial in which the decision to stop was based on summary statistics from a predictive distribution.
A recently stopped Cancer Research Campaign trial in colorectal cancer was designed to assess the role
that carcino-embryonic antigen (CEA) directed treatment of tumour recurrence should play in routine
clinical practice. A priori a treatment-policy difference yielding a log-hazard ratio of 0.42 was considered
to be necessary before CEA-directed surgery would be used routinely. Fig. 6 shows the posterior predictive
density, using a vague uniform prior distribution, for the log-hazard ratio, after having observed 171
events, whereas the trial had been planned to observe 425. The posterior predictive probability of observing
a log-hazard ratio of greater than 0.42 was sufficiently small (0.002) that further entry into the trial
was considered unethical and the trial was stopped.

The second point that I would like to raise is that of modelling failure time data. In many clinical
trials, and especially in cancer, the time to a prespecified event is the main outcome measure. Although
the ‘normal theory’ models outlined in this paper can accommodate such data, allowance for covariates
is a problem. One solution to this problem is to use fully parametric proportional hazards models.
Algebraically these models take the form

(|0, B)=No(#|6) exp(BT X). an

Estimation of base-line parameters 6 and regression parameters 8 in models such as equation (17) is
relatively straightforward with Laplace approximations (Tierney and Kadane, 1986; Abrams ef al., 1994).
These approximations require only the ability to optimize functions of several parameters and are relatively
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Fig. 6. Posterior predictive density for log-hazard ratio in the CRC CEA colorectal trial after observing m=171
deaths out of an anticipated n =425, using a vague uniform prior distribution (produced by kind permission of the
CRC CEA Data Monitoring Committee)

straightforward to implement in environments such as S-PLUS (Statistical Sciences Inc., 1991), NAG
(Numerical Algorithms Group, 1983) or LISP-STAT (Tierney, 1990).

Deborah Ashby (University of Liverpool): The authors are all respected both as statisticians and as
trialists with many years of experience. This fortunate conjunction means that there are many areas
where the work in this paper has had or is likely to have an effect. I shall restrict my comments to
the regulation of medicines.

At the moment nearly all this work is conducted in a classical framework, and guidelines have tended to
be couched in terms of classical procedures. One of the reservations about the use of Bayesian methods is
the perceived subjective nature of the prior distributions, and so the thorough discussion in Section 4 of the
role of prior evidence is especially welcome. However carefully a trial or set of trials has been done, the
evidence must be judged against a background of other knowledge and experience. A graphical display
of the main conclusions quantified as a function of prior beliefs is always welcome, but I particularly
like the ‘standardization’ of the sceptical and enthusiastic priors, as useful yardsticks against which
to judge the robustness of conclusions. However, these seem to depend for their specification on a
‘classical’ trial design, and I wonder what would the authors recommend in a more fully Bayesian setting?

There is now an emphasis on harmonization of regulatory procedures both within the European
Community and beyond, in all areas, including statistical practice. I sense an increasing willingness among
statisticians involved in drug regulation to explore the use of Bayesian approaches, and it is to be hoped
that as guidelines are revised they explicitly include advice in this area. This paper makes an important
contribution to the process, by setting out useful methods in a comprehensive but clear way, by providing
easy-to-use software and most importantly by giving real examples that are models of good practice.

M. J. R. Healy (Institute of Education, London): This may be one of the most important papers
presented to the Royal Statistical Society in recent years. For a long time, Bayesian methods have been
widely discussed in the theoretical journals. Now they are beginning to reach the users of statistical
methods and this paper makes them available in an important field of application.

That they are urgently needed can scarcely be questioned. The standard frequentist methodology,
not only in clinical trials but across the range of medical statistics, must be regarded as a confidence
trick. As statisticians we abandon to the user the responsibility for choosing the design parameters with
the minimum of guidance. (Why the invariable 5% for «? Conditional on this, why the larger 10%
or even 20% for 3? Is it really more important not to make a fool of yourself than it is to discover
something new?) We have nothing helpful to say about the confirmatory trial, even when P. M. Grundy
showed many years ago that such a trial required quite special design considerations involving the
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information initially available (Grundy ef al. (1956); K. D. F. Tocher’s contribution to the discussion
anticipates much of today’s paper).

The problem that I would like to pose to the authors, though, is serious. We have now been teaching
frequentist techniques in medical schools and imposing them on journal papers for several decades.
How do we confront the Kuhnian paradigm shift that the spread of subjectivist thinking represents?
How do we go before the enormous user community and confess to them that we got it all wrong,
that they have to relearn a discipline that they already find difficult and unfamiliar and that the heaven-
sent computer packages that minimize the need for thought when analysing data must now be abandoned?

C. Jennison (University of Bath): I would like to draw attention to frequentist methodology for
combining information on a study’s major end point with other, possibly external, evidence. First, this
was a key motivation for the development of repeated confidence intervals as a tool for interim monitoring
(Jennison and Turnbull, 1989). Secondly, it is often desirable to combine information from two or
more internal sources, e.g. treatment efficacy and safety, and Jennison and Turnbull (1993) have shown
how to extend group sequential methods to monitoring such a bivariate response.

The authors’ proposed stopping rule, based on the current ‘credible interval’, appears a rather arbitrary
choice and I wonder whether the implicit question, ‘Do the available data allow us to reach a conclusion
with confidence 1 —€?’, is the correct one to ask. I would rather ask “Is the cost of continued sampling,
financial or ethical, justified by the increased probability of reaching the correct conclusion?’. Utilities
must be specified to answer this question and, although these are undoubtedly difficult to elicit, it is
difficult to assess any stopping rule in their absence.

Although frequentist group sequential tests are often derived without explicit reference to utilities,
good frequentist tests have deep connections to fully specified Bayes decision problems. Suppose that
we specify the type I error, power at a given alternative and group sizes, and seek the group sequential
test with minimum expected sample size, integrated over some parameter distribution. Complete class
theorems (Brown et al., 1980) imply that an optimal test must be the Bayes test for some combination
of prior and utility function which ascribes costs to sampling and to making a wrong decision. Eales
and Jennison (1992) exploited this relationship in computing optimal frequentist group sequential tests;
they also suggest that experimenters should examine the decision problem solved by a test to see whether
the implicit utilities are reasonable.

Whatever their philosophical status, repeated sampling properties are useful in calibrating stopping
rules. There is a limited connection between posterior confidence levels and frequentist error probabilities,
especially in the sequential setting. Thus, I am pleased that the authors consider frequentist properties
of their methods. I would invite them to go a step further in

(a) showing that their stopping rule is at least an approximate solution to a Bayes decision problem and
(b) presenting the utility function implicit in the underlying decision problem as a means of assessing
the suitability of their stopping rule.

J. A. Lewis (University of Kent, Canterbury): This paper is very welcome because it adopts an
integrative and not a divisive approach to Bayesian and frequentist methods. It also places its material
in a practical context. Most applied statisticians have little interest in confrontation between rival
philosophies but have a keen interest in pragmatic solutions to real problems and hence will applaud
the realistic attitude of the authors.

Of particular importance is Section 8.4. Here the authors propose separation of the results of the
trial from their interpretation. This separation constitutes a major step forwards in increasing the potential
acceptability of Bayesian methods. In the regulatory context, for example, where different interpretations
of clinical trial results can critically affect access to enormous medical markets, it is vital to keep one’s
feet on the solid ground of data and facts. Robust and verifiable assertions which can be made entirely,
or almost entirely, on the basis of the data constitute the area of potential full agreement. This area
must be crystal clear and explicit. Only in this way can areas of disagreement be isolated and understood.
The subsequent use of Bayesian methods to introduce external opinion and evidence may then help
to resolve such disagreements.

We are shown in two examples how prior distributions can be based on results from earlier randomized
trials (Section 3.2.3, Medical Research Council neutron therapy trial, and Section 4.2.1, beta-blocker
heart attack trial). It is instructive to observe that in each of these cases the estimate of the treatment
effect from the subsequent trial agreed very closely with the prior estimate from the earlier trials.
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In the Medical Research Council trial prior clinical opinion was at much greater variance with the
subsequent trial results. I am concerned that all too often insufficient attention is paid to identifying
and summarizing earlier relevant data. Statisticians may be tempted to leave this task to clinical colleagues.
In my experience a prior distribution based on a statistician’s thorough quantitative assessment of the
literature will nearly always have the edge over a clinician’s judgment. This has the consequence that
I am reluctant to attach any further mystique to ‘clinical opinion’ in the context of clinical trial work.
I do not wish to encourage my medical colleagues to think that they have a direct line to the truth which
is independent of previous data. I want their views to reflect previous data, but I fear that this may
be an unrealistic wish.

D. V. Lindley (Minehead): The authors are to be congratulated on a splendid paper. Many Bayesians,
myself included, had thought that, once the methodology was in place, the applications to an applied
field, like clinical trials, would be straightforward. This is not so; there are real difficulties that have
been successfully overcome in this paper. There is one point where I disagree.

The authors dismiss the use of expected utility as being unrealistic. In a sense this is right, for to
have given a treatment of the decision aspect of clinical trials, in addition to the inference side, would
have unreasonably lengthened the paper and demanded much research. Nevertheless, it must be recognized
that clinical trials are not there for inference but to reach a decision, and the omission of their raison
d’étre is serious. In the long term, expected utility is realistic and, indeed, necessary.

It must be 25 years ago since I gave a seminar on sequential methods, including clinical trials, and
was told, in the discussion, that the use of probability to express one’s beliefs was unrealistic. The authors
have demonstrated that, on the contrary, it is realistic. They are wrong about expected utility just as
my discussants were about probability.

We should use Bayesian concepts firstly because they work and secondly because only with them
is it possible to be coherent. To appreciate this, contemplate the situation when you have just been
given some data. Why not just look at them and express an opinion about the parameter? Why go
through elaborate calculations, whether frequentist or Bayesian? If we can assess a prior directly, why
not a posterior? The answer is: to achieve coherence, to make all our beliefs cohere; in particular, to
make our final beliefs cohere with those that went into our likelihood. This is why frequentist p-values,
interpreted as beliefs in the null hypothesis, are unsound; they do not cohere.

The same reasoning applies to decisions as to beliefs. It is only by using expected utility that we can
be sure that our actions will fit together sensibly. I suspect that the procedure, suggested in Fig. 4, of
continuing with the trial until a tail area probability in the posterior is small, is just as incoherent as
a belief based on the tail area, p-value. Or, if it is coherent, it implies an inept utility, such as one taking
only values 0 and 1.

I hope that it will not take 25 years before the Royal Statistical Society has a paper, perhaps from
a student of Spiegelhalter’s, doing for utility what this does so well for probability.

David Machin (Medical Research Council Cancer Trials Office, Cambridge): The authors have
described a persuasive case for the use of Bayesian methods in clinical trials. It is clear that such an
approach can provide sensible procedures for assessing trials that need to be stopped early or extended,
incorporate external information into the final assessment and cope with unscheduled analysis.

However, it is important to remember that, at the design stage of any trial, rather arbitrary decisions
are made with respect to test size, power and the method, and frequency, of any interim analysis. A
vital ethical requirement, at this stage, is that there must be considerable uncertainty about the size
of & (Machin, 1992). This uncertainty implies that, if the trial is to be conducted at all, any initial prior
remains ‘very vague’ and is centred close to §=0.

The prior distribution obtained from investigators tends to be centred around their optimistic belief
rather than a summary of their knowledge of the current evidence (Freedman and Spiegelhalter, 1983;
Freedman ef al., 1984). At best it will be a compound of anecdotal information, the published literature
and personal experience. In certain circumstances such a prior may be obtained from a formal overview
(Stewart and Parmar, 1993). One question is whether the point estimator from an overview is used as
the prior or to supplement the investigator’s prior.

