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Bayesian clinical trials in action
J. Jack Lee*† and Caleb T. Chu

Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s,
it has several notable limitations. Advancements in computational algorithms and computer hardware have
greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian
framework has several unique advantages, and its incorporation into clinical trial design is occurring more
frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we
find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision
making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for
implementing Bayesian methods in clinical trials may include specialized software programs to run the study
design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data
entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate
execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit
of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more
evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately,
better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and
better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials.
More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit
in action. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

A clinical trial is a prospective study that evaluates the effect of interventions in humans under pre-
specified conditions. Clinical trials provide the most definitive mechanism for assessing the outcome of
interventions and form the foundation for evidence-based medicine through reliable data. Clinical trials
also represent key components in research, with the potential to change the standard of care, improve
quality of health, and control costs through careful comparison of alternative treatments. The results of
the first modern clinical trial, which involved the use of streptomycin to treat pulmonary tuberculosis,
were published in 1948 in the UK [1]. That trial involved randomizing patients into treatment and control
groups and assessing the outcome without knowledge of the treatment assignment. Since then, clinical
trials have been widely applied in medicine for the advancement of science and the search for better
treatments to improve health.

In the USA, the National Institutes of Health, particularly the National Heart, Lung, and Blood
Institute and the National Cancer Institute, have led the effort to develop and conduct clinical trials
[2, 3]. Clinical Trials: Past, Present and Future, a National Heart, Lung, and Blood Institute-sponsored
workshop held in 2010, explored the significance of clinical trials by examining their historical develop-
ment, surveying their present use and impact on medicine, and discussing the future direction of clinical
trials. This paper examines the emerging use of Bayesian methods in clinical trials, focusing on their
expanding implementation and impact on medicine.

From a statistical framework point of view, the frequentist paradigm has dominated the field of clini-
cal trials over the past 60 years. Considering the treatment effect, ™, which is the parameter of interest,
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the frequentist framework assumes that ™ is fixed yet unknown. Through clinical trials, we can collect
data to inform ™. Hence, the inference on the treatment effect can be made by evaluating the probability:
Prob(dataj™/, where the data are considered to be random and the parameter ™ is fixed. Conversely,
the Bayesian framework assumes that the data is fixed and the unknown parameter ™ is modeled as a
random variable of a probability distribution. Bayesian inference is made by computing Prob(™jdata).
Thanks to the work of R.A. Fisher, J. Neyman, and K. Pearson, among others, the frequentist theory
was well developed in the early 1900s [4]. Compared with the Bayesian methods, frequentist proba-
bility calculation is simpler and less computationally intensive. As a result, the frequentist framework
became the mainstream of statistics and was quickly adopted into clinical trials as they evolved. Despite
its usefulness and proven success in clinical trials, the frequentist framework suffers from some major
deficiencies. Most notably, frequentist inference on the parameter of interest, ™, is made indirectly as it
calculates Prob(dataj™/ and not Prob(™jdata), as Bayesian inference does. In-depth comparisons between
the frequentist and Bayesian approaches can be found in the literature [5, 6]. In this paper, our focus is
on the use of Bayesian methods in clinical trials, in particular, on their implementation and impact on
medicine. We organize the rest of the paper as follows. Section 2 describes the unique strength of the
Bayesian paradigm. Section 3 discusses the barriers for Bayesian clinical trials and efforts to overcome
them. Section 4 gives a brief overview of the various schools of Bayesian methods. Section 5 shows the
results of our literature review, used to illustrate how Bayesian methods have been practically applied in
clinical trials. Section 6 presents the MD Anderson Cancer Center experience in the design and conduct
of Bayesian clinical trials. Section 7 concludes with further discussion and a glimpse into the future roles
that Bayesian methods may play in clinical trials.

2. Unique strengths of the Bayesian paradigm

From the historical account, the concept of the Bayesian approach by Reverend Thomas Bayes was pub-
lished posthumously in 1763 (with the help of his friend Richard Price)—long before the frequentist
methods became popular [7,8]. The now famous Bayes theorem states that the posterior probability of ™
can be calculated proportionally to the product of the prior probability of ™ and the data likelihood, that is,
Prob(™jdata) / P(™/ Prob(dataj™/. This plain yet profound theorem was largely ignored in the early days
(with the notable exception of Pierre-Simon Laplace), but was reinvigorated in the mid-1900s, thanks
to the work of Jeffreys, de Finetti, Good, Savage, de Groot, Lindley, Cornfield, and Zeller, among many
others [9]. Of note, Jerry Cornfield worked at the Public Health Service/National Cancer Institute from
1947 to 1958 and at the National Heart Institute from 1960 to 1967 and played a key role in bringing
Bayesian thinking to the arena of clinical trial development [10, 11]. Ashby comprehensively reviewed
the development of Bayesian statistical methodology in clinical trials [12], whereas Grieve gave his
personal account on the use of Bayesian methods in the pharmaceutical industry [13]. The Bayesian
framework has several unique advantages over its frequentist counterpart. We describe the key strengths
of the Bayesian method in this section.

2.1. Bayesian methods conform to the likelihood principle

The likelihood principle states that all evidence of an unknown parameter ™, which is obtained from an
experiment, is contained in the likelihood function of ™ for the given data. In other words, all relevant
information for making inference on ™ is contained in the observed data and not in other unobserved
quantities [14]. This is simple and logical. However, many of the frequentist inferences, such as the ones
based on the P value or the coverage probability of a confidence interval, violate the likelihood principle
because the inference depends on the unobserved data. In contrast, the Bayesian approach is based upon
the observed data and thereby conforms to the likelihood principle. As a result, frequentist inference is
valid only when the prespecified clinical trial design is followed. When the study conduct deviates from
the original design, frequentist inference suffers, and adjustments are difficult to make. On the other
hand, Bayesian inference is conditioned on the data and not on the design of the trial, so it can still main-
tain validity as long as the prior distribution and the probability model are correctly specified. Note that
under the Bayesian reference prior analyses, it is possible for two models to yield similar proportional
likelihoods but different reference priors, hence result in different analysis outcomes [15]. We give more
discussions later on the choice of prior.
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2.2. Bayesian methods model the unknown parameter with a distribution and properly address various
levels of uncertainty. The Bayesian approach is ideal for hierarchical models

By assuming the parameter is fixed, frequentist methods often underestimate the variability of the param-
eter of interest. On the other hand, under the Bayesian framework, all unknown parameters are random
and follow certain probability distributions. The distribution parameters, themselves, are also unknown
and can be modeled with hyper priors. Thus, the Bayesian method is intrinsically hierarchical. Different
levels of variability are appropriated naturally under the hierarchical model assumption. The de Finetti
theorem states that subjects enrolled in the clinical trial are exchangeable if and only if the probability of
the observed data can be expressed as the data likelihood given the parameter that is integrated over the
prior distribution of the parameter. Exchangeability implies conditional independence of the data given
the parameter, which nicely fits the clinical trial setting [16].

