
EPIB-613 - Programming and Functions

Today we will cover:

1. The basic idea of creating your own functions in R.

2. Seeing several useful examples of functions in R.
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Writing your Own Functions

It is very easy to write your own functions in R. Once these are written, they become
permanent functions in your version of R, available just like any other function. Here we
will see several examples, first a very trivial example, then several more complex (and more
useful).

Of course, it is impossible to teach programming to any level of depth in just a single lecture,
and we will not even try. However, we will see how functions are constructed, and a few
examples, of increasing complexity.

Adding two numbers

First the easy example, creating a function to add two numbers. Of course, this is a silly
example, since R already does this easily, but its simplicity will allow us to focus on how
functions are constructed in general, without worrying about more difficult programming
lines.

> add.2.numbers <- function(a,b)

{

sum = a+b

return(sum)

}

> add.2.numbers(3,4)

[1] 7

> pi

[1] 3.141593

> exp(1)

[1] 2.718282

> add.2.numbers(pi, exp(1))

[1] 5.859874

That is all one needs to do to make a function.

Calculating a Bayesian posterior density for a mean

Now for something more complex, we will create a function to carry out Bayesian inferences
for a single normal mean, when the variance is assumed known.

The theory is the following (in case it was not covered in this year’s version of 607):
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Suppose that your data set, X = (x1, x2, . . . , xn), with sample size n is known to arise from
a Normal distribution, xi ∼ N(µ, σ2), i = 1, 2, . . . , n, i.e., the likelihood function for the data
is normal. Suppose also that the variance of the data, σ2 is a known constant, and so the
only unknown parameter to be estimated is the mean. Suppose that the prior distribution
for the unknown mean µ is N(θ, τ 2).

If we combine the information in the prior distribution with the information in the data set
via Bayes Theorem, we derive the posterior distribution, which summarizes current informa-
tion about the mean µ. It happens that the posterior is also normal, and the exact formula
is:

µposterior ∼ N

(
θ
τ2

+ nx
σ2

1
τ2

+ n
σ2

,
[

1

τ 2
+

n

σ2

]−1
)
,

where x is the mean of the observed data, and [·]−1 indicates matrix inversion.

A function that implements this formula in R is:

> post.normal.mean <- function(x, prior.mean, prior.var, data.var)

{

####################################################################

# R function for Bayesian analysis of normal mean, variance known #

# Parameters included are: #

# #

# Inputs: #

# #

# x = vector of data #

# prior.mean = prior mean #

# prior.var = prior variance #

# data.var = assumed known variance of data #

# #

# Outputs: #

# #

# post.mean = posterior mean #

# post.var = posterior variance #

# #

####################################################################

n<- length(x)

x.bar <- mean(x)

post.mean.numerator <- prior.mean/prior.var + n*x.bar/data.var

post.mean.denominator <- 1/prior.var + n/data.var

post.mean <- post.mean.numerator/post.mean.denominator

post.var <- (1/(1/prior.var + n/data.var))

a <- "Post mean = "
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b <- "Post Var = "

cat(a, post.mean, ",", b, post.var, "\n")

}

> post.normal.mean(1:10, 0, 1000, 1)

Post mean = 5.49945 , Post Var = 0.09999

Another useful way to create output in functions is illustrated below. This format is especially
useful if you want to use the program’s results later on in your R session.

> post.normal.mean <- function(x, prior.mean, prior.var, data.var)

{

####################################################################

# R function for Bayesian analysis of normal mean, variance known #

# Parameters included are: #

# #

# Inputs: #

# #

# x = vector of data #

# prior.mean = prior mean #

# prior.var = prior variance #

# data.var = assumed known variance of data #

# #

# Outputs: #

# #

# post.mean = posterior mean #

# post.var = posterior variance #

# #

####################################################################

n<- length(x)

x.bar <- mean(x)

post.mean.numerator <- prior.mean/prior.var + n*x.bar/data.var

post.mean.denominator <- 1/prior.var + n/data.var

post.mean <- post.mean.numerator/post.mean.denominator

post.var <- (1/(1/prior.var + n/data.var))

posterior.parameters <- list(post.mean= post.mean, post.var = post.var)

return(posterior.parameters)

}

> post.normal.mean(1:10, 0, 1000, 1)

$post.mean

[1] 5.49945

4



$post.var

[1] 0.09999

A useful function relating to functions is args, which reminds you of the required arguments
of the function. For example:

> args(post.normal.mean)

function (x, prior.mean, prior.var, data.var)

Adding CIs to linear and logistic regression output

By default, R provides coefficients and p-values in its regression output, but not confidence
intervals. However, it is easy to add these in, since R does provide all of the information
needed to obtain these confidence intervals.