As a trial progresses the external information available will be evolving and, in using a Bayesian
approach, it is essential to stipulate how it is to be selected. One possibility is to confine attention to
randomized clinical trials that are included on an established register (Fayers and Armitage, 1993).



394 DISCUSSION OF THE PAPER BY SPIEGELHALTER, FREEDMAN AND PARMAR [Part 3,

There is a clear need for case-studies (Fayers et al., 1994) and in a previous paper (Spiegelhalter
et al. (1993), Fig. 2) the authors reported an investigator prior for a trial of the European Osteosarcoma
Intergroup. Recruitment of patients to this trial was completed in 1993 with 407 patients, and the analysis
is in preparation. It will provide a valuable first case-study of the methods discussed in this paper.

G. B. Newman (Abbots Langley): I would like to take advantage of the authors’ consideration of
alternative prior distributions to introduce the Bayesian bigot. The Bayesian bigot is a Bayesian who,
whatever the outcome of the trial, does not believe that the treatment being tested is of any use. The
need for a Bayesian bigot came when considering responses to a trial in test-tubes of the immune reaction
to homeopathic treatments. These treatments are diluted beyond the point when we would expect a
single active molecule to be present in the preparation. The experiments appear to show that a reaction
is still present and this would leave a vast hole in current scientific theory and medical treatment (Davenas
et al., 1988). So great was the disbelief, or possibly the consequences, the journal Nature sent a team
to investigate the experiment. The experiment has been repeated many times, most recently at University
College London (Hirst et al., 1994), where the data were analysed by J. Burridge using frequentist
methods. It is clear that any Bayesian could have dismissed the original conclusion by placing a sufficiently
small prior in the region of the apparent results. How unrealistic this bigoted Bayesian would have to
be before the experiment, still to prefer his own beliefs after the experiment, is a useful measure. The
inclusion in Nature’s investigating team of a magician and expert in scientific fraud suggests that our
authors should include some prior probability that the evidence is not related to the hypothesis at all.
My Bayesian bigot could then use this to maintain his beliefs.

J. A. Bather (University of Sussex, Brighton): I was pleased to find that the authors accept the principle
of randomization in clinical trials, although mildly disappointed that they did not include a Bayesian
justification. This might be based on extending prior distributions to cover subject variability and possible
allocation bias but, if such a justification is possible, I suspect that it would be complicated and
unconvincing.

It is surprising that the control of type I errors is such an important feature in Section 8 of the paper.
The authors do not make clear whether they would otherwise wish to specify the stopping rule in advance.
The choice of sample size or the imposition of a sequential stopping rule is part of the design of an
experiment. For this reason it is important to state the intended rule for termination, in spite of possible
intervention by the monitoring committee during the experiment. If the stopping rule is not defined,
it is difficult to compare the design with other possible ways of carrying out a controlled experiment.
For example, one cannot evaluate operating characteristics such as error probabilities and expected sample
sizes in advance.

R. A. Bailey (Goldsmiths’ College, London): I congratulate the authors on their clear, interesting
paper with its pragmatic approach. I particularly like the idea of sceptical and enthusiastic priors, with
the corollary that the trial must collect enough data, of sufficiently high quality, to convince people
who start from different assumptions.

However, it does seem that, as so often in pro-Bayesian papers, what is being criticized is not the
frequentist approach per se but inappropriate use of frequentist methodology. If neither clinicians nor
the regulatory authorities believe the null hypothesis then it is an inappropriate null hypothesis. Is there
any essential difference between using Bayesian methods with sceptical and enthusiastic priors and using
frequentist methods looking for enough evidence to convince two people with different null hypotheses?

My only major worry about this paper is the contradiction between the often-stated need for, and
belief in, randomization in the conduct of clinical trials and the absence of any mention of randomization
in the more mathematical parts of the paper. The paper is about ‘randomized trials’, and the authors
‘fully accept the need for randomization’. But why is randomization used? It does not appear to affect
either the statistical modelling or the data analysis.

Call the two treatments A and B. Two possible schemes for allocating treatments are the systematic
alternating schemes ABABABA ... and BABABAB ... . Among the many commonly suggested
methods of randomizing the treatment allocation are: random choice between the two systematic
alternating schemes; tossing a coin for each patient; randomized blocks of, say, 10 patients; randomization
to balance over covariates. Do the authors recommend their methods if one of the systematic allocation
schemes is used? Do they recommend exactly the same analysis no matter which randomization method
is used?
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S. J. W. Evans (London Hospital Medical College): Many Bayesians seem to me to be rather like
unmarried marriage guidance counsellors! To change the metaphor, they do not dirty their hands
with real data. Spiegelhalter, Freedman and Parmar are among those who have helped with real data,
and they are to be thoroughly congratulated.

Our real problem is how to change the paradigm, as Professor Healy has suggested. I wonder whether
some incremental approaches can be tried.

The first approach is an elicitation of priors. Whatever the paradigm, this seems worthwhile in itself
and should be encouraged, whatever we are going to do, whether frequentist or Bayesian. It is useful
for prior simulation of trials as well as for sample size calculations.

In relation to this, as some people have said, it is important to distinguish between belief and belief
supported by evidence. The beliefs that the clinicians have are very often entirely unsupported.

Secondly, it seems to me that meta-analysis priors should be a requirement for part of the introduction
to papers. I would ask whether the meta-analysis itself should be done in a Bayesian method. Publication
bias is likely to decrease the variance of the prior as well as to bias its direction when we look at published
papers.

The third area where I think that the paradigm can be changed is that in many senses the Bayesian
approach answers the problem that the scientist has: it ‘scratches where the scientist itches’. The
mathematician’s approach, which has been that of the frequentist, has not been an answer to the problem
for the scientist about what is happening in the real world. It is always slightly sad that the Bayesians
have concentrated too much on the mathematics in some instances and not enough on the science.

Lastly, the authors of this paper are to be congratulated if we believe in the union of statisticians,
in that it will be much more difficult for non-statisticians to carry out the analyses.

Niels Keiding (University of Copenhagen): It is often said that the possible introduction of Bayesian
ideas into clinical trials (and biostatistics in general) will require an inordinate amount of reteaching.
However, we should not forget that the basic frequentist concepts are almost impossible to accept by
the uninitiated lay user of statistics. As soon as we statistical priests are out of the room, they say ‘P
really means the probability that the treatment has no effect’, even if they have understood that we
shall condemn them when we hear their sins. It is the convoluted frequentist concepts that are so difficult
to teach in the first place.

The authors phrase their discussion of clinical trials as if these form part of science, leaving room
for imagination and intelligent reasoning in their design and interpretation. However, many (most?)
clinical trials are there to protect us in our capacity as current or future consumers of pharmaceutical
drugs. We have appointed the regulating agencies to rein in claims of efficacy founded only on profit
for the industry. In their often unrewarding efforts to complete this task for us, they need to prescribe
the ritual dances that at least in the frequentist guise look so ridiculous. Here imagination is forbidden,
so this cannot be science. Do the authors believe that the Bayesian approach allows less ridiculous
guidelines from the regulating agencies?

The decisive point to me is that we should give our subject a chance to come closer to the concepts
of the well-informed lay public. Let us see how the Bayesian approach works and keep our bets that
regulators will still need to set arbitrary standards.

J. N. S. Matthews (University of Newcastle upon Tyne): We have heard much about priors and beliefs
this evening, so I shall take up this ecclesiastical theme. In the 1970s, the Archbishop of Canterbury
was asked to comment on two musicals then in the West End: Godspell and Jesus Christ Superstar.
The Archbishop said that the former converted people because of itself, and Jesus Christ Superstar
in spite of itself. Dr Ramsay seemed to think that this was a point in favour of Godspell. However,
it has always struck me that it is actually much more convincing for a conversion to have happened
via Jesus Christ Superstar. That seemed to be a much more important feature.

This evening’s lesson is essentially along those lines, in that, if we can show that treatments can be
changed on the basis of a sceptical prior, clearly this will be more convincing. Therefore—as we have
already heard from numerous discussants—the role of the sceptical prior is very important.

My worry about the elicitation of these priors is that medical statisticians tend to become involved
in particular projects essentially by invitation and accretion to certain groups of medical colleagues.
The medical research world seems to me to be a much more combative and brutal world than our gentler
environment. Consequently it seems that the medical statistician may not be all that well placed to elicit
sceptical priors, as there may be many clinical opinions of which he is unaware. Therefore, in eliciting
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these priors, strict attention must be paid to the principles of statistics concerning sampling, so that
such bias may be avoided.

Sheila M. Gore (Medical Research Council Biostatistics Unit, Cambridge): Mr President, ladies and
gentlemen, the authors have ably illustrated the need for greater formalism in the use of external evidence
in the design, monitoring and reporting of randomized clinical trials. My questions mainly concern the
range of equivalence, which is crucial for clinical practice but ‘is not straightforward’ to specify and
‘will often change as a trial progresses’. No uncertainty over the range of equivalence is admitted: why,
I wonder, have the authors eschewed a prior distribution on the range of equivalence?

I suggest a need to consider reference limits for the range of equivalence. These can be appealed to
if, for example, treatment protagonists are minded to shift the goalposts (the trial’s range of equivalence).
An argument for suspension of randomization in the Medical Research Council’s neutron therapy trial
was that, even if the upper limit of the range of equivalence had been as low as 0.15 (as with aspirin
prophylaxis to reduce myocardial infarction), there was little likelihood of high energy neutrons being
preferable to photons, and therefore randomization should cease. The Clatterbridge Review Committee,
uncomfortable with decision-making based on such confidence intervals, might have understood the
authors’ graphical formalism. -

The range of equivalence and prior belief concerning an experimental treatment are used to justify
randomization. I raise a concern about continued 1: 1 randomization, apparently with informed patient
consent, when the interim posterior distribution shifts in relation to the range of equivalence from [25,
50, 25] at the start of the trial to say [50, 30, 20] favouring the experimental treatment at interim
analysis. A consumer principle of randomization (Gore, 1994) would allow patients and their doctors
to select between limited randomization ratios, such as 2:1 or 1:1 or 1:2, the chosen randomization
stratum being, of course, a patient covariate. As the trial progresses, and as new evidence becomes
available, the proportion of patients choosing a particular randomization stratum may shift, at patients’
or their doctors’ instigation. N

Stephen Senn (Ciba Pharmaceuticals Division, Basle): I welcome this clear and useful account of
Bayesian approaches to planning and analysing clinical trials. I have the following criticisms.

The first example raises some questions regarding priors. The experts were ‘knowledgeable about
neutron therapy’ but must either have been in ignorance of the results of the individual trials already
run or incoherent or confused during elicitation. Any of these calls the utility of this ‘knowledge’ into
question. It does not appear possible to take the data from the previous trials and to subtract them
from the prior by using the inverse of equation (3) in any way which makes sense. Yet, by doing this,
we ought to be able to reach some sort of palaeo-prior representing beliefs before trials were first run.
I's this ‘group clinical opinion’ not an example of information which is worse than useless? If Bayesian
updating is to become a regular feature of analysing clinical trials and if expert opinion is to become
part of the process then, to avoid counting results twice, it will be vital to know who knew what when.
Further, in Section 4.2.3 the suggestion is that, where there are no similar previous studies, subjective
priors are needed: why? In Section 3.2.3 the posterior of a meta-analysis was entertained as a possible
prior to the trial. But, whatever expectations went into planning the trials comprising the meta-analysis,
they do not appear to be regarded as relevant to the calculation of its posterior which in turn becomes
adequate as a prior. The practical lesson for me is that there are conjectures used in planning trials
which are not usefully combined with their result when reporting them—a position which is natural
for all frequentists.