2.3. Bayesian methods give direct answers to the questions that most people want to ask and provide a
uniform way to solve complex problems

By addressing the question directly, Bayesian methods calculate the probability of ™ given the data and
can answer a question such as, ‘For the new treatment, what is the probability that the success rate
is more than 80%?’ or, ‘What is the probability that the true success rate lies between the interval of
(0.76, 0.92)?’ Frequentists calculate the probability of the observed data given a certain hypothesis, but
they cannot answer the aforementioned questions. The frequentist confidence interval is random because
the data observed is also random. The frequentist approach can be used to calculate the probability that
such an interval covers the true parameter if the process is repeated many times, that is, the long-range
frequentist property; however, it cannot be used to determine the coverage rate containing the true param-
eter for a given confidence interval. Frequentists have to constantly explain to non-statisticians that the
P value is not the probability of the null hypothesis being true and that the 95% confidence interval does
not contain the true parameter 95% of the time. In contrast, Bayesian methods deal with the problem
head-on and give direct answers to the questions that most people want to ask. Problems of any sort
can be approached in a straightforward three-step Bayesian formulation: first, specifying the prior dis-
tribution of the parameter of interest; second, observing the data and; third, updating the information by
computing the posterior distribution. This provides a consistent and coherent statistical framework under
which to formulate research questions and quantify the information at hand to provide answers to those
questions. This method can be universally applied to simple and complex problems.

2.4. Bayesian methods formally incorporate prior information gathered before, during,
and outside of the trial

Typically, the concept for initiating a clinical trial does not arise from an information vacuum but is
developed because of intriguing information found before the trial. To design a trial, frequentists use
the prior information in an ad hoc way to make assumptions on the parameter of interest. In the reverse
manner, Bayesians elicit the prior distribution for ™ and formally incorporate it to make an inference.
Although the prior distribution assumption may be subject to criticism, it is spelled out explicitly and
its impact can be evaluated by the sensitivity analysis. The robustness of Bayesian analysis can also
be improved by considering a class of plausible priors, allowing for heavy tailed distributions, or by
constructing hierarchical mixture models [17–19]. In addition, the Bayesian framework allows for the
incorporation of information accumulated in the trial, acquired outside of the trial, and can synthesize
information across multiple trials as required in a meta-analysis [20, 21].

2.5. Bayesian methods allow for more frequent monitoring and interim decision making
during the trial

By definition, Bayesian methods provide a platform for sequential learning. The data updates the prior
distribution to form the posterior distribution. The formed posterior distribution then becomes the prior
distribution for a future evaluation. Frequent monitoring of interim results are desirable in clinical trials
because many of the trials are conducted over an extended period. This allows for decisions to be made
early when sufficient evidence has accumulated. Although group sequential methods have been well
developed under the frequentist paradigm [22], frequentist properties are directly affected by the number
and timing of interim analyses. In contrast, Bayesian methods do not impose a penalty on sequential
learning. Another main difference between the two approaches is that the frequentist approach makes
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interim decisions on the basis of the conditional power, which is calculated by fixing the parameter of
interest at a certain value. The Bayesian approach calculates the predictive probability by integrating
the conditional power over the distribution of ™ because the parameter ™ is random. The predictive
probability factors in the uncertainty of ™, whereas the conditional power assumes that ™ is fixed [23].

2.6. Bayesian methods can incorporate the utility function for informed decision making

In the Bayesian theoretic approach, clinical trial investigators can specify the ‘utility’ or ‘loss’ of various
events. For example, ‘what is the utility (or importance) of curing cancer and what is the negative utility
(loss) of developing a long-term toxicity due to the treatment?’ Maximizing the utility function or mini-
mizing the loss function can make the optimal decision of the best treatment for a given patient. Bayesian
methods allow subjective opinions to be incorporated into the specification of the prior distribution and
the utility function. Different people can have different levels of prior belief or different preferences
as they rate the relative importance of events, such as being cured or suffering treatment-related toxi-
city. Bayesian methods formulate these components explicitly and quantitatively to aid investigators in
making an informed decision.

2.7. Bayesian methods use a ‘learn as we go’ approach. This real-time learning feature forms the basis
of adaptive clinical trial designs

As previously stated, the Bayesian method is a sequential learning method and takes a ‘learn as we go’
approach. It naturally adapts to the data and to all relevant information at hand. Traditional clinical
trial designs and conduct that are less adaptive often lead to large trials over an extended period.
Adaptive designs have been proposed with the aim of creating more efficient, more flexible, and more
ethical designs by making design changes on the basis of the interim data. The Bayesian framework
naturally and ideally fits into the development of adaptive designs [24]. Bayesian adaptive approaches
are especially useful in the following three areas: (i) outcome adaptive randomization to assign more
patients into more effective treatment arms as data accumulates in the trial; (ii) interim monitoring for
early stopping as a result of futility or efficacy; and (iii) adaptive sample size estimation by calculat-
ing the probability for a successful trial given the current result and the sample size required to reach a
definitive conclusion at the end of study. In 2010, the U.S. Food and Drug Administration (FDA) issued
a guidance document for adaptive clinical trials [25]. Although much of its content is in the frequentist
framework, it also points out the usefulness of the Bayesian approach in adaptive designs.