Unlike simple linear regression of a single variable, we cannot know in advance how many
independent (X) variables we will want to use in our function. Therefore, at the beginning,
we will discover the number of beta coefficients we need to estimate, and automatically get
confidence intervals for all of them.

Here is the function:

multiple.regression.with.ci <- function(regress.out, level=0.95)

{

################################################################

# #

# This function takes the output from an lm #

# (linear model) command in R and provides not #

# only the usual output from the summary command, but #

# adds confidence intervals for intercept and slope. #

# #

# This version accommodates multiple regression parameters #

# #

################################################################

usual.output <- summary(regress.out)

t.quantile <- qt(1-(1-level)/2, df=regress.out$df)

number.vars <- length(regress.out$coefficients)

temp.store.result <- matrix(rep(NA, number.vars*2), nrow=number.vars)

for(i in 1:number.vars)

{
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temp.store.result[i,] <- summary(regress.out)$coefficients[i] +

c(-1, 1) * t.quantile * summary(regress.out)$coefficients[i+number.vars]

}

intercept.ci <- temp.store.result[1,]

slopes.ci <- temp.store.result[-1,]

output <- list(regression.table = usual.output, intercept.ci = intercept.ci,

slopes.ci = slopes.ci)

return(output)

}

Now test the function on some data relating flouride concentration to DMF teeth:

> dmf = c( 236, 246, 252, 258, 281, 303, 323, 343, 412, 444, 556, 652,

673, 703, 706, 722, 733, 772, 810, 823, 1027)

> flor = c( 1.9, 2.6, 1.8, 1.2, 1.2, 1.2, 1.3, 0.9, 0.6, 0.5, 0.4, 0.3,

0.0, 0.2, 0.1, 0.0, 0.2, 0.1, 0.0, 0.1, 0.1)

> flor2 <- flor^2

> dmf.data <- data.frame(dmf, flor, flor2)

> attach(dmf.data) # For convenience, to make the dmf and flor variables

> # available outside the data.frame

> regression.out <- lm(dmf ~ flor + flor2

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = dmf ~ flor + flor2)

Residuals:

Min 1Q Median 3Q Max

-138.510 -34.566 -1.510 31.240 277.030

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 811.51 31.55 25.721 1.20e-15 ***

flor -631.85 79.91 -7.907 2.90e-07 ***

flor2 164.48 35.19 4.675 0.000189 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 87.91 on 18 degrees of freedom
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Multiple R-Squared: 0.8816, Adjusted R-squared: 0.8684

F-statistic: 67 on 2 and 18 DF, p-value: 4.578e-09

$intercept.ci

[1] 745.2254 877.7952

$slopes.ci

[,1] [,2]

[1,] -799.73982 -463.9532

[2,] 90.55367 238.3980

You may wish to modify the function to create “prettier” output, but it works.

Here is a similar function for logistic regression data:

logistic.regression.or.ci <- function(regress.out, level=0.95)

{

################################################################

# #

# This function takes the output from a glm #

# (logistic model) command in R and provides not #

# only the usual output from the summary command, but #

# adds confidence intervals for all coefficients and OR’s. #

# #

# This version accommodates multiple regression parameters #

# #

################################################################

usual.output <- summary(regress.out)

z.quantile <- qnorm(1-(1-level)/2)

number.vars <- length(regress.out$coefficients)

OR <- exp(regress.out$coefficients[-1])

temp.store.result <- matrix(rep(NA, number.vars*2), nrow=number.vars)

for(i in 1:number.vars)

{

temp.store.result[i,] <- summary(regress.out)$coefficients[i] +

c(-1, 1) * z.quantile * summary(regress.out)$coefficients[i+number.vars]

}

intercept.ci <- temp.store.result[1,]

slopes.ci <- temp.store.result[-1,]

OR.ci <- exp(slopes.ci)

output <- list(regression.table = usual.output, intercept.ci = intercept.ci,

slopes.ci = slopes.ci, OR=OR, OR.ci = OR.ci)

return(output)
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}

Maybe just as easy to use the confint command, but this again shows how functions can
work.