Second, I am not entirely happy with all the claims made regarding the Bayesian approach’s advantages,
in particular, as regards ‘equivalence’. Methods for handling this exist in frequentist formulations
(Mehring, 1993) but references on equivalence trials (Makuch and Johnson, 1989) justify the oxymoron
‘equivalence is different’. For example, failed experiments are more likely to produce apparent equivalence
and if a Bayesian approach is to meet the claim of absorbing equivalence and superiority in a single
coherent framework, in the way in which the summary claims, it needs to model the competence of
experiments (Senn, 1993). When this is done, certain frequentist concerns are seen to be reasonable.

Jay Herson (Applied Logic Associates, Houston): The authors are to be congratulated on presenting
such a comprehensive and persuasive paper on the use of Bayesian methods in clinical trials. I have
long believed that frequentist methods are useful for ‘pre-trial betting’ (i.e. design of a clinical trial),
whereas post-trial or intra-trial inference should always be based on likelihoods. The Bayesian framework
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which allows for incorporation of prior information into likelihoods appears to be ideal. I also champion
the use of frequentist principles to select between several Bayesian schemes and was pleased to see the
authors apply that technique in Section 8.1.

Still, the greatest challenge for Bayesian application lies in the specification of the prior distribution.
Publication bias affects the accuracy of both literature-based priors and expert-elicited priors. Most
trials have multiple efficacy end points, but the priors that we choose for them may arise from a variety
of populations of patients. How can the covariance structure be specified to relate to the population
being studied?

I was surprised to see the authors suggest any type of averaging of priors in the CHART study when
those resulting from the elicitation effort differed so widely. Are we not faced with a problem akin
to finding a treatment X centre interaction here? The middle ground may not be representative of any
expert’s prior knowledge.

The ‘community of priors’ approach would be impractical for use by pharmaceutical industry
statisticians. They would fear that regulators might choose that prior from their community that is least
favourable to their drug as the only reasonable prior to use. A single defendable prior would be required
by these researchers.

The next 10 years will see a rapid development and proliferation of Bayesian methods and software.
Bayes methods will someday help researchers to decide not only when to terminate a trial but also when
to begin a trial—perhaps by estimating the cost of the trial/unit decrease in posterior regret that would
result. Indeed, Bayesian methods may someday help patients to make decisions on which type of treatment
to choose among several alternatives available (e.g. breast cancer and acquired immune deficiency
syndrome).

We have come a long way since Bayesian methods in clinical trials were first suggested in the early
1960s. In bridging theory and practice, we have certainly not reached the end, not even the beginning
of the end but, perhaps, the end of the beginning.

Bruce W. Turnbull (Cornell University, Ithaca): Certainly there is a place for both ‘pragmatic’ Bayesian
and frequentist approaches in the deliberations of a data monitoring committee (DMC). My own views
concerning the Bayesian approach have been summarized in Jennison and Turnbull (1990). Although
rigid stopping rules are not realistic nor recommended, there is something to say for having rigid stopping
guidelines. In an ideal protocol, the end points of interest are specified in advance together with a grouping
of them into categories—major, minor, etc. Stopping guidelines are specified for each category. The
meeting of a criterion forces a formal discussion and vote by the DMC. At the discussion, quantitative
information about 8, in the form of a repeated confidence interval, say, is considered along with other
information obtained from outside the trial or from inside the trial but independent of the estimate
of 6. Any more formal method whereby a ‘community of priors’ is updated according to this accumulating
external information may not be practical. Also it could be quite confusing when reported to a scientific
or public audience.

There are dangers in procedures like those described in Section S.1. Ignoring the multiplicity leads
to procedures with poor frequentist properties and this should be of concern, as the authors seem to
agree in Section 8. The authors disdain a Bayesian decision theoretic approach. Apparently this is for
two reasons:

(a) a realistic assessment of utilities is impossible (Section 3.1) and
(b) the consequences of continuing are of secondary importance (Section 6.4).

The counter-argument to (a) is that precise knowledge of utilities is not required to obtain the general
form of the optimal procedure. Typically, the general form of the optimal procedure is like a frequentist
group sequential procedure because it will account for the consequences of continuing (Eales and Jennison,
1992). Against (b), we assume that the consequences of continuing are of crucial importance at the
start of the trial—so why not a little later into the trial?

There are other pressing statistical problems in clinical trials where a Bayesian approach could shed
valuable insight. One concerns the multiplicity of end points; in one current trial there are eight efficacy
end points and over 30 major safety end points! The frequentist approach strives to protect type I error
and is unduly conservative. Another high priority statistical problem, especially common in disease
prevention trials, is how to account for contamination, non-compliers and drop-outs, where an intent-
to-treat analysis may be inappropriate or irrelevant.
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The following contributions were received in writing after the meeting.

Douglas G. Altman (Imperial Cancer Research Fund, London): The authors (and many discussants)
have demonstrated that the dichotomy between ‘Bayesians’ and ‘frequentists’ is increasingly inappropriate.
The authors have made valuable suggestions regarding the analysis and interpretation of clinical trials,
incorporating ideas from both schools of thought. I look forward to seeing their ideas on the presentation
of results put into practice in medical journals. One of the main concerns about the Bayesian method
is the specification of the prior distribution. Although this paper includes examples of how prior
distributions can be obtained in various ways, I do not think that all worries will be alleviated. A key
issue that is not really addressed is the reliability of the prior information. For example, the prior
distributions of nine clinicians for the treatment benefit in the CHART trial (Table 1) gave a very similar
distribution to that of clinician 6 alone (whose distribution had an unusually high spread). I am
uncomfortable about the idea that an analysis would take equal account of one subjective opinion as
of the combination of nine opinions. (There is also the design issue of whose opinions are sought, and
how many.) Further, treating opinions as equally informative as the results of prior trials does not seem
right either, nor does ignoring the question of whether the prior trials are strictly relevant, as in the
CHART study. It seems highly desirable to take account of the source and reliability of the prior
information, although it is by no means obvious how these aspects can be quantified.

If these methods become more common I wonder about the possibility that once clinicians understand
how their opinions will affect the results of the trial they might feel that it was in their interest to be
(even more) overoptimistic about the effectiveness of a new treatment than they are at present.

P. Armitage (Wallingford): The authors have given us many illuminating papers on this subject, of
which the present is perhaps the most penetrating. I am impressed by the breadth of its coverage, the
persuasive yet balanced style of its presentation and the authors’ refusal to lose sight of practical
constraints.

They favour the use of uninformative priors, or equivalently likelihood, for the public transmission
of trial results, and this seems sensible. As they remark, the conclusions will usually be effectively the
same as with an appropriate frequentist analysis. Among the consumers who might want to use their
own priors to interpret trial results are public bodies such as regulatory authorities. The authors suggest
that in judging efficacy results these authorities might use sceptical priors. I am not so sure. A firm
would have cause for complaint if its apparently effective drug were downgraded because of general
scepticism. Conversely, toxic effects should be taken at their face value, rather than minimized because
they were not seen in other submissions.

A different problem is posed by another important public body, the United States National Institutes
of Health (NIH). A 1993 bill requires that NIH-sponsored trials should provide evidence that research
results apply equally to both sexes and to different minority groups. This would, of course, require
impossibly large trials, and there is much anxiety about the implications of this legislation. Perhaps
the NIH should announce that the results of a trial will be interpreted with a multivariate prior assuming
high correlation between treatment effects for different strata. This would be equivalent to the current
tacit assumption that interactions are ignorable without strong evidence to the contrary and would imply
that results from one trial could reasonably be generalized to other populations.

A final point concerns early termination based on the various sorts of interval estimate shown in
Fig. 4. Clearly, A and E would require termination on ethical grounds. The authors suggest that B and
D may also justify termination, and this apparently happened in examples 1 and 4 (but not example
3). These situations present no ethical problem, because it remains unclear whether one treatment is
superior or whether the parameter is in the equivalence zone. It would often be important to reduce
this ambiguity by continuation of the trial: why stop prematurely?

A. C. Atkinson (London School of Economics and Political Science): The design of clinical trials
was more mentioned in the presentation than it is in the published version of this stimulating paper.
The design aspects of clinical trials do, however, raise interesting problems in the application of Bayesian
methods.

If the responses are normally distributed an appropriate linear model is

E(Y)=XB+Zy
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where X is the design matrix representing treatment allocation, functions of 3 are of interest and Z
is a matrix of prognostic factors. The simplest trial is that in which patients are randomized to two
treatments and the contrast 3, — (3, is the parameter of importance. Many reported trials are of this
form. However, it is a principle of the design of experiments (Fisher (1960), section 40) that nothing
is lost in a factorial experiment by adding extra factors. A first question is to what extent is the addition
of subsidiary factors standard practice?

With two treatments, randomization should provide satisfactory balance over Z. But, with a more
complicated treatment structure, straightforward randomization may need an exorbitant number of trials
to guarantee a reasonable degree of balance. It then seems natural to incorporate Z into the allocation.
Atkinson (1982) described an extension to the biased coin designs of Efron (1971) which uses a randomized
version of D,-optimality for contrasts in 3 to provide designs which have a high probability of being
reasonably balanced whenever the trial is stopped. Some methodological references to other non-adaptive
allocation rules are given in section 22.4 of Atkinson and Donev (1992). Are such designs of practical
importance?

There is nothing Bayesian in this. However, the response will often have a non-normal distribution,
e.g. binomial. Then the optimum design will depend on the values of 8 and . The locally optimum
designs of Box and Lucas (1959) for non-linear normal theory models correspond to the use of a point
prior. The Bayesian extension is to designs in which the expectation of the design criterion is maximized
over the prior distribution of the parameters. Fortunately the general equivalence theorem of optimum
experimental design theory goes through so that standard methods of design construction are available.
Examples for binary data are given by Chaloner and Larntz (1989) and in chapter 19 of Atkinson and
Donev (1992). Is there any practical interest in such Bayesian designs for clinical trials? Is it diminished
by the remarks in Section 2.1 which return the problem to the normal theory linear model and away
from the need for the specification of priors?

Donald A. Berry (Duke University, Durham): This is another fine paper by this team of authors.
I congratulate them for their success in applying Bayesian attitudes to the design and analysis of clinical
trials. I especially like the way that they handle elicitation. I hope and believe that their efforts will
help to bring these attitudes to the mainstream of clinical trials, with enormous benefit for all. The
updating process is scientifically pleasing and represents a giant step in methodology. I have a single
comment and it concerns the future direction.

I disagree that a decision theoretic approach using utilities is unrealistic in clinical trials: ‘the
consequences of any particular course of action are so uncertain that they make the meaningful
specification of utilities rather speculative’. Speculation and assessing uncertainty are the stuff of the
Bayesian approach. In deciding whether to stop a trial the authors spurn utilities and so ‘are left with
the conventional bench-marks such as 2.5% and 5%’. In my view, deciding whether to stop a trial requires
considering why we are running it in the first place, and this means assessing utilities.

We conduct clinical trials to learn about the relative safety and efficacy of the therapies involved.
Learning is important. But designing a trial for the sake of learning alone is not consistent with delivering
good medicine. Information has costs. Trial participants may receive inferior therapy. Patients outside
the trial may be ill served if the trial lasts too long since access to information from the trial would
be delayed. In contrast, a trial that is stopped too soon may lead to the wrong conclusion and patients
may be treated inappropriately as a result. Or, the trial may be stopped with results that are convincing
to the investigators but not to practitioners or regulatory officials. Or, the discovery of and
experimentation with new and innovative therapies may be inappropriately suspended. In the Bayesian
approach each of these possibilities can be considered explicitly.