3. Barriers for Bayesian clinical trials and efforts to overcome them

Despite the early work of Bayes in the 1760s and Laplace in the following decades, Bayesian approaches
have been largely limited to a philosophical and theoretical context until they were reinvigorated in the
mid 1900s. Two major barriers have prevented Bayesian methods from becoming popular: the inherent
computational demands and the use of subjective information. We discuss these barriers and the efforts
to overcome them.

3.1. Computational demands

In the first 200 years of its existence, the Bayesian approach could solve only a few special cases
when conjugate priors were available. Calculating the posterior distribution was extremely difficult for
general cases without good computing algorithms or the use of powerful computers. This two-century-
old stagnancy changed during the 1980s and the 1990s with the advent and development of the Markov
Chain Monte Carlo (MCMC) [26, 27]. By constructing a Markov chain with the desired distribution
as its equilibrium state, MCMC can construct complex posterior probability distributions on the basis
of Monte Carlo samples. During the development of MCMC, personal computers and workstations
were also becoming more available and powerful, allowing for both cheaper and faster computational
processing. The coincidental invention of efficient computing algorithms and the availability of massive
computing power not only removed the inhibitory computation bottleneck but also allowed for a surge
in the development and application of Bayesian methods.

Another significant step forward in Bayesian computing was the development of the BUGS (Bayesian
inference using Gibbs sampling) software [28]. A group at the Medical Research Council Biostatistics
Unit and Imperial College School of Medicine in the UK started the BUGS project in 1989. BUGS was
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the first general purpose software available for Bayesian computing. Users could specify the model and
the probability distributions of data from a rich set of commonly used distributions. By supplying the
prior distribution and the data, we could compute the posterior distribution. Subsequently, an open source
version called OpenBUGS was developed, which could run on different operating systems. WinBUGS
was then developed by adding useful GUIs to facilitate its use in the Microsoft Windows environment.
In addition, R2WinBUGS and BRugs were developed for users to run WinBUGS within R such that the
WinBUGS code could be integrated within the R environment, allowing for easier code writing, analysis,
and reporting.

Another similar development was JAGS (just another Gibbs sampler). This program analyzed
Bayesian hierarchical models by using MCMC simulation. The unique features of JAGS include
(i) a cross-platform engine for the BUGS language; (ii) the ability for users to write their own functions,
distributions, and samplers; and (iii) a platform for experimenting with Bayesian modeling.

To address the increasing use of Bayesian methods, SAS (SAS Institute, Cary, NC) added the BAYES
statement in the GENMOD, LIFEREG, and PHREG procedures. In addition, starting from version 9.2,
SAS introduced a new MCMC procedure. PROC MCMC is a flexible simulation-based procedure suit-
able for fitting a wide range of Bayesian models. Upon specifying a likelihood function for the data and
a prior distribution for the parameters, PROC MCMC obtains samples from the corresponding posterior
distributions. It also produces summary and diagnostic statistics.

Although general computation tools such as BUGS or WinBUGS are available, specialized computer
programs are often needed to design and run a Bayesian study. Web-based applications are particu-
larly useful for timely data entry and analysis. Web services can be called for exchanging information
between the database module and the computing module. The success of a Bayesian clinical trial also
requires timely and accurate execution of data entry, quality control, adaptive randomization, outcome
assessment, and Bayesian computation.

3.2. Using subjective information

Following theoretical and the computational developments in Bayesian methods, more and more clinical
trialists began to incorporate Bayesian thinking into the study design, conduct, and analysis of clinical
trials. Despite its growing popularity, one major impediment to the widespread use of Bayesian methods
still exists: a debate on whether or how to incorporate subjective information into inference and deci-
sion making. The use of subjective information in clinical trials is a double-edged sword. When used
properly, adding subjective information can greatly improve the trial efficiency and facilitate reaching a
decision earlier. On the other hand, the improper use of prior information can bias the inference and lead
to incorrect conclusions. Furthermore, what is most bothersome to clinical trialists and regulatory agen-
cies, such as the FDA, is that given the same data, different conclusions may be drawn if different priors
are used. Hence, priors must be pre-specified in the study design and sensitivity analysis is warranted.
Bayesian communities have taken different approaches to this problem over the years. Some argue that
the Bayesian approach is inherently subjective; hence, it should be used accordingly [29]. Others stress
the importance of being objective and propose an objective Bayesian approach by specifying objective
priors [30]. Although the debate continues, the goal is one shared by both communities—to efficiently
and accurately infer conclusions on the basis of the data [31].

4. Schools of Bayesian approaches

Several schools of Bayesian approaches with different modeling frameworks have been proposed in
theory and practice. According to Spiegelhalter et al. [32], Bayesian approaches can be largely classified
into four major types: empirical, reference, proper, and decision-theoretic Bayes.

(1) The empirical Bayes approach derives the prior distribution from the data; whereas the standard
Bayesian approach sets the prior before any data are observed. The empirical approach can be
viewed as a hierarchical Bayes model, where parameters at the top of the hierarchy are set to their
most likely values, instead of being integrated out.

(2) The reference Bayes approach uses an ‘objective’ or ‘reference’ prior such that the inference is
more objective. Some criticize this approach as ‘an attempt to make the Bayesian omelets without
breaking the Bayesian eggs.’

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2955–2972
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(3) The proper Bayes approach uses informative prior distributions on the basis of the available
evidence but summarizes conclusions by posterior distributions without explicit incorporation of
the utility function. Some have called this a ‘stylist Bayes’ approach.

(4) The decision-theoretic or ‘full’ Bayes approach uses explicit utility (or loss) functions and makes
decisions on the basis of maximizing the expected utility (or minimizing loss). One can argue that
the decision-theoretic approach provides the ultimate answer to the research question. For example,
in drug development, not only does the toxicity and efficacy of the drug need to be assessed but
the relative risk and benefit of the drug also need to be specified explicitly in the utility function.
Furthermore, the cost of making a false positive decision (accepting a bad drug) and the cost of
making a false negative decision (rejecting a good drug) needs to be specified as well. In complex
settings with conflicting goals, the decision-theoretic approach can provide the best (optimal)
answer after considering all the loss and gain of each decision. However, it is not easy to come up
with a generally acceptable utility function. Additional requirements include the use of dynamic
programming and backward induction to obtain the solution in a sequential decision-making
process. Computations can be very complex and demanding when applied to real clinical trial
situations. As a result, the decision-theoretic approach is rarely used in clinical trials. Currently,
the reference Bayes and the proper Bayes approaches are most commonly used in clinical trials. In
practice, a combination of subjective and objective priors is often used. Because some software does
not allow for improper priors, vague proper priors are sometimes used instead. The consequence in
such analyses should be carefully assessed (see, e.g., Section 4.2 of Berger, (2006) [30]).