Exact Confidence intervals for binomial data

You can calculate binomial parameter confidence intervals using the prop.test command, but
this depends on a normal approximation. For small sample sizes or for proportions near zero
or one, the approximation may not be very accurate. Here is a (rather complex) function
that is exact regardless of sample sizes:

ci.prop <- function(x, n, level = 0.95)

{

# Confidence interval for a single probability

#

# Returns the exact level% confidence interval for a single binomial

# proportion when x successes are observed, out of n trials.

# Formula was found in Johnson & Kotz, Discrete distributions, pp. 58-60.

# keywords: confidence_interval binomial proportion

if(length(n) == 1 && length(x) > 1) n <- rep(n, length(x))

if(length(level) == 1 && length(x) > 1)

level <- rep(level, length(x))

bounds <- matrix(NA, length(x), 2)

xs <- x

ns <- n

levelss <- level

which.0 <- seq(along = x)[x == 0]

which.n <- seq(along = x)[x == n]

which.to.remove <- c(which.0, which.n)

if(length(which.to.remove) > 0) {

which.others <- seq(along = x)[ - which.to.remove]

}

else {

which.others <- seq(along = x)

}

if(length(which.0) > 0) {

level.0 <- level[which.0]

n.0 <- n[which.0]

bounds[which.0, 1] <- 0

bounds[which.0, 2] <- 1 - (1 - level.0)^(1/n.0)

}

if(length(which.n) > 0) {
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level.n <- level[which.n]

n.n <- n[which.n]

bounds[which.n, 2] <- 1

bounds[which.n, 1] <- (1 - level.n)^(1/n.n)

}

if(length(which.others) > 0) {

x <- x[which.others]

n <- n[which.others]

level <- level[which.others]

v1 <- c(2 * x, 2 * (x + 1))

v2 <- c(2 * (n - x + 1), 2 * (n - x))

F.quantiles <- qf(c((1 - level)/2, (1 + level)/2), v1, v2)

other.bounds <- matrix((v1 * F.quantiles)/(v2 + v1 *

F.quantiles), ncol = 2)

bounds[which.others, 1] <- other.bounds[, 1]

bounds[which.others, 2] <- other.bounds[, 2]

}

results <- matrix(c(xs, ns, xs/ns, levelss, c(bounds)), nrow = length(

xs))

dimnames(results) <- list(NULL, c("x", "n", "x/n", "level", "p_L",

"p_U"))

results

}

Some examples of its use:

> prop.test(0,10)

1-sample proportions test with continuity correction

data: 0 out of 10

95 percent confidence interval:

0.0000000 0.3445372

sample estimates:

p

0

> ci.prop(0,10)

x n x/n level p_L p_U

[1,] 0 10 0 0.95 0 0.2588656

> prop.test(20, 100)
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1-sample proportions test with continuity correction

data: 20 out of 100, null probability 0.5

95 percent confidence interval:

0.1292482 0.2943230

sample estimates:

p

0.2

> ci.prop(20,100)

x n x/n level p_L p_U

[1,] 20 100 0.2 0.95 0.1266556 0.2918427

So, similar answers for large sample sizes, but quite different for small sample sizes.

This function contains rather complex features, taking care of cases with invalid data, for
example, if x is larger than n, which is impossible. At this level, I do not expect you to be
able to understand or follow all lines, but include this as a useful function to cut and paste
into your version of R, and as an illustration of what one can do.

Conclusion

R is a very powerful package, we have just scratched the surface of what is available. Its
developmental environment, a bit of what we have seen today, makes it the first choice of
many, if not the majority, of statisticians today.
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