An example in which the various uncertainties are explicitly considered is carried out in Berry ef al.
(1992, 1994). The goal is to prevent cases of haemophilus influenzae type b among native American
infants over the next N years. Explicitly considering such a horizon is an idea due to Anscombe (1963)
and Colton (1963). The trial is stopped when continuing it (optimally) results in a greater number of
expected cases.

Spiegelhalter and co-workers use an indifference region and ‘conventional bench-marks’ as surrogates
for utilities. I encourage them to develop a fully Bayesian approach and I am sure that it will be as
elegant as the development embodied in the current paper.

Marc E. Buyse (International Institute for Drug Development, Brussels, and Limburgs Universitair
Centrum, Diepenbeek): The basic tenet of Bayesian approaches is that there may be something to gain
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from ‘mixing’ data with some prior distribution. Let us examine how such a prior might reasonably
be obtained.

(a) The prior might be elicited from expert clinicians. The example of neutron therapy chosen by
Spiegelhalter and colleagues is somewhat chilling, since the prior distribution based on clinical
opinion bears no resemblance whatsoever either to the results of a meta-analysis of similar trials
or to the results of the new trial itself! Although it may be instructive to document such a
phenomenal discrepancy, it may not be sensible to mix the trial data with a prior which is so
blatantly irrelevant.

(b) The prior might be based on the results of a meta-analysis. As Stein suggested long ago (from
an empirical Bayesian viewpoint), it may be sensible to shrink the extreme result observed in a
single trial towards the mean of all results observed thus far. Even when a meta-analysis is available,
however, extrapolation of its results should still be viewed with scepticism. A striking example
occurred when all investigators involved in the overview of early breast cancer trials were asked
to predict a plausible range for the 10-year survival benefits of adjuvant therapy based on the
S-year survival benefits. The 10-year benefits actually observed were far larger than even the most
optimistic estimate (Early Breast Cancer Trialists’ Collaborative Group, 1992)!

(c) The prior might reflect plain scepticism (with much of the prior mass on zero treatment effect),
which implies that only extreme trial results will be deemed convincing. This is the view taken
by regulatory authorities who require that two independent trials be significant at the 0.05 level
(an overall significance level of 0.0025) before they grant market authorization to a new drug.
We can wonder whether the heavy artillery of Bayesianism has much to add to this simple-minded
conservative approach, given the little information available in the early stages of a new drug’s
development.

Spiegelhalter and colleagues must be congratulated for making the case for Bayesian approaches to
clinical trials so clearly. But, for all their ingenuity, I can only feel that the practical use of Bayesian
approaches in medicine will continue to be severely limited for quite some time by the absence of reliable
prior information on treatment effects. The very reason to perform a clinical trial is in many cases to
show that prior opinions are well intended but misguided—and that as such they may do more harm
than good to the interpretation of valuable clinical data.

Bradley P. Carlin (University of Minnesota, Minneapolis): My heartiest congratulations go to the
authors on an outstanding paper, which shows the current state of the art in Bayesian design, monitoring
and analysis of clinical trials. The authors have been intimately involved in the development of much
of the theory and practice described here, and as such this paper represents a crowning achievement.

Despite its philosophical, implementational and documentary advantages, Figs 1(c) and 1(d) illustrate
quite clearly why many practitioners (and granting agencies) have remained reluctant to embrace the
Bayesian approach: the stopping decision and corresponding trial results may be quite sensitive to the
choice of prior distribution. The type of overenthusiasm exhibited by the clinical experts for the potential
benefit of neutron therapy is quite common in such settings (see for example Carlin et al. (1994)). This
dependence is a blessing when good additional prior information is available to facilitate earlier stopping,
but a curse when erroneous opinions lead us astray. Clearly the authors’ suggestion of simultaneous
usage of a broad range of priors (clinical, sceptical and minimally informative) is an important tool
in the Bayesian kit, as is the approach in Section 6.3 for assessing prior-data compatibility. Still, the
authors ‘deliberately do not specify the action to take on observing substantial conflict between prior
and data’, saying that it must be based on ‘individual circumstances’. Can further general guidance
be given to assist the decision maker in these equivocal settings?

A partial answer to this question was given by Carlin and Louis (1994), who attempted to characterize
the class of priors leading to a given decision (e.g. stopping the trial and deciding in favour of the new
treatment) conditional on the observed data. The results are of modest utility under a completely arbitrary
prior but can be fairly specific after restricting to a particular parametric form (e.g. the normal family).
The approach is in the same pragmatic, data analytic spirit encouraged by the authors of the present
paper and can facilitate speculative statements such as ‘Given the data accumulated so far, the prior
would have to place a mass of at least p on the range where the new treatment is considered superior
in order to avoid stopping now and rejecting this treatment as inferior’. Although such statements should
never serve as a substitute for results based on careful prior elicitation, they may help a data safety
and monitoring board member to reach a decision in settings where the data and his prior are in conflict.
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David L. DeMets (University of Wisconsin, Madison) and K. K. Gordon Lan (George Washington
University, Seattle): The authors are to be congratulated for an excellent and clear presentation of one
Bayesian approach to the design, monitoring and analysis of a randomized control clinical trial. On
the basis of numerous trials over the past two decades, we believe that no single statistical approach
is totally adequate to address the complex decision-making process to terminate trials for convincing
evidence of benefit, harm or futility. We believe, as do the authors, that statistical methods can be very
useful in assisting that decision process, despite their limitations, if used as guides and not formal rules.

Even though the frequentist approach is well established and widely used, many ideas advocated by
Bayesians are already being used implicitly in the design and data monitoring of clinical trials.
Unfortunately, the details are not always so well documented. The conditional power approach is one
such example. The conditional power under H, is evaluated only for the control of a. However, the
statistician also provides the conditional power values under various simple alternatives to the data
monitoring board (DMB) members at the DMB meetings. Then each DMB member, depending on his
or her ‘posterior belief’, will make a rough weighted average of the conditional power values to form
his or her own ‘predictive power’ for data monitoring and decision-making. This posterior belief of
a DMB member is formed by his or her own ‘prior’ (a physician may have a prior that is different
from a statistician’s), combined with the data observed in the trial and the external information which
became known only after the current trial was initiated. Note that some of the external information
known to a DMB member may not be shared by all the DMB members owing to confidentiality. More
importantly, most, if not all, DMB members do not use the Bayes formula to pool all the above
information forming their posterior belief. A clinical trial may start with a strong belief (based on certain
biological theory) that the new treatment would be beneficial. If the accumulated data indicate otherwise,
the clinicians start to search for a new biological theory to interpret the observed data. The process
described above carries the Bayesian spirit, but it contradicts the formulation of the posterior distribution
in a classical Bayesian approach. This approach was used for example in cardiovascular trials such as
the beta-blocker heart attack trial and the cardiac arrhythmia suppression trial.

A. P. Dempster (Harvard University, Cambridge): The paper by Spiegelhalter, Freedman and Parmar
exhibits pragmatic Bayesianism as welcome commonsense reasoning about uncertainty. Their pragmatism
also whittles down details by making assumptions that focus the inference task on a single parameter
and finessing other factors by clever devices like ranges of equivalence. The effort in effect seeks a back
door into practice by arguing that methods currently based on awkward frequentist logic can be justified
through shelf priors characterized as ranging from sceptical to enthusiastic. The examples are accordingly
retrospective. Future papers need to remove frequentist crutches, and to rely on Bayes from the start.

My experience with attempting to introduce Bayesian thinking into a major area of practice (Dempster
and Hwang, 1993) has been sobering. The various establishments that function as keepers of statistical
standards do not recognize overdue needs for serious revisions of practice. When Bayesian statistics
eventually achieves its deserved place in a major area of statistical practice such as medical clinical trials,
along with other key technologies like transparent data management and access systems, and methodology
for applied stochastic modelling, some core features only dimly visible in the current Bayesian literature
will surely assume prominence. To their credit, the authors stress the principle that prior knowledge
in the form of Bayesian priors be taken seriously throughout the design, monitoring and final analysis
of trials and systems of trials, but too much confused wishful thinking, for example about elicitation
and communities of priors, surrounds the assembling of evidence necessary to putting priors on the
same basis of scientific credibility as technologies that are well established, such as randomization theory
and population modelling.

I believe also that there will need to be a radical trend towards formal representation of the real
complexities of phenomena, running exactly counter to the striving for simplicity that the paper features.
Whereas the Bayesian paradigm can provide realistic assessments of uncertainty in specific empirical
situations, wholesale trickery that removes nuisance parameters can only redound in the end to harming
the Bayesian enterprise. Reality includes observed survival curves, many relevant covariates and
subgroups, parallel end points on side-effects and so forth. If data from trials are not to be wasted
on a grand scale, as now, and if simplistic reliance on a few p-values is to be upgraded to more relevant
posterior assessments, complex modelling cannot be avoided.

F. D. J. Dunstan (University of Wales College of Medicine, Cardiff): This paper makes a very important
contribution to the debate on the analysis of randomized trials and I hope that it will encourage
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investigators to make full use of all the information available. The traditional power calculation is open
to abuse through a grossly optimistic choice of §,—1I strongly suspect that the choice is often made
simply to give a satisfactory power at a convenient sample size—and an approach which moves away
from this is to be greatly welcomed. Like many others, I suspect, my concern is with the choice of prior.
Working in an environment where advice is constantly being sought on many projects, it will be difficult
always to find time to do a thorough search of information on earlier studies and I suspect that clinical
advice will tend to correspond very closely to the enthusiastic prior.

I would be interested to hear the authors’ comments in more detail on the recommended prior when
previous evidence comes from a non-randomized study. I was recently involved in advising on a protocol
submission for a trial involving a new type of post-operative care following a particular form of major
surgery. There was a large amount of information on the existing regime and on about 80 cases following
a similar operation but with the proposed new pattern of care. These 80 had not been randomized and
little information was available on them, although the clinicians were confident that there had been
no selection bias. The data suggested that the reduction in length of stay—the end point of the trial—
was about 7 days. My approach was to suppose that these findings were possibly biased and unduly
optimistic, and to create a prior with this ‘treatment effect’ of 7 days as a high percentile, say the 95th.
It seemed very unlikely to all those concerned that the new care regime would be worse and so 0 was
taken to be a low percentile, say the 10th. This gave a prior of mean 3 and standard deviation 2.4.
I feel that this is more realistic than taking a mean of about 7 with a large variance, as I think is implied
in the paper. Incidentally the approach was rejected by the clinicians because they felt that a Bayesian
approach carried too high a risk of being rejected by statisticians on ethical and grant awarding
committees. This is a very serious problem.

Susan S. Ellenberg (Food and Drug Administration, Rockville): Spiegelhalter, Freedman and Parmar
have performed a great service in contributing to the statistical literature a clear and comprehensive
rationale for the increased use of Bayesian methods in designing and assessing the results of clinical
trials. They make a very strong case for the value of such methods in improving and enhancing the
interpretability of trial results. Since even the most dyed-in-the-wool frequentist will usually admit to
at least an intuitive reliance on an informal Bayesian approach to the assessment (as opposed to the
analysis) of clinical trials results, there is no doubt that the statistical tools described in this paper could
provide much additional insight into clinical trials results if their application were made widespread.

As a statistician working in a regulatory agency, it is of particular interest to me to consider the possible
applications of these methods to the regulatory decision-making process. One obvious question is: how
will the priors be selected and who will select them? A pharmaceutical sponsor will, by the time that
a product has successfully proceeded through all the preliminary phases of testing, have a fairly
enthusiastic prior probability for the efficacy of its product. The sincerity of this enthusiasm aside,
it is clearly true that, the more enthusiastic the prior, the easier it will be for the sponsor to achieve
a high posterior probability of product benefit. The concept of developing a prior by averaging the
effects in prior studies, as suggested by the authors, will not usually be applicable to an investigational
product.