5. Literature review of Bayesian clinical trials

To survey the use and impact of Bayesian methods in clinical trials, we performed a limited literature
review. Our main interest was to ascertain how Bayesian methods have been applied in the design and
analysis of real clinical trials. The methodology for the literature search is reported in Appendix A.
A total of 2012 articles were obtained.

5.1. Study selection

We processed the obtained articles by placing them into exclusion and inclusion categories
(see Figure 1). We placed articles for exclusion into four main categories: duplicates (electronically
and manually identified), journals (statistical, epidemiological, computer/engineering, and conference
papers), subjects (meta-analysis, review/opinion, observational/database, statistical methods, and phar-
macokinetics/pharmacodynamics), and additional exclusions (non-medical, non-human, non-English,
and non-Bayesian). Note that we excluded 256 articles because they were published in statistical journals
and 479 additional articles because they had a methodology focus, which included statistical strategies,
algorithms, trial designs, method comparisons or demonstrations, tutorials, model development or val-
idation, and simulations. In the reviews/opinion category, we excluded 224 articles. We also excluded
141 meta-analysis/systematic review articles because our focus was on individual trials. We excluded
175 articles in the last major exclusion category: pharmacokinetics/pharmacodynamics (PK/PD).

One of the early applications of Bayesian methods in clinical trials was the use of a nonlinear mixed-
effects model in a PK study. The NONMEM program was developed in the late 1970s and quickly
became the gold standard for the population-based PK studies [33–35]. Several subsequent PK/PD
models and programs were developed [36]. PK/PD examples illustrate the importance of software devel-
opment. Without appropriate computer software, even the most elegant methods could not be used.
Accompanied by user-friendly software, new and even complicated statistical methods can be applied
to clinical trials. We decided to exclude the Bayesian PK/PD studies because the goals for these trials
were narrow and essentially constituted a distinct subgroup. Following all of the exclusions, 117 articles
remained. In addition, we added four known papers that had not been identified by the search algorithm
because words ‘Bayesian’ and ‘Bayes’ were not mentioned in the keywords nor were they found in the
abstract [37–40]. The final number of articles reviewed was 121.

5.2. Data extraction and results

We extracted and summarized key elements of these trials in Tables I through III.
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Initial Articles 
n = 2012 

Articles  
n = 1700 

Exclude Duplicates 

Articles 
n = 1257 

Exclude by Journals 
Statistical Journals 

n = 256 

Epidemiological 
Journals n = 49 

Conference Papers 
n = 112 

Comp/Engineer 
Journals§ n = 26 

Remaining Articles 
n = 121¥

Non-medical 
Papers‡ n = 7 

Non-English Papers 
n = 9 

Non-Bayesian 
Papers n = 19 

Non-human Papers 
n = 7 Additional Exclusions

Articles 
n = 159 

Electronic Exclusion 
n = 232 

Manual   
Exclusion n = 80 

Exclude by Subjects 

Meta-analysis*  
 n = 141 

Obs/database***  
n = 79 

Methodology****  
 n = 479 

Review/Opinion** 
n = 224 

PK/PD† 

n = 175 

Figure 1. Study selection algorithm. �comp, computers; *also includes Cochrane journals and systematic
reviews; **also includes commentaries, letters, replies, surveys, notes, guidelines, and short articles;
***obs, observational; also includes registries and epidemiologic studies; ****methodology focused studies
include: statistical strategies, algorithms, trial designs, method comparisons/demonstrations, tutorials, model
development/validation, and simulations; � pharmacokinetics/pharmacodynamics; ‡ includes engineering, social

science, and policy making studies; U includes 4 manually added articles.

As seen in Table I, publications prior to 1990 included only three clinical trials that used Bayesian
methods. That number quickly jumped to 19 in the 1990s and to 99 in the period since 2000. Most
trials (62%) applied Bayesian methods for testing treatment efficacy; 12% of the trials applied them
for testing treatment safety; 12% of the trials applied them in the areas of medical decision making/
cost-benefit analysis; and 10% were association studies. In terms of the medical fields, oncology
led the pack (30%), followed by cardiovascular research (16%), and central nervous system research
(10%). These 121 papers were published dispersedly in 91 journals, with 11 in the Journal of Clinical
Oncology, four in PLoS One, and three each in The New England Journal of Medicine, JAMA, Cancer,
and Complementary Therapies in Medicine (data not shown).

In Table II, we placed articles into three categories: (i) clinical trials prospectively applied Bayesian
design and analysis (n D 31); (ii) studies that used a frequentist design with a Bayesian analysis
(nD 72); and (iii) Bayesian reanalysis studies (nD 18), which involved the use of Bayesian methods to
retrospectively analyze data from a previously run clinical trial.

We see that the vast majority of the trials are two-arm (57%) or one-arm (32%) studies. About 50% of
the trials had a control group. Almost 60% of the studies were randomized trials, 47% of which applied
equal randomization, and 6% of which applied fixed but unequal randomization. Only 5% of the trials
applied adaptive randomization. In terms of sample size, 24% were very small (n630) and 27% had
sample sizes between 31 and 99. Sample sizes were between 100 to 499 and 500 to 999, respectively, for
35% and 8% of the trials. Only 6% of the trials had sample sizes of 1000 or more patients. About 46%
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Table I. Characteristics of publications reviewed (n D 121): Year of
publication, type of clinical trial, and medical area of study.

Variable Frequency Percentage

Years
1975–1989 3 2.5
1990–1994 5 4.1
1995–1999 14 11.6
2000–2004 25 20.7
2005–2011 74 61.2

Type of clinical trial
Association studies 12 9.9
Efficacy 75 62.0
Efficacy and safety 6 5.0
Medical decision making, cost–benefit 14 11.6
Safety* 14 11.6

Medical areas of study
Addiction 2 1.7
Auditory system 1 0.8
Central nervous system 12 9.9
Cardiovascular system 19 15.7
Dentistry 1 0.8
Gastrointestinal system 3 2.5
Genetics 2 1.7
Genitourinary system 1 0.8
Geriatrics 1 0.8
Hematology 2 1.7
Infectious disease 10 8.3
Metabolic disorder 2 1.7
Obstetrics and gynecology 9 7.4
Oncology 36 29.8
Ophthalmology 1 0.8
Pain 2 1.7
Pediatrics 1 0.8
Pulmonary system 7 5.8
Radiology 2 1.7
Renal system 3 2.5
Transplant 4 3.3

* Includes five continuous reassessment model and two escalation with over-
dose control papers.

of the trials enrolled patients during 2 or fewer years; whereas 40% of trials spent 2 to 5 years enrolling
patients. The remaining 15% of the trials had an accrual period of 6 to 8 years.

Table III shows that continuous, binary, ordinal, and time-to-event variables, respectively, were used
as the primary endpoints in 45%, 31%, 12%, and 12% of the trials. A number of Bayesian methods
were applied in clinical trials, including for estimation (28%), hypothesis testing (22%), prediction
(12%), regression (9%), hierarchical modeling (8%), model selection (7%), sensitivity analysis (4%),
a decision-theoretic approach (3%), and a Bayesian network (2%). Informative priors were used in 45%
of the trials; noninformative priors were used in 24% of the trials. The remaining 31% of the trials did
not provide sufficient information regarding the priors that were used. A vast majority of the trials (87%)
did not specify an interim analysis. Only 7%, 3%, and 4% of the trials had 1, 2, or 3–7 interim analyses,
respectively. Ten percent of the trials were stopped early; six due to futility, four due to efficacy, one for
equivalence, and one for toxicity.

5.3. Limitations and overall assessment

Although we made all efforts to best identify the use of Bayesian methods in clinical trials, our search
had several limitations. First, we included the words ‘Bayes or Bayesian’ and ‘clinical trials’ in our
search criteria. Therefore, we excluded articles without these words. The most prominent inadvertent
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Table II. Trial characteristics in publications reviewed (nD 121).

Variable Frequency Percentage

Bayesian usage
Bayesian design/analysis 31 25.6
Frequentist design/Bayesian analysis 72 59.5
Bayesian re-analysis 18 14.9

Number of arms*
1 36 31.6
2 65 57.0
3 7 6.1
>4 6 5.3

Use of control group*
Yes** 53 46.5
None 61 53.5
Method of randomization*
Adaptive randomization 6 5.3
Equal randomization*** 54 47.4
Fixed unequal randomization**** 7 6.1
None 47 41.2

Actual sample size
6 30 29 24.0
31–59 21 17.4
60–99 12 9.9
100–199 16 13.2
200–499 26 21.5
500–999 10 8.3
1000–9999 7 5.8

Accrual period (in months)*****
>12 13 27.1
13–24 9 18.8
25–36 8 16.7
37–48 7 14.6
49–60 4 8.3
6–8 years 7 14.6

*Does not include seven papers with multiple studies.
**Twenty three active, 18 placebo, 1 no treatment, and 11 unspecified.
***Includes 46 two-arm trials, 5 three-arm trials, 2 four-arm trials, and 1
five-arm trial.
****All two-arm trials (one 1:1.5, one 2.8:1, four 2:1, and one 3:1).
*****Seventy three studies did not specify.

exclusions were trials that used the continual reassessment method (CRM) [41] or the escalation with
overdose control (EWOC) method [42] that did not mention the words ‘Bayes or Bayesian.’ We per-
formed a separate literature search and identified 81 CRM trials and 9 EWOC trials (see Appendix B
for the search algorithm and results). We included only seven of such trials in the 121 articles we
reported. Most of the studies were dose-finding cancer studies, with a goal of determining the maxi-
mum tolerated dose. These were typically single-arm, open-label studies without a control group and
with a total sample size of less than 60. We decided to not include these studies, which were not iden-
tified in the main search, in the tabulation because similar to the Bayesian PK/PD studies, they form a
distinct subgroup.

Overall speaking, there is a growing trend in the application of Bayesian methods in clinical trials
albeit its percentage of use is still very small among all trials. A wide variety of Bayesian methods are
increasingly being used for assessing efficacy, toxicity, diagnostic and medical decision-making, and so
on. Bayesian methods tend to be used more in early-phase trials to assess PK/PD or in dose finding
but have been rapidly expanding in its use to provide answers for a myriad of statistical and medical
questions as well.
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Table III. Statistical attributes in publications reviewed (nD 121).

Variable Frequency Percentage

Primary endpoint category
Continuous 54 44.6
Binary 38 31.4
Ordinal 15 12.4
Time to event 14 11.6

Bayesian method
Estimation 34 28.1
Hypothesis testing 26 21.5
Prediction/forecast 14 11.6
Regression model 11 9.1
Hierarchical model 10 8.3
Model selection/comparison 8 6.6
CRM/EWOC* 7 5.8
Sensitivity analysis 5 4.1
Decision theory 4 3.3
Bayesian network 2 1.7

Prior distribution
Informative 54 44.6
Non-informative 29 24.0
Unspecified 38 31.4

Number of interim analyses

0 105 86.8
1 8 6.6
2 3 2.5
3 1 0.8
4 1 0.8
5 1 0.8
6 1 0.8
7 1 0.8

Trial stopped early
No 109 90.1
Yes 12 9.9

Reason for stopping early
Futility 6 50.0
Efficacy 4 33.3
Equivalence 1 8.3
Toxicity 1 8.3

*Five CRM, continuous reassessment model; and two EWOC, escalation with
overdose control.