The authors suggest that regulatory authorities might generally rely on sceptical priors and further
suggest that such a prior might be set to be equivalent to having obtained some fraction of the total
information in which a zero treatment difference was observed. Such an approach has some intuitive
appeal, although it does not seem any less arbitrary than the hypothesis-based procedures for evaluating
therapeutic efficacy. It is not difficult to imagine the intensive discussion that might ensue between
regulators and sponsors concerning the size of the ‘handicap’ to be placed on the evaluation of a particular
trial! Notwithstanding this concern, the approaches proposed in this paper could be very useful in
enhancing our interpretation of trial data; although I am sceptical that they will replace current methods,
I am enthusiastic about adding them to our analytical armamentarium.

Peter Fayers (Medical Research Council Cancer Trials Office, Cambridge): One of the earliest trials
in which the authors used the approaches they describe in this paper was the Medical Research Council
trial of surgery for gastric carcinoma, comparing standard western surgery (R1) against the more aggressive
Japanese surgery (R2). This trial was launched in 1986. 26 surgeons were either interviewed or were
sent a questionnaire. They were asked about their ‘range of equivalence’, their ‘prior distribution’ for
the expected difference in S-year survival rates and their estimates of base-line (R1) 5-year survival.
The results obtained supported the planned sample size of 400 patients. This would enable detection
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of a change from 20% S-year survival (R1) to 33% survival (R2), with 90% power and 5% significance
level.

The recruitment of these 400 patients was completed in 1993. While the study was in progress, all
information concerning survival rates was kept strictly confidential. In any case, estimates of 5-year
survival remain uncertain since few patients were entered more than 5 years ago.

However, over the years it had become apparent that the surgeons’ expectations had mellowed. In
1993, before disclosing any survival information, the same questionnaire was used to elicit revised ‘prior’
beliefs. This confirmed that the surgeons now anticipated a higher base-line (R1) survival rate (27%),
and also that their expectations had approximately halved (8% improvement, to 35% for R2).
Re-estimating the sample size requirements suggests that 1200 patients would be more appropriate—
three times the original study size.

Cancer therapy trials which seek survival improvement often require large sample sizes, are multicentre
and take several years to recruit patients. Clinicians frequently start with extreme optimism; that is why
they are willing to make so much effort initiating such trials. Later, invariably, a greater sense of realism
sets in.

Should we adjust the sample size as ‘experts’ modify their views? We might expect the revised estimates
to be more realistic than the original. Also, such a strategy might make funding easier to obtain: we
could design a trial seeking very large effects (fewer patients, less expensive), and later double or treble
the sample size!

However, perhaps the clinicians are the wrong people to ask. There is now a long history of cancer
clinical trials. Experienced trialists know that very few cancer trials, irrespective of initial euphoria,
have found treatment differences of more than a few per cent. For such trials, should we not be using
priors strongly centred around 0, irrespective of initial opinions, beliefs and hopes of clinicians?

Mitchell H. Gail (National Cancer Institute, Bethesda): I congratulate the authors on their paper.
It illustrates the utility of Bayesian methods in solving practical aspects of clinical trial planning,
monitoring and analysis.

There are several reasons why this presentation is appealing. First, the setting out of trial objectives
in terms of ranges of clinical inferiority, equivalence and superiority is more realistic than the usual
frequentist dichotomization of the parameter space. Second, the authors advocate a conservative approach
to monitoring. They avoid premature stopping of trials with early promising results by considering a
‘sceptical’ prior and premature stopping of trials with early discouraging results by considering an
‘enthusiastic’ prior. Third, they discuss the frequentist properties of Bayesian procedures. Finally, they
advocate an ‘explicit separation of the results of a trial from their interpretation’. Thus traditional
summary statistics and perhaps likelihood functions would be described in a ‘results’ section, whereas
the interpretation based on various priors would be discussed separately.

However, details are important, and there is room for future work. Obtaining consensus on what
constitutes a sceptical prior or a range of treatment ‘superiority’ will depend on the context and
application. Unless some conventions become widely acceptable, these requirements may inhibit
widespread use of these methods. Furthermore, this paper emphasizes a well-defined univariate response.
Taking into account toxicity or comparing entire survival curves, rather than relying only on the summary
hazard ratio, for example, will require an extension of formal methods or other careful, if informal,
assessment.

Stephen L. George (Duke University Medical Center, Durham): The authors are to be congratulated
for their pragmatic, non-ideological approach and their lucid description of some Bayesian approaches
in the design and analysis of clinical trials. One of the reasons for resistance to Bayesian ideas in practice
has been the lack of such eloquent advocates who are willing to adopt this approach.

There are two issues raised in this paper on which I would like to comment.

Ethical issues

In discussing example 2 (CHART, Section 4.3) the authors state that ‘the ethical basis for the
randomization is clear, since the prior probabilities of being on either side of the range of equivalence
are almost equal . . .”. A Bayesian approach can shed light on ethical issues, including the ethical judgment
that permits randomization of patients, but the ethical basis for individual clinicians is not so clear
when, as in this example, both the range of equivalence (§;, 6s) and the prior p, () are based on pooling.
Only clinician 6 expressed approximately equal prior probabilities of being below or above the
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pooled range of equivalence, and this is also the only clinician with an individual prior similar to the
pooled prior. Clinician 1 expressed a prior probability of 1.0 that §<§; and clinician 9 expressed a prior
probability of greater than 0.9 that 6>85. These two clinicians do not appear to have ‘reasonable
uncertainty’ about the most appropriate treatment and, by implication, may reasonably conclude that
it is unethical for them to enter patients.

Predictive distributions

Another application of predictive distributions is the retrospective evaluation of an early stopping
decision for trials in which further follow-up of patients who have yet to ‘fail’ is informative. A decision
to stop a trial at some time in the past, after n, of n planned patients had been entered and d, had
failed, can be evaluated by using the current predictive distribution based on follow-up of the n; —d,
censored patients to the present. This enables us to use the predictive distribution based on current
information to assess what would have happened had we continued the study and entered the remaining
n—n, patients. An example of the use of the predictive distribution in this way is given in George et
al. (1994). An additional 5 years of follow-up after stopping a trial in non-small-cell lung cancer indicated
that the decision to stop after 155 of 240 planned patients were entered was, in retrospect, a reasonable
decision, although this reassuring conclusion is not guaranteed in other examples.

Joel B. Greenhouse and Larry A. Wasserman (Carnegie Mellon University, Pittsburgh): We would
like to add our congratulations to the authors for their very fine discussion and illustration of the use
of Bayesian methods in clinical trials. This paper is distinguished by a high regard for good statistical
practice, and as such the authors have successfully advanced the case for the usefulness of Bayesian
methods.

Recently we have been investigating an approach to monitoring clinical trials based on the use of
robust Bayesian methods. Instead of specifying a single prior distribution or even trying several different
prior distributions as suggested by the authors, the robust Bayesian approach to data analysis replaces
the prior distribution with a class of prior distributions I'. The aim of this approach is to see how sensitive
inferences are to the choice of prior by studying how the inferences might change as the prior varies
over this class (Berger, 1990).

A common way to choose I' is to begin with a specific prior = and then to find a neighbourhood
of priors I" around «. The specific prior as discussed by the authors may be either elicited, ‘sceptical’,
‘enthusiastic’ or reference. Since we may not be confident about the choice of prior we consider a class
of priors that are similar to «. A tractable class is the e-contaminated class defined by I', ={(1 — )7 + €Q;
Q€ 2} where €€ [0, 1] and 2 s the class of reasonable alternative priors. Surprisingly, an easy class
to work with is 2= 2, the set of all priors. In practice we compute bounds for the posterior quantity
of interest over T, for values of ¢ from 0 to 1, and then plot the bounds versus e (see Greenhouse and
Wasserman (1994) for details).

We have applied these methods to the authors’ analysis of the neutron therapy trial (example 1).
We take 7 to be the ‘enthusiastic’ prior that they elicited from a group of clinical experts. Fig. 7 is
a plot of upper and lower bounds for P(6>é;|x,,), 6,=0.355, the posterior quantity of interest, as a
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function of e for the family I', with 2=%. We find it useful to interpret e as a weight denoting our
uncertainty in the specified prior. It is clear from Fig. 7 that even for moderately large amounts of
uncertainty in the expert’s enthusiastic prior (e.g. ¢e=0.50) the interval between the upper and lower
bounds for the posterior quantity of interest is small. Thus, the conclusion that there is small probability
that the effect of neutron therapy exceeds the minimal clinically worthwhile benefit of §; is quite robust
for the prior specification.

Frank E. Harrell, Jr (Duke University Medical Center, Durham): The excellent paper by Spiegelhalter,
Freedman and Parmar has both substance and style, quintessential elements of a paper that attempts
to change the status quo in the midst of historical controversy. As a convicted frequentist, I find that
the problem solving tone of this paper, as well as the paper by Hughes (1993), is more convincing than
ideological papers in which authors preach ‘from the mountain-top’. I expected to disagree with the
authors, having to point out dangers in the way that investigators can manipulate Bayesian methods
for monitoring trials, but they dealt with the problems forthrightly and proposed useful solutions. I
like their use of sceptical priors but remain somewhat sceptical of the use of non-sceptical priors from
‘experts’ in reporting final results.

The authors have done a real service by supplying free, easy-to-use software for carrying out Bayesian
analyses of randomized trials. We have already used their software to great advantage.

Lawrence Joseph and Stanley H. Shapiro (McGill University, Montreal): Although the assumption
of a normal distribution with known variance helps to focus attention on the main issues, it is important
to note that implementation of the paper’s ideas and methods is feasible in the more complex settings
encountered in many clinical trials because of the substantial progress in Bayesian computing algorithms.

We strongly endorse the notion of the range of equivalence and wish to emphasize that its utility
is independent of whether one adopts a Bayesian approach. By itself, it can go a long way to fostering
more clinically relevant designs. It is also useful to consider a two-dimensional range of equivalence.
In some instances increased side-effects will accompany increased survival. One compensates for the
side-effects by increasing 6, and/or 8g appropriately, but the change depends on the (unknown)
magnitude of side-effects. A two-dimensional region permits specification of the increase in survival
that is necessary for clinical equivalence or superiority for a given level of side-effects. Thus one creates
three regions in the plane, rather than on the line. The posterior probability contained within each region
can be used to make decisions as before.

Although we are cautioned that the prior may not be sufficiently sceptical if the choice of é, is
unrealistically large, there is the parallel concern that it may be too sceptical for a prudent choice of
&, . Formulation of the sceptical prior in the manner indicated in Section 4.1.3 may overpenalize those
who plan trials well. Hopefully we shall see increasing numbers of well-designed large trials and a handicap
of roughly a quarter (3=0.1) or a third (3=0.2) the targeted sample size might be excessive. The issue
is not simple and further consideration may lead to refinement of the choice of an appropriate degree
of scepticism in different situations.

Most clinical trials have more than one end point of interest. Thus it might be preferable to base
sample size calculations on ensuring a sufficiently narrow expected posterior interval for each important
parameter, rather than on expected power for a specific critical value.

The phrase ‘grouped version of the uncertainty principle’ seems somewhat contradictory. The
underlying concept, the absence of a consensus in the expert clinical community regarding the comparative
merits of the treatments under investigation, seems to us to describe precisely the situation that Freedman
(1987) has labelled ‘clinical equipoise’.

We shall leave additional comments such as the best means of combining the individual prior
distributions to others, and merely wish to close by thanking the authors for this excellent exposition
of the Bayesian approach to clinical trials.