6. MD Anderson experience with the design and conduct of Bayesian clinical trials

A recent review of Bayesian adaptive clinical trials published in 2011 indicated that a large portion of the
papers reporting the use of Bayesian methods were published from the University of Texas MD Anderson
Cancer Center [43]. Many papers included in that review were methodology papers, which were not
included in this study, as explained in the previous section. Among the 331 papers identified in the
review, MD Anderson Cancer Center contributed to 17.2%; whereas the next two single highest sources
were the National Cancer Institute, contributing 4.3%, and Harvard University, contributing 3.9% of the
total publications. Four of the nine researchers who had published the highest number of articles describ-
ing a Bayesian clinical trial were affiliated with MD Anderson. A review published in 2009 described
964 clinical protocols registered at MD Anderson between 2000 and early 2005 [44]. Bayesian designs
and/or analyses had been used in about 20% of the total protocols reviewed, and in about 30% of the
MD Anderson trials, but in only 7% of the multicenter protocols. Bayesian methods had been applied
in 34% of the phase I or phase II trials. The majority of the Bayesian design and analysis features
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were found in non-mutually exclusive categories, which included efficacy monitoring (62%), toxicity
monitoring (27%), adaptive randomization (10%), dose finding (9%), hierarchical modeling (7%), and
determinations of predictive probability (6%).

To facilitate the conduct of Bayesian clinical trials, a proper infrastructure must be set up for regis-
tering patients, assigning patients to treatments, recording the outcomes, and providing interim and final
analyses. At MD Anderson, we have developed a clinical trial conduct (CTC) platform. This secure web-
based application allows users to register a new trial and select the type of design so that proper treatment
assignment or randomization and monitoring can be implemented. In this ‘role-based’ system, each user
has different privileges, depending on his or her role in the trial. For example, the research nurse can
verify patients’ eligibility criteria, register patients, and enter patients’ toxicity and efficacy outcomes.
The statistician can read the treatment assignment and access the details of the statistical computations,
such as the randomization probability, but cannot alter the data. As of 2011 August, there were 133 trials
and over 4300 patients enrolled in the system. The most commonly used designs were outcome adaptive
randomization (n D 44), Pocock–Simon baseline adaptive randomization (n D 42), the CRM (n D 29),
and trials with time-to-event interim monitoring (nD 11).

In addition to the CTC platform, we have also built custom-made applications for certain specialized
trials. For example, Figure 2 shows the schematic diagram of the web-based application for running
the BATTLE trial [38, 45]. The top panel shows the study flow chart. Eligible patients are registered
to the trial and have a biopsy taken for molecular marker analysis. The research molecular pathology
laboratory analyzes the sample for mutations and uses the results of fluorescence in situ hybridization
and immunohistochemistry expression analyses to determine the biomarker group for the patient. This
process, from registration to reporting the biomarker results, is completed within 2 weeks. On the basis
of the patient’s biomarker group and the cumulative outcome results, the patient is then adaptively ran-
domized into one of the four treatment groups. Additional clinical visits are scheduled for the patient
and the disease control status (primary endpoint of the study) is evaluated 8 weeks after randomization.
Patients are continually followed for secondary endpoints, such as progression-free survival and overall
survival, until they are off the study. The middle panel of Figure 2 shows different modules in the appli-
cation. Through a web-interface, data are entered into different modules. For example, research nurses
enter the medical history, physical examination, adverse events, efficacy assessment, and so on. The
laboratory technician enters the results of the marker analysis. In order to perform adaptive randomiza-
tion, the patient’s marker information, eligibility status, and up-to-date outcome information are passed
to an R code through web services. The R code performs Bayesian computation to determine the ran-
domization probability and randomize patients to eligible treatments accordingly. All the data are stored
in the institutional database CORe and/or the study-specific SQL Server 2005 database. The application
also has a report generation module that can automatically generate several reports for monitoring and

Figure 2. Schematic diagram of the web-based database application for the conduct of the BATTLE trial.
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quality assurance purposes. For example, an accrual report is generated to check the accrual rate. An
outcome timeliness report can check whether the 8-week disease control status has been timely entered.
If the assessment of the primary endpoint of a patient remains past due for 2 weeks, an automatically
generated email will be sent to the study coordinator/research nurse. The toxicity and drug compliance
reports can also be generated to ensure the safety and compliance of patients in the study.

7. Discussion and perspectives

Despite its early conception, Bayesian methods have lagged behind frequentist methods in both statis-
tical theoretical development and application in clinical trials. Thanks to the relentless efforts of many
die-hard enthusiasts, the Bayesian approach has staged a strong comeback in the past 20 years. As
shown in our review, the first major application of Bayesian methods in clinical trials was in the area of
PK/PD studies as the result of the development of the popular NONMEM software in the late 1970s.
The second major application was spurred by the development of the CRM and EWOC methods and
software in dose-finding studies in the 1990s [46]. Despite a slow adaption, it is apparent that Bayesian
methods are increasingly being used in clinical trials. This trend will likely continue [43, 47]. We have
also begun to see the impact of Bayesian applications among regulatory agencies regarding the evalua-
tion and approval of new medical devices or drugs. For example, in safety monitoring, while there are
thousands of potential adverse effects, the observed events can be sparse, which make the estimation
unreliable. Bayesian hierarchical models can be applied to incorporate prior information, allow borrow-
ing of information, and shrink the estimates toward the mean to yield more reliable inference. The FDA
has indicated that ‘Safety assessment is one area where frequentist strategies have been less applica-
ble. Perhaps Bayesian approaches in this area have more promise [48].’ Bayesian methods have already
been successfully applied to provide risk-stratified and real-time safety monitoring in the interventional
cardiovascular procedures and the medical device areas [49, 50].

The Center for Devices and Radiological Health at the FDA issued a ‘Guidance for the Use of
Bayesian Statistics in Medical Device Clinical Trials’ in 2010 [51]. They indicated that

Bayesian hierarchical modeling is a specific methodology you may use to combine results from multiple stud-
ies to obtain estimates of safety and effectiveness parameters. In a regulatory setting, hierarchical models can
be very appealing: They reward having good prior information on device performance by lessening the burden
in demonstrating safety and effectiveness. At the same time, the approach can protect against over-reliance on
previous studies that turn out to be overly optimistic for the pivotal study parameter.