Joseph B. Kadane (Carnegie Mellon University, Pittsburgh): This is an excellent paper. What I find
so interesting is the collation of more than a decade of pioneering work in applying Bayesian ideas to
the analysis of clinical trials. I have a few questions about some of the emphases.

Early in the paper the authors endorse randomization without defining what they mean by it. To
some, randomization means the literal application of the binomial or multinomial distribution to the
assignment of treatments. To others, it can include assignment for balance among covariates in a way
that involves leaving little or nothing to chance. If, for distinction, we call the latter ‘controlled’ and the
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former ‘randomized’, I hope that the authors will clarify which concept they endorse. (I have elsewhere
argued that control is essential but randomization is not (Kadane and Seidenfeld, 1990).)

I am slightly confused about the authors’ attitudes towards utilities. On the one hand, they think
that the consequences of decisions are ‘so uncertain that they make the meaningful specification of
utilities rather speculative’. On the other hand, at the end of Section 5.1 they seem to indicate a possibly
useful role for utilities. Do they mean their remarks to indicate that they recommend abandoning all
hope of explicating values with utilities or that they see utility elicitation as a difficult problem at present
not resolved to their satisfaction?

I am unsure about the usefulness of the proposed ‘zone of indifference’, in which it is not possible
to make a decision between the true treatments. For example, if we take literally the statement of Fleming
and Watelet cited in Section 7.1.2, there is only the question of whether 6 is greater or less than 0.29.
If 8 is less, the treatment is not sufficiently better than the control to justify the inconvenience, toxicity
and expense. Thus would the authors explain more about why they think three regions are needed, in
general or in this example?

Although they emphasize the usefulness of Bayesian analysis of data from trials, they might also consider
whether there is usefulness for Bayesian ideas at the design stage as well. It is no longer necessary to model
the prior of the person using the data as being the same as that of the person(s) analysing the data
(Lindley and Singpurwalla, 1991; Etzioni and Kadane, 1993). Also several elicited opinions can be used
to protect patients from the most damaging treatments that randomization might force on them, as
suggested in Kadane and Sedransk (1980) and implemented in the trial described in Kadane (1986). Would
the authors say more about how they expect Bayesian ideas to be useful in the design of clinical trials?

Harold P. Lehmann (Johns Hopkins School of Medicine, Baltimore): Spiegelhalter, Freedman and
Parmar are to be congratulated for their synthesis and for making Bayesian methods readily accessible
and usable by practising statisticians. I wish to address the authors’ interest in the communication between
‘statisticians and their clinical colleagues’ (Section 8.6).

Dissemination of the results of clinical trials (Section 6.2) is crucially important. Although many non-
statistical issues take precedence in a physician’s response to such results (Greer, 1988), clinicians are
generally concerned with three questions (Sackett ef al., 1985).

(a) Are the conclusions clinically meaningful?
(b) Are there threats to internal validity?
(c) Is the population like mine?

The Bayesian framework will be more accessible to readers as more papers are put into an electronic
format; novel electronic formats will allow just the sort of interaction that a Bayesian framework requires
and that readers require in answering their three basic questions.

Although Spiegelhalter and colleagues reject decision theory as the basis for performing a statistical
analysis, decision analysis is the only formal approach that is available to clinicians who wish to evaluate
the clinical significance of the results of a clinical trial. Hilden and Habbema (1990) offered a formal
framework within which to answer the question; Dr Steve Goodman and I are currently researching
the practical application of their framework. The formalism boils down to making explicit the trade-
offs in the choices of §, (Section 2.2). Explicit modelling of these trade-offs allows the reader to tailor
the conclusion to a particular patient or class of patients.

A major strength of Bayesian analysis is its ability to debias the likelihood function (an expression
I owe to Dr Spiegelhalter), and such debiasing is precisely what is necessary for clinical colleagues to
answer questions regarding internal validity. Eddy et al. (1992) used such debiasing models in their work
in Bayesian meta-analysis. Lehmann and Shachter (1994) used such models to allow physician readers
to answer directly this question of study data.

Determining the match of patient populations and the applicability of study results are the most
difficult—yet most important—tasks. I suspect that a Bayesian reformulation of the process of
randomization would help. Despite the claim by many Bayesians that randomization is irrelevant for
inference (Howson and Urbach, 1989), randomization clearly limits cheating and may help with
generalization—if we only understood how.

Ettore Marubini and Luigi Mariani (University of Milan): The paper advocates the use of Bayesian
methods in the analysis of randomized clinical trials (RCTs) on the grounds of two practical
considerations. When interpreting the results of a trial,
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(a) the benefits of the therapy investigated must be weighted against its risks, costs and inconveniences,
and
(b) prior opinion and evidence internal and external to the study need to be combined.

With reference to the first point, the use of a ‘range of equivalence’ is suggested. However, such
a range could also be dealt with in the context of a classical frequentist analysis.

The second aspect is undoubtedly a more compelling reason for adopting Bayesian methods, since
they allow the two sources of evidence (or prior subjective opinion) to be combined in a quantitative
rather than informal way.

To keep the discussion on practical ground, one might wonder whether such a formal approach would
currently improve the impact of RCT results on the definition of therapeutic strategies. Even though
the methodology for performing RCTs is established, many reported studies are questionable because
of major flaws in the design or conduct of the study. No statistical methodology can counteract these
weaknesses in the analysis phase.

Secondly, RCTs are often criticized because of the need to recruit large samples. The use of Bayesian
methods as suggested by the authors fits the framework of falsification that is typical of RCTs and
more in general of scientific experiments. Indeed, these methods are suggested as a means to allow for
the uncertainty in clinical opinion (and required for ethical reasons) before the study is undertaken.
This policy, however, leads to the need for samples that are even larger than those required for a
frequentist approach.

Finally, it is stated that one of the aims of the paper is to familiarize the biostatistician with the methods
underlying the Bayesian approach. However, statisticians who are willing to shift from the frequentist
to a Bayesian framework should be conversant with Bayesian methods not only for the analysis of RCTs
but also in other contexts, where statistical tools that are more complex than those described here might
be required.

In conclusion, though we basically agree with the authors, we think that these aspects might hamper
the use of Bayesian methods or proscribe their practical relevance in the particular context under
discussion.

Joseph L. Pater (Queen’s University, Kingston): I was pleased to find in this paper a tying together
of strands of thought which I have been fascinated by for many years. I agree with the authors’ primary
argument that context must be considered in planning and interpreting clinical trials, but their analysis
of the 5-fluorouracil-levamisole data illustrates how important and difficult the choice of the appropriate
perspective is.

As presented, the key issue is to determine to what extent the positive results of the Moertel study
should be ‘shrunk’ by a Bayesian analysis. Following their own advice to use a sceptical prior the authors
conclude that the trial results do not provide sufficient evidence to establish 5-fluorouracil-levamisole
as clinically superior to the control and that the decision to stop the trial may have been in error. This
conclusion is not altered by taking into consideration a previous trial by Laurie which had documented
a statistically significant, but less dramatic, benefit from the same regimen.

From the perspective of someone who followed these events closely this formulation misses some
of the relevant context. The Moertel trial was a sceptical response to the initial results of the Laurie
trial. It was only when an analysis of the accumulating results of the already closed Moertel trial
demonstrated a highly significant benefit to S-fluorouracil-levamisole that the Laurie study was published,
followed shortly by the Moertel study. Thus, from a North American perspective the Moertel results
should be given additional credit because they arose in the context of attempting to confirm a previous
positive study. To me the European scepticism about the conclusions of this trial is due, not to a proper
discounting of the findings down into the range of equivalence, but to the manner in which knowledge
of these studies became public which in turn influenced the perspective from which the Moertel study
was judged. I share the North American view, but the key point is that the context from which a Bayesian
analysis is applied can be strongly influenced by how close one is to the actual situation. If, therefore,
the context must be considered in judging the results of a new study, it becomes very important to
investigate that context as critically as the results of the study itself.

L. L. Pettit (Goldsmiths’ College, London) and K. D. S. Young (University of Surrey, Guildford):
In Section 6.3 the authors discuss the checking of prior and data compatibility. They use Box’s (1980)
procedure and find a p-value of ‘only’ 0.14 by using the clinician’s prior. Do they consider a p-
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TABLE 5
no BX B
- 24 2.03 2.12
48 1.68 1.75
96 1.27 1.33
192 0.98 1.02
—o 0.62 0.64

value of 0.14 ‘indicative of substantial conflict’?
Young and Pettit (1993) have suggested the use of a Bayes factor to check prior and data compatibility.
The starting point is the Bayes factor

By =p(y|mp)/ p(y|mn) (18)

where 7p is the assumed proper prior and my is a ‘non-informative’ prior. The idea is to normalize
p(y|mp) by comparing it with p(y|my). Of course p(y|my) is typically improper and depends on an
undefined constant. Young and Pettit compared several methods which have been suggested to overcome
this problem. Only those of Spiegelhalter and Smith (1982) which uses a minimal imaginary training
set and O’Hagan (1995) which uses a fraction of the whole sample for training are satisfactory in this
context. It is also found necessary to use the fractional training sample in both the numerator and the
denominator of equation (18). Using the authors’ notation we find that the Bayes factors are

S 1+1/ny) \? (X —8o)?
ey B B =
1/m+1/n, 20%(1/m+1/n,)
using the Spiegelhalter and Smith method and

1+1/n, \V2 (X —8)2(m—1)/m
B =|——"—] exp{-3
1/m+1/n, 20%(1/m+1/ny)(1 +1/ny)

using O’Hagan’s. These give BSS=5.72 and B3 =5.73 for the overview prior and B} =1.68 and
BQH=1.75 for the clinician’s prior.

Table 5 shows the values of the Bayes factors for the clinician’s prior but with varying values of n,.
As n, becomes larger there will obviously be more conflict with the data, but with the given values of
X, 8, and a2 we must have a very strong prior to find conflict between the data and the prior. Note
that as n,— oo we are saying that we are certain that the value of 4 is 0.169. A classical two-sided test
of the hypothesis 8 =0.169 for the data gives a p-value of about 0.025. This would agree with the Bayes
factors that there is some evidence for conflict in this extreme case but that it is not overwhelming.

Gary L. Rosner (Duke University Medical Center, Durham): The authors identify many aspects of
clinical trial conduct that benefit from a Bayesian approach because it provides a useful paradigm for
incorporating external information into the trial’s design and analysis. Interim monitoring of clinical
trial data is one example. In this paper, the authors propose basing trial termination decisions on the
posterior distribution of the parameter characterizing the treatment effect by computing the posterior
assuming different prior distributions, each prior specified according to the strength of the implied belief
in either the null (i.e. the sceptic’s) or the alternative (i.e. the enthusiast’s) hypothesis. This has some
of the spirit of frequentist uses of the null and alternative hypotheses in significance tests and power
calculations, although here one integrates over the parameter space and conditions on the data and
either prior distribution. Specifying the precision of the prior and posterior distributions in a way that
produces stopping boundaries having good frequentist properties, as discussed here, raises eyebrows
among more ideologically directed Bayesian statisticians.

Frequentists, however, walk a tight-rope when directing one to incorporate group sequential boundaries
that guarantee the overall type I error into interim monitoring while arguing that crossing these boundaries
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should serve as guidelines rather than hard and fast rules. Many frequentists would not adjust the trial’s
final analyses because of sequential data monitoring, somehow tacitly acknowledging the likelihood
principle and ascribing greater weight to it than to inference based on the Neyman-Pearson framework.
The data are the data, though; it is the interpretation that may differ from one individual to another.
The authors make a useful point by suggesting that one separates out this interpretative part of data
analysis from the summary of the trial’s quantitative results, pointing out that Bayesian methods
incorporate the subjective nature of inference more formally than do frequentist methods, thus allowing
individuals to assess the likely treatment benefit given the data in a more straightforward and open way.

The graphical methods for incorporating clinical experts’ beliefs and data external to the trial in the
prior distribution used when designing and analysing a clinical trial, as well as for communicating clinical
trial results and their consistency with different levels of scepticism regarding the benefit of some new
therapy, will find appeal among many clinical trialists. I wish to thank the authors for providing a
thorough presentation and pragmatic discussion of Bayesian approaches applied to randomized clinical
trials.

John Whitehead (University of Reading): This paper is a clear and comprehensive guide to the useful
work undertaken by the authors over several years. The suggestions made in Section 8.3 are especially
pertinent: quantitative methodology is provided which can supplement the traditional essay which forms
the discussion section of a clinical trial report. It is incumbent on investigators to put their findings
into the context of prior opinions and the results of others: here are the tools with which this can be
done. The authors suggest that the results section presents the data found in the trial being reported.
This is also reasonable, but there is no reason why conventional safeguards against overinterpretation—
significance levels and confidence intervals—should not be included. My main reservation about the
paper is its potential influence on the design of studies and the possibility of leading people away from
sample sizes chosen to achieve small error rates.

I am particularly concerned about the Bayesian monitoring criteria described in Section 5.1 of the
paper. Although the authors are reluctant to define stopping rules, suppose that a reader of their paper
decided to conduct a series of interim analyses and to stop when the subjective distribution for é satisfied
either P(6>0)< e or P(6<0)<e. Suppose further that the value e =0.025 was chosen, and that a uniform,
non-informative prior was taken for 8. The resulting procedure would be equivalent to conducting a
series of conventional significance tests, each at the nominal level o =0.05. This procedure inflates overall
error rates, as pointed out by Armitage et al. (1969), and yet, by a different route, we are led to
contemplate it again. Should an informative prior be used, presumably expressing some belief in the
benefit of the experimental treatment, then error rates may be increased further.

It may be because of the small sample sizes and large error rates of Bayesian sequential procedures
based on true prior beliefs that the authors have introduced their artificial sceptical and enthusiastic
priors expressing, not the investigators’ beliefs, but the hypothetical beliefs of hypothetical individuals.
These are really tools to slow down the stopping rule, increase sample size and reduce error rates. They
are tools which are not chosen according to familiar considerations of frequentist error probabilities
or optimization of utility. This is really new territory, unfamiliar from any other field of statistical
application. Novelty is not bad in itself; however, clinical investigators and medical statisticians should
be cautious before leaving traditional safeguards against error of wrong decisions behind.

H. Sam Wieand (Mayo Clinic, Rochester): This work shares a property of previous papers by the
authors in that it very clearly describes some practical applications of Bayesian theory to clinical trials.
At two recent international workshops involving cancer co-operative group statisticians, terms such as
‘range of equivalence’ and ‘sceptical priors’ were part of the standard vocabulary. This is a clear change
from § years ago and, to a large degree, reflects the effect that these same authors have had with some
of their earlier publications. Acceptance of these Bayesian concepts by co-operative group statisticians
is a considerable accomplishment, given the strong commitment that clinical trial statisticians have given
to randomization and subsequent frequentist properties.

In the brief space available for a comment, it is difficult to address any technical details, so I shall
focus on the discussion in Section 8 which outlines practical considerations. Consideration of frequentist
properties of Bayesian monitoring procedures, as in the authors’ Table 4, is an important step in bringing
Bayesian methods forwards. I would be very uncomfortable using a design if I did not have a sense
of the probability of a type I error. There are two primary reasons. The first is the unfortunate fact,
noted by the authors, that many chemotherapy treatments do not offer an improvement over no treatment
or standard regimens. The second is that many clinical trial statisticians will be responsible for scores
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if not hundreds of trials over a career, so the frequentist idea of keeping the number of times that a
null hypothesis is falsely rejected is meaningful to us.

However, when listening to or reading presentations of trial results, I have found that discussions
using Bayesian concepts, such as sceptical and enthusiastic priors, are very informative and helpful.
Thus I would support the authors’ suggestion that results be presented in a traditional section, followed
later with a discussion using (but not limited to) Bayesian methods. Space limitations in journals may
be an issue, but I think that a well-written interpretation section would have a good chance of being
accepted, particularly if a phase III trial was being presented.

In summary, Bayesian ideas have already crept into cancer clinical trial discussions and such discussions
have led to more clarity in interpreting trial designs and results. I also believe that frequentist concepts
such as randomization and type I errors are still fundamental to clinical trials, so an understanding
of their practical relationship is quite valuable and I thank the authors for a presentation which helps
with that process.

The authors replied later, in writing, as follows.

We are grateful and somewhat overwhelmed by the many contributions to the discussion, and in the
available space we can only make a limited response to the issues raised. Our reply is divided into four
main sections: the first two deal with the controversial issues of the source of priors and the role of
type I error, then we consider the problems surrounding the introduction of Bayesian methods into
the clinical trial culture and finally we briefly cover some technical points.

Source of priors

Many discussants (Lewis, Buyse, Fayers, Altman, Evans, Senn and Harrell) question the relevance
and role of clinical (subjective) prior information as illustrated in the neutron therapy and CHART
examples. Some suggest that the neutron therapy example reflects their own (subjective) belief that clinical
opinion is often not very useful and that more, if not all, emphasis should be placed on the prior opinion
obtained from a meta-analysis of previous studies. Although this suggestion has some obvious appeal,
achieving apparently a greater degree of objectivity, such an approach loses sight of many of the
complexities in designing and monitoring trials. In particular, at the design stage of this trial, although
the participating clinicians were aware of the previous studies, using a variety of different dosage regimens,
suggesting that neutron therapy may actually be worse than conventional therapy, they considered that
the high energy of the neutrons to be used in this trial were sufficiently different from that used in
these previous trials for them to expect that there was a good chance that survival would be materially
improved.

In the event, the elicitation of the expected benefit and the range of equivalence allowed the conclusion
to be reached that even individuals optimistic towards this high energy level of neutrons were likely
to be convinced by the trial data that this treatment was not clinically worthwhile. This result was achieved
at a relatively early stage—after 151 patients had been randomized. Of course, the trial results taken
together with a meta-analysis of previous trials provide overwhelming evidence against neutron therapy,
and given the results of this trial it would seem that there is little difference between the various energies.
However, whether these trials should be combined is principally a biological and clinical question and
not a statistical one (despite the fact that no obvious statistical heterogeneity was observed). Just because
the trial results support the meta-analysis result does not mean that we can combine them.

This example illustrates that both a meta-analysis of previous randomized trials and clinical prior
opinion have a place in the design, monitoring and interpretation of trials. Clearly, in situations in which
the trial is very similar to previous trials, which themselves are judged to be similar, emphasis should
be placed on the meta-analyses prior and posterior. However, when there are no previous randomized
trials—such as the CHART trials—or there is perhaps considerable biological and clinical heterogeneity,
such as the neutron therapy trials, subjective judgment, sometimes in the form of a clinical prior
distribution, should play a major role in the design, monitoring and final interpretation of the trial.

When obtaining subjective clinical opinion in the form of prior distributions and ranges of equivalence,
Dr Altman asks whom and how many should we ask. In all our examples we have elicited information
from those clinicians intending to randomize patients into the trial. The ethical basis for randomization
both at the beginning and during the trial are most relevant to these clinicians. These clinicians are not
a random sample of all clinicians treating this disease, but this is not the aim. In our experience these
clinicians usually represent a well-informed sample of individuals who are often more enthusiastic than
their colleagues towards the new treatment.

Many discussants (Grieve, Pocock, Herson and Altman) comment on our approach of using the
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arithmetic average of the nine clinical prior distributions in the CHART example. We acknowledge
that there is considerable variability across these nine clinicians. However, in eliciting opinions our aim
was to obtain an estimate of a prior distribution of a ‘typical well-informed clinician’. Arithmetic pooling,
in which each participating clinician’s opinion represents a data point, provides this. Such pooling also
has the added benefit that it provides a level of variability which is likely to be more representative
than many individual prior distributions. This approach does not disqualify the use of individual prior
distributions at the termination of the trial to, perhaps, represent more extreme views. Dr Grieve further
suggests that rather than to use the sceptical and enthusiastic prior distributions constructed around
the alternative hypothesis and zero difference we should use the most sceptical and enthusiastic elicited
priors (clinicians 1 and 9 for the CHART example). Dr Ashby also questions the ‘classical’ frequentist
motivation for the sceptical and enthusiastic prior distributions, and enquires about their Bayesian
motivation. A frequentist motivation for the sceptical prior is given in Sections 4.1.3 and 8.1. A Bayesian
motivation for this prior is given in Section 8.2 and referred to by Mr Fayers, i.e. that in many areas
most new treatments are found to be ineffective or at best marginally effective. (This also addresses
the point made by Dr Buyse and Dr Machin who both suggest that in most cases we shall have very
little information about the size of the treatment effect.) The choice of the enthusiastic prior provides
a counterbalance to the sceptical prior, and as we suggest in Section 4.1.4 (and report in Parmar et
al. (1994)) this formal prior is usually very close to the elicited clinical prior. The sceptical and enthusiastic
priors of clinicians 1 and 9 in the CHART example do not have these appealing properties. Professor
George suggests that, in fact, for these clinicians, their prior opinions and ranges of equivalence are
such that they should perhaps not be entering patients into the CHART trials. We agree.

Several discussants suggest that it is impractical, cumbersome or confusing to use a community of
priors. We disagree. With software now available the calculations for a variety of prior distributions
is simple to perform. We refer them to the levamisole + 5-fluorouracil and the misonidazole trials examples
and to Parmar et al. (1994) who show that it is possible to consider and present a range of prior-to-
posterior analyses, which aid interpretation of the results. In fact, if the principal aim of the trial is
to provide evidence which is convincing to a wide body of opinion, we would argue that such ‘sensitivity’
analyses are essential to assess likely variations in interpretation.

Professor Bailey and Dr Buyse suggest that there are some perfectly good frequentist solutions to
some of the problems that we address. In particular they respectively suggest that we could use two
different null hypotheses, instead of sceptical and enthusiastic priors, and a ‘simple-minded’ conservative
approach of two p-values less than 0.05 to reflect scepticism. These methods reflect the problems with
many traditional frequentist approaches, emphasizing hypothesis testing and p-values over estimation
(both point and interval), and confuse the range of equivalence with the prior distribution. The Bayesian
approach provides a framework for providing coherent point and interval estimates with a variety of
prior beliefs, together with a facility to make statements about the probability of being above and below
the range of equivalence.

Mr Fayers asks whether we should adjust sample sizes as clinicians modify their views through the
course of a trial. This is clearly a desirable property since, for example, information from other trials
may come to light which influences the conduct of the current trial. The Bayesian approach allows this
to be done through incorporation of the new information in the prior distribution. Such interim
adjustment is not possible in the traditional frequentist framework.

Monitoring trials and type I error

We find it heartening that an increasing number of statisticians actively involved in clinical trials (e.g.
Grieve, Herson and Rosner to name a few) agree with us that the Bayesian approach carries important
advantages over the frequentist approach in clinical trials monitoring.

Professor Pocock, Professor Turnbull and Professor Whitehead express concern that a Bayesian
approach to monitoring trials will dispense with control of the type I error. We refer them again to
our Section 8.1. As Cornfield (1966) pointed out, abiding concern with the type I error must indicate
a sceptical attitude towards new treatments. Therefore it is gratifying, but not surprising, that adopting
a sceptical prior leads naturally to the control of type I error. See also the forthcoming paper by Grossman
et al. (1994).