The Center for Devices and Radiological Health has already approved more than 20 original
Pre-Market Approvals (PMAs) and PMA supplements with a Bayesian analysis as the primary method.
Many investigational device exemptions and applications for ‘substantial equivalence’ (510(k)s) that
used Bayesian methods have also been approved [52]. On the drug side, the Center for Drugs and
Experimental Research of the FDA approved Pravigard Pac (Bristol-Myers Squibb) on the basis of
Bayesian analyses of efficacy in 2003 [21]. As many clinical trials using Bayesian methods are underway,
it is expected that the FDA will approve more drugs and devices based on Bayesian methods.

The development of newer and better clinical trial designs under the Bayesian paradigm continues to
be an active area of statistical methodology research. The availability of accompanying software for the
implementation of Bayesian methods is crucial for the use of these methods in clinical trials. Altman
indicated that there is a delay of 4 to 6 years between the date when a statistical method is published and
when that publication is cited 25 times in medical journals [53]. The time gap between the publication
of a new trial design and its adoption still exists but is closing rapidly. This is evident in the Bayesian
dose-finding studies and adaptive designs [43, 47]. (We list some useful information/tools for learning
Bayesian clinical trial methods and designs in Appendix C.)

Bayesian methods hold great promise for improving the efficiency and flexibility of conducting clini-
cal trials and are ideal for learning and adaptation [54]. Bayesian methods provide excellent tools when
searching for effective treatments and predictive markers in the quest for biomarker-based personal-
ized medicine—with a goal of treating more patients with more effective therapies. Good examples for
such trials include the BATTLE trial [38], the currently ongoing BATTLE-2 trial, and the I-SPY 2 trial
[54, 55]. Successful implementations of Bayesian methods have already been demonstrated in a wide
range of clinical trial applications.

‘Opposites are not contradictory but complementary.’—Niels Bohr
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As pointed out by James Berger in his 2001 Fisher Lecture at the Joint Statistical Meeting,
Ronald Fisher, Harold Jeffreys, and Jerz Neyman disagreed on what the correct foundation for statistics
are but often agreed on which statistical procedure to actually use. Statistical methods such as Bayesian
and frequentist approaches often lead to similar estimation procedures but very different results for
hypothesis testing. Berger examined the conditional frequentist approach and attempted to unify the var-
ious approaches for testing [56]. Bradley Efron, in his 2004 address as the president of the American
Statistical Association, stated that the field of statistics was dominated by the Bayesian view in the
19th century and by the frequentist view in the 20th century. He suggested that statistics in the 21st
century, challenged by greater magnitudes of data and complexity, will require a combination of both
Bayesian and frequentist methods [57]. The following year, Roderick J. Little, in his presidential address,
proposed the ‘calibrated Bayes’ approach [58]. The calibrated Bayes approach uses frequentist methods
for model development and assessment, and Bayesian methods for inference under a model. This capi-
talizes on the strengths of both paradigms and provides a useful roadmap for many problems of statistical
modeling and inference.

The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in
statistics and other scientific fields. Regarding the two paradigms, the past was combative, the present
is competitive, and the future will be cooperative. After all, Bayesian and frequentist approaches offer
complementary views and can learn from each other. Recently, more evidence can be found showing
the convergence of the two camps, at least on a practical level [59]. Ultimately, better clinical trial
methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better out-
comes for patients enrolled in the trials. Bayesian methods offer an attractive alternative for better trials.
More Bayesian trials should be designed and conducted to refine the approach and demonstrate the real
benefit of the Bayesian approach in action.

Appendix A. Literature search procedures

We performed a computerized literature search using two major medical indices (Ovid-Medline and
Ovid Embase) for all articles published until September 2011. Using Medline (Table A.I.A), we searched
for the terms ‘Bayes or Bayesian,’ then limited the search to ‘clinical trial, all or clinical trial, phase I
or clinical trial, phase II or clinical trial, phase III or clinical trial, phase IV or clinical trial or con-
trolled clinical trial or multicenter study randomized controlled trial.’ We further limited the search to
‘review articles and meta analysis or review,’ producing results that we subsequently removed from the
search. We also performed a similar search in Ovid Embase (Table A.I.B) using the terms ‘Bayes or
Bayesian.’ We then searched ‘clinical trial*’ under subject heading and combined it with the previous
‘Bayes or Bayesian’ search line. We limited the search to ‘Cochrane library and meta analysis or sys-
tematic review’ and removed the results from the final search. We combined the publications obtained
in the two literature searches (a total of 2012 articles) and imported the references into Endnote X4.

Appendix B. Search algorithm and results for identifying clinical trials using
continual reassessment method (CRM) and escalation with overdose
control (EWOC)

The Ovid Medline and Embase search netted a total of 123 CRM and 9 EWOC results. Following
the removal of 43 duplicates, 17 statistical journals, 1 computer/engineering journal, 7 review/opinion
papers, 16 method papers, and 5 conference papers, we found 41 CRM and 2 EWOC papers.

In addition, we performed reverse citation searches on two original articles for the CRM and EWOC
methods, respectively [41, 42]. The results from all our searches were placed into EndNote X4 for
duplicate removal and categorization.

Our reverse citation search netted 362 articles from J. O’Quigley and 109 from J. Babb [41,42]. There
were 95 duplicates, 119 statistical journals, 4 computer/engineering journals, 75 review/opinion papers,
100 method papers, 3 meta-analysis papers, 2 observational/database papers, and 5 non-CRM papers.
From the resulting journals, we found 59 CRM and 9 EWOC papers.

We combined the Ovid Medline/Embase search with the reverse citation search and removed 21
duplicates. Our final cohort consisted of 81 CRM and 9 EWOC papers.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2955–2972

2967



J. J. LEE AND C. T. CHU

Table A.I. Schema for literature search.