Dr Grieve asks our view on Pitman’s result, indicating that it might be more appropriate to use
increasing, rather than decreasing, p-values for stopping rules. We have not considered this in detail,
but it occurs to us that this result could be a direct consequence of formulating the monitoring problem
as a test of two simple hypotheses. This formulation seems unnecessarily artificial, and we prefer to
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deal with monitoring as an estimation problem, preserving the full range of possible states of nature.

Professor Armitage suggests that in Fig. 4 situations B and D should not lead to early stopping. We
agree that in many trials it would be appropriate to continue in these situations. However, where the
data indicated that a new treatment was possibly harmful in the long term, and very unlikely to achieve
a long-term benefit sufficient to overcome completely its extra toxicity (corresponding to situation B),
we may wish to terminate.

Professor Bather and Professor Turnbull ask whether we recommend the use of defined stopping
rules. The answer is yes. Section 8.1 suggests the type of prior distribution(s) that could be used. The
range of equivalence adopted would depend on the perceived relative toxicities, inconveniences and costs
of the treatments that are being compared. Like others, we intend the stopping rules to act as a starting
point for wider discussion regarding the future of the trial. Unlike frequentist rules, the Bayesian approach
would not be disturbed if the rules were not followed.

Abrams, Jennison, DeMets and Lan mention other statistical methods of monitoring trials. Dr Abrams
mentions stochastic curtailment, and Professor Jennison mentions repeated confidence intervals. These
have been debated and contrasted elsewhere (Jennison and Turnbull, 1989, 1990; Freedman et al., 1994).
Professor DeMets and Professor Lan describe a procedure that they have used but which is not well
documented. It is a modified version of stochastic curtailment, presenting conditional powers for a range
of possible treatment effects. The frequentist properties of this procedure are unknown.

Finally Professor Whitehead describes our suggestion to use sceptical priors and posterior probabilities
as ‘new territory’, but this is to deny Cornfield (1966) the rights to introducing the sceptical prior, and
Laplace (1774) the rights to introducing the practical application of posterior probability distributions!

Bayesian methods in trial culture

Several discussants raised questions about the role of Bayesian methods in drug regulation. Grieve,
Ashby and Ellenberg perceive an increasing willingness on the part of regulatory bodies to deal with
Bayesian approaches. We agree that this softening of attitude is encouraging. However, to date, few,
if any, pharmaceutical companies have tested the water by employing Bayesian methods of design or
analysis. In our experience, the pharmaceutical industry tends to follow the lead of the regulatory bodies
and is less likely to change its practices unless the regulatory bodies actively encourage it.

Professor Keiding notes the inevitability that the regulatory bodies will issue defined guidelines for
reporting of trials and asks whether these are likely to be any less ridiculous if a Bayesian paradigm
were used. We think that there would be some improvements: for example, the regulatory body would
no longer have a major concern over the number of interim analyses that are performed during a trial.

Dr Herson, Professor Armitage and Dr Ellenberg comment on the nature of the prior distribution
to be used by the regulatory body. We would envisage the use of a sceptical prior. We view the role
of the regulatory body as that of public watch-dog, and a degree of scepticism is consistent with such
arole. The pharmaceutical industry is already familiar with the regulatory bodies adoption of a sceptical
stance, so we do not expect great difficulties here. As Dr Ellenberg notes, there will inevitably arise
a certain arbitrariness in specifying the degree of scepticism adopted by the regulatory body, but this
will be of the same type as is involved with our current bench-marks of 5% significance and 80% or
90% power.

Professor Armitage questions whether a sceptical prior is appropriate for a regulatory body in the
face of an apparently harmful effect of a new treatment. Assuming that the data are a surprise, it seems
to us reasonable to adopt a somewhat sceptical attitude towards them. However, with a range of
equivalence of (0, D), where D is positive, and allowing termination under situation B of Fig. 4, we
would tend to stop more readily in the face of harmful effects than beneficial effects.

Pocock, Healy, Evans and Marubini all question how a re-education of statisticians and clinicians
can take place to accommodate Bayesian thinking. We support Evans in favouring a gradual rather
than revolutionary approach but agree that Bayesian analyses will tend to be more complex and, heaven
forbid, take more time. However, we cannot see the need to think about the implication of the results
as being a bad development. The discussants illustrate the difficulties of satisfying all opinions: some
argue for simple methods, whereas others (e.g. Professor Dempster) claim with some justification that
we have oversimplified the models. The huge recent developments in flexible software for more complex
Bayesian analysis now mean that we can deal with realistically complex models incorporating, for example,
multiple end points (see the remarks by Professor Turnbull and Professor Gail). However, the use of
more complex methods can only be introduced in so far as they can be communicated effectively and
understood intuitively by medical researchers. We disagree with Professor Pocock that software will
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hamper us: the Cox proportional hazards model at first appeared prohibitively computationally complex.

Technical aspects

Jennison, Lindley, Turnbull, Berry and Kadane all argue for a full decision theoretic formulation,
and a challenge is made to find whether our stopping procedure has any reasonable coherent justification.
We again appeal to our ‘gradualist’ sentiments and are certainly interested in a coherent approach with
explicit utilities. However, it has been enough of a struggle in working to put subjective probability
judgments at least on the road to respectability, and utilities appear to us an order of magnitude more
difficult. We hope that Professor Lindley will be able to welcome the relevant paper in 25 years’ time.

Bather, Bailey, Kadane and Lehmann ask about our justification for requiring randomization. Our
reasoning is that randomization is required to ensure that the selection of treatment for each patient
is unbiased, i.e. undisturbed by the clinician’s propensity to choose one or other treatment for an
individual. Such conditions are necessary for the correct specification of the likelihood, and, since the
correct calculation of the posterior distribution depends on the likelihood being correct, it follows that
Bayesians as well as frequentists require ‘randomization’ to evaluate treatments in clinical trials properly.
By randomization, we mean all allocation methods that avoid biased treatment selection. We would
include in this definition deterministic methods such as minimization (Pocock and Simon, 1975).

Unlike Professor Lehmann we do not think that randomization helps with generalization to a wider
population of patients, other than its helping towards an unbiased comparison of the two treatments
within the sample of patients entering the trial.

Professor Bailey asks whether our Bayesian analysis would be different under different randomization
schemes. The answer is perhaps. For example, if randomized blocks were used because of a real
expectation that the treatment responses would improve over the course of the trial, then we would
want to include the block in our likelihood model. Similarly, if there were covariates that were known
to be strongly related to the response, then we would wish to include such covariates in the likelihood
model. We might then use a fully Bayesian procedure specifying priors for the block or covariate effects,
or we might take a short cut and obtain an ‘adjusted’ estimate and standard error of treatment effect
from a classical analysis and use this as the likelihood in our Bayesian analysis.

Dr Gore asks about adaptive randomization similar to methods proposed by Bather (1985) and others,
where the randomization ratio varies according to the latest results from the trial. We have always had
some difficulty with this concept. Randomization is justified by continuing uncertainty over which
treatment is superior. Changing the randomization ratio is a signal to the public that the evidence is
swinging in a particular direction, and seems to be an invitation to interference from outside in the
conduct of the trial.

Pocock, Evans, Atkinson and Kadane ask about the use of Bayesian methods in the design of clinical
trials. We did not give this area much emphasis in our paper simply because we have spent less time
thinking about it! We think that there is a role for Bayesian methods in calculating sample size for
clinical trials, using the concept of average power as the criterion to be guaranteed (Spiegelhalter and
Freedman, 1986). Our problem in applications is that we are unsure what level of average power should
really be required. We also think that there is a definite role for Bayesian methods in planning factorial
design trials. There is always debate about the likelihood of interaction when discussing such designs,
and placing a prior distribution on the interaction should provide a useful way of dealing with this issue.
Professor Atkinson mentions work on Bayesian designs that tend to equalize covariates over treatment
groups. Non-Bayesian designs proposed by Pocock and Simon (1975) and by Begg and Iglewicz (1980)
have a similar aim; these are often used in practice. A comparison of these methods with the Bayesian
designs would be of interest.

Finally, Professor Marubini and Dr Mariani complain that Bayesian methods do not solve the problem
of major flaws in the design or conduct of trials, nor do they reduce the sample size requirements. We
agree with both these comments. It is very important for statisticians to involve themselves in the
substantive medical issues of clinical trials, as this will help them to advise clinicians effectively on good
trial design and conduct. On sample size, we fully support the recommendations of Peto and others
who advise that trials are still often too small to answer effectively important public health issues that
confront us. We think that the proper use of Bayesian methods will endorse this view, together with
the emerging realization that p <0.05 is an inappropriate and weak criterion for accepting new treatments.

Dr Senn, Professor Joseph, Professor Shapiro and others point out that there is nothing Bayesian
about introducing a range of equivalence. We agree, although we emphasize that its use fits in very
naturally with a Bayesian analysis that leads to posterior probabilities of the treatment falling below,
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within or above this range. We cannot think of a frequentist approach that would lead to such an appealing
summary of the inferences, although hypothesis testing about each end of the range can be adopted
(Freedman et al., 1984; Fleming and Watelet, 1989).

Professor Kadane questions whether it is useful to specify a range of equivalence. We are sure that
Fleming and Watelet (1989) were using this concept, since their stopping rules were to advocate termination
either if the treatment difference was positive and significantly different from 0 or if the difference
was significantly less than 0.29. Generally, we think that the range of equivalence can be a useful concept
when the treatments to be compared carry very different levels of toxicities, difficulties or costs, and
where the balancing of such inequities with potential benefits in treatment outcome is not obvious. In
these cases it is useful to specify limits beyond which a large proportion of clinicians would agree that
the benefits respectively outweigh or are insufficient to outweigh the inequities. We also think that there
will be some trials where a point of equivalence (not necessarily zero difference) will suffice.

Professor Joseph and Professor Shapiro raise the possibility of a two-dimensional region of equivalence.
This is attractive when there is still considerable uncertainty regarding the levels of toxicity that will
occur, so that the trial will provide substantial extra information on toxicity as well as on the main
outcome. Professor Peter Thall (M. D. Anderson Hospital, Houston, Texas) is working on these problems
from a Bayesian perspective. It is perhaps this two-dimensional approach to which Dr Gore refers when
she talks about a ‘prior distribution on the range of equivalence’.

Dr Buyse questions the appropriate behaviour when a conflict is found between the data and prior,
and we reiterate our opinion that this is a matter for the specific monitoring committee. The explicit
recording of a prior is of great value even, and perhaps especially, if it is found to be misguided. Carlin,
Young and Pettit provide innovative tools that could be used to help in the discussion of the monitoring
committee in such a situation.

Dr Pater points out that the levamisole + 5-fluorouracil example illustrates the need to be aware of
the chain of events, as well as the study results themselves. In particular, he points out that the trial
reported by Laurie and co-workers was performed before the levamisole + 5-fluorouracil trial that we
report, and in fact that this latter trial was performed as a so-called ‘confirmatory’ trial. We agree.
However, the combined analysis including both trials is still valid in the sense that it is combining results
from different trials together with sceptical and enthusiastic prior distributions, but perhaps not in the
chronological order. Despite this, we believe that this combined analysis does help to explain why the
more enthusiastic North American clinicians found the results more convincing than their sceptical
European colleagues.

Professor Armitage refers to the 1993 National Institutes of Health Revitalization Bill (that has since
become an Act) which has a section referring to the inclusion of women and minorities as participants
in clinical research projects. We refer Professor Armitage to the Institutes’ guidelines on the
implementation of this Act (Federal Register, 1994) which, in fact, follow quite closely in the spirit
of Professor Armitage’s suggestion of adopting a multivariate prior assuming high correlation between
treatment effects for different strata, although the discussion is not couched in such formal terms!

Finally we again take the opportunity of thanking all the discussants for their contributions.
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