A. Ovid Medline® in-process and other non-indexed citations and Ovid Medline® Search result
1948 to September 2011

1 (bayes or bayesian).mp. [mp=protocol supplementary concept, 21 310
rare disease supplementary concept, title, original title,
abstract, name of substance word, subject heading
word, unique identifier]

2 limit 1 to (clinical trial, all or clinical trial, 682
phase i or clinical trial, phase ii or clinical trial,
phase iii or clinical trial, phase iv or clinical trial
or controlled clinical trial or multicenter study
randomized controlled trial)

3 limit 2 to (‘review articles’ and (meta analysis or ‘review’)) 3
4 2 not 3 679

B. Embase classic + Embase 1947 to 22 September 2011 Search result

1 (bayes or bayesian).mp. [mp=title, abstract, 21 997
subject headings, heading word, drug trade name,
original title, device manufacturer,
drug manufacturer, device trade name, keyword

2 clinical trial*.sh. 829 875
3 1 and 2 1346
4 Limit 3 to (cochrane library and (meta analysis or ‘systematic review’)) 13
5 3 not 4 1333

Table A.II. Schema for literature search for continual reassessment method.

A. Ovid Medline® in-process and other non-indexed citations and Ovid Medline® 1948 to present Search result

1 continual reassessment method.mp. [mp=protocol supplementary concept, 148
rare disease supplementary concept, title, original title, abstract,
name of substance word, subject heading word, unique identifier]

2 limit 1 to (clinical trial, all or clinical trial, phase i or clinical trial, 46
phase ii or clinical trial, phase iii or clinical trial, phase iv or clinical
trial or controlled clinical trial or multicenter study randomized controlled trial)

B. Embase classic + Embase 1947 to 22 September 2011 Search result

1 Continual reassessment method.mp. [mp=title, abstract, subject headings, 169
heading word, drug trade name, original title, device manufacturer,
drug manufacturer, device trade name, keyword

2 clinical trial*.sh. 834 574
3 1 and 2 77

Table A.III. Schema for literature search for escalation with overdose control method.

A. Ovid Medline® in-process and other non-indexed citations and Ovid Medline® 1948 to present Search result

1 escalation with overdose control.mp. [mp=protocol supplementary concept, 9
rare disease supplementary concept, title, original title, abstract,
name of substance word, subject heading word, unique identifier]

2 limit 1 to (clinical trial, all or clinical trial, phase i or 2
clinical trial, phase ii or clinical trial, phase iii or clinical
trial, phase iv or clinical trial or controlled clinical trial
or multicenter study randomized controlled trial)

B. Embase classic + Embase 1947 to 22 September 2011 Search result

1 escalation with overdose control .mp. [mp=title, abstract, subject headings, 16
heading word, drug trade name, original title, device manufacturer,
drug manufacturer, device trade name, keyword

2 clinical trial*.sh. 834 574
3 1 and 2 7
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Appendix C. Useful information/tools for learning Bayesian clinical trials

A. Articles
1. Berry DA. Bayesian clinical trials. NatureReviews Drug Discovery 2006; 5(1):27–36.
2. Goodman SN. Introduction to Bayesian methods I: measuring the strength of evidence. Clinical

Trials 2005; 2:282–290.
3. Louis TA. Introduction to Bayesian methods II: fundamental concepts. Clinical Trials 2005;

2:291–294.
4. Berry DA. Introduction to Bayesian methods III: use and interpretation of Bayesian tools in

design and analysis. Clinical Trials 2005; 2:295–300.
5. Berry DA. Bayesian statistics and the efficiency and ethics of clinical trials. Statistical Science

2004; 19:175–187.
6. Ashby D, Tan SB. Where’s the utility in Bayesian data-monitoring of clinical trials? Clinical

Trials 2005; 2:197–205.
7. Casella G, George EI. Explaining the Gibbs sampler. American Statistician 1992; 46:167–174.

B. Books
1. Berry DA, Stangl D. Bayesian Biostatistics. CRC Press: Boca Raton, FL, 1996.
2. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-

Care Evaluation. Wiley: West Sussex, 2004.
3. Carlin BP, Louis TA. Bayesian Methods for Data Analysis. 3rd edition. Chapman & Hall/CRC:

Boca Raton, FL, 2008.
4. Hoff PD. A First Course in Bayesian Statistical Methods. Springer: New York, 2009.
5. Albert J. Bayesian Computation with R (Use R). 2nd edition. Springer: New York, 2009.
6. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. 2nd edition. Chapman &

Hall/CRC: Boca Raton, FL, 2009.
7. Berry SM, Carlin BP, Lee JJ, Mueller P. Bayesian Adaptive Methods for Clinical Trials.

Chapman & Hall/CRC: Boca Raton, FL, 2010.

C. Video tutorials
1. FDA and the Johns Hopkins University Workshop: Can Bayesian approaches to studying new

treatments improve regulatory decision-making?
http://webcasts.prous.com/bayesian2004/

D. Computer programs
1. General Bayesian computation tools

a. BUGS, OpenBUGS, and WinBUGS: http://www.mrc-bsu.cam.ac.uk/bugs/
b. JAGS: http://mcmc-jags.sourceforge.net/

2. Running WinBUGS from R
a. BRugs: http://www.biostat.umn.edu/�brad/software/BRugs/
b. R2WinBUGS: http://cran.r-project.org/web/packages/R2WinBUGS/index.html

3. Running WinBUGS from Stata - The winbugsfromstata package:
http://www2.le.ac.uk/departments/health-sciences/research/ships/gen-epi/Progs/winbugs-from-
stata

4. A collections of useful tools for Bayesian clinical trials, including CRM,
BMA-CRM, EFF-TOX, Multc99, adaptive randomization, predictive probability, etc., can be
downloaded from https://biostatistics.mdanderson.org/softwaredownload

5. Other CRM and EWOC design programs
a. TITE-CRM http://roadrunner.cancer.med.umich.edu/wiki/index.php/TITE-CRM
b. Modified CRM v2.0 http://www.cancerbiostats.onc.jhmi.edu/software.cfm

6. EWOC https://apps.winship.emory.edu/biostatistics/software_ewoc.phpSAS Proc MCMC:
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_
mcmc_sect019.htm

7. Tessella and Berry Consultants’ Fixed and Adaptive Clinical Trials Simulator v2 (FACTS 2)
http://www.smarterclinicaltrials.com/wp-content/uploads/FACTS_introduction.pdf

8. Cytel’s Compass: software for adaptive dose-finding trials
http://www.cytel.com/Software/Compass.aspx
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