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Summary. Conventional analytic results do not reflect any source of uncertainty other than
random error, and as a result readers must rely on informal judgments regarding the effect of
possible biases. When standard errors are small these judgments often fail to capture sources
of uncertainty and their interactions adequately. Multiple-bias models provide alternatives that
allow one systematically to integrate major sources of uncertainty, and thus to provide better
input to research planning and policy analysis. Typically, the bias parameters in the model are
not identified by the analysis data and so the results depend completely on priors for those
parameters. A Bayesian analysis is then natural, but several alternatives based on sensitivity
analysis have appeared in the risk assessment and epidemiologic literature. Under some cir-
cumstances these methods approximate a Bayesian analysis and can be modified to do so even
better. These points are illustrated with a pooled analysis of case—control studies of residential
magnetic field exposure and childhood leukaemia, which highlights the diminishing value of
conventional studies conducted after the early 1990s. It is argued that multiple-bias modelling
should become part of the core training of anyone who will be entrusted with the analysis of
observational data, and should become standard procedure when random error is not the only
important source of uncertainty (as in meta-analysis and pooled analysis).
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1. Introduction

1.1. The problem

In their discussion of observational data analysis, Mosteller and Tukey (1977), page 328,
said standard errors ‘cannot be expected to show us the indeterminacies and uncertainties we
face’. More recently, a prize winning paper by Maclure and Schneeweiss (2001) described how
random error is but one component in a long sequence of distortive forces leading to epi-
demiologic observations and is often not the most important. Yet conventional analyses of
observational data in the health sciences (as reviewed, for example, in Rothman and Greenland
(1998), chapters 12-17) can be characterized by a two-step process that quantifies only random
error—

(a) employ frequentist statistical methods based on the following assumptions, which
may be grossly violated in the application but are not testable with the data under
analysis:
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(1) the study exposure is randomized within levels of controlled covariates (sometimes
replaced by a practically equivalent assumption of ‘no unmeasured confounders’ or
‘ignorability of treatment assignment’);

(i) selection, participation and missing data are random within levels of controlled
covariates;

(iii) there is no measurement error (occasionally, an unrealistically restrictive error model
is used to make a correction, which can do more harm than good; see Wacholder
et al. (1993));

(b) address possible violations of assumptions (i)—(iii} with speculative discussions of how
each might have biased the statistical results. If they like the statistical results from the
first step, researchers will argue that these biases are inconsequential, rarely offering evi-
dence to that effect (Jurek et al, 2004). However if they dislike their results they may
focus on possible biases and may even write whole articles about them (e.g. Hatch er al.
(2000)).

In practice, the second step is often skipped or fails to address more than one or two assump-
tions (Jurek et al., 2004). The assumptions in the first step can be replaced by the slightly weaker
assumption that any biases from violations of (i)-(iii) cancel, but appeal to such cancellation
seems wishful thinking at best.

Paul Meier (personal communication) and others have defended conventional results (derived
under step (a)) as ‘best case’ scenarios that show the absolute minimum degree of uncer-
tainty that we should have after analysing the data. Unfortunately, the above assumptions are
far too optimistic, in that they produce misleadingly narrow interval estimates precisely when
caution is most needed (e.g. in meta-analyses and similar endeavours with potentially large pol-
icy impact, as illustrated below). Worse, the illusory precision of conventional results is rarely
addressed by more than intuitive judgments based on flawed heuristics; see Section 4.3.

Another defence is that conventional results merely quantify random error. This defence
overlooks the fact that such quantification is hypothetical and hence questionable when no
random sampling or randomization has been employed and no natural random mechanism
has been documented. Conventional (frequentist) statistics are still often touted as ‘objective’,
even though in observational epidemiology and social science they rarely meet any criterion for
objectivity (such as derivation from a mechanism that is known to be operative in the study).
This belief has resulted in an unhealthy obsession with random error in both statistical theory
and practice. A prime example, which is often lamented but still very much a problem, is the spe-
cial focus that most researchers give to ‘statistical significance’—a phrase whose very meaning
in observational studies is unclear, owing to the lack of justification for conventional sampling
distributions when random sampling and randomization are absent.

The present paper is about the formalization of the second step to free inferences from depen-
dence on the highly implausible assumptions that are used in the first step and the often mis-
leading intuitions that guide the second step. Although I limit the discussion to observational
studies, the bias problems that I discuss often if not usually arise in clinical trials, especially
when non-compliance or losses occur, and the methods described below can be brought to bear
on those problems.

1.2.  An overview of solutions

An assessment of uncertainty due to questionable assumptions (uncertainty analysis) is an
essential part of inference. Formal assessments require a model with parameters that measure
departures from those assumptions. These parameters govern the bias in methods that rely
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on the original assumptions; hence I shall call the parameters bias parameters, the model for
departures a bias model and departures from a particular assumption a bias source.

Statistical literature on bias models remains fragmented; most of it deals with just one bias
source, and the bias model is often used only for a sensitivity analysis (which displays bias as a
function of the model parameters), although occasionally it becomes part of a Bayesian analysis.
In contrast, the literature on risk assessment and decision analysis has focused on accounting
for all major sources of uncertainty (Morgan and Henrion, 1990; Crouch et al., 1997; Vose,
2000; Draper et al., 2000). Most notable in the health sciences are the confidence profile method
(Eddy et al., 1992), which incorporates bias models into the likelihood function, analyses based
on non-ignorable non-response models with unknown bias parameters (Little and Rubin, 2002),
and Monte Carlo sensitivity analysis (MCSA), which samples bias parameters and then inverts
the bias model to provide a distribution of ‘bias-corrected’ estimates (Lash and Silliman, 2000;
Powell et al., 2001; Lash and Fink, 2003; Phillips, 2003; Greenland, 2003a, 2004a; Steenland
and Greenland, 2004).

1.3. Outline of paper

The next section gives some general theory for bias modelling that encompasses frequentist
(sensitivity analysis), Bayesian and MCSA approaches. The theory gives a formal perspective
on MCSA and suggests ways to bring it closer to posterior sampling. In particular, it opera-
tionalizes the sequential bias factor approach (Maclure and Schneeweiss, 2001) in a form that
approximates Gibbs sampling under certain conditions and explains the similarity of Bayes-
ian and MCSA results that are seen in published examples (Greenland, 2003a; Steenland and
Greenland, 2004). Section 3 analyses 14 studies of magnetic fields and childhood leukaemia,
extending a previous analysis (Greenland, 2003a) by adding new data, providing more detail in
illustration and extending the bias model to include classification error. Classification error is a
large source of uncertainty due to an absence of data on which to base priors, and due to the
extreme sensitivity of results over reasonable ranges for the bias parameters. Section 4 discusses
some problems in interpreting and objections to bias modelling exercises; it argues that many
of the criticisms apply with even more force to conventional analyses, and that the status of the
latter as expected and standard practice in observational research is unwarranted. That section
can be read without covering Sections 2 and 3, and I encourage readers who are uninterested
in details to skim those two sections and to focus on Section 4.

2. Some theory for observational statistics

2.1. Model expansion to include bias parameters

To review formal approaches to the bias problem, suppose that the objective is to make infer-
ences on a target parameter 6 = 6(c) of a population distribution parameterized by ¢, using an
observed data array 4. Conventional inference employs a model L(A4;«) for the distribution
of A given « and some background assumptions that are sufficient to identify 6 from A4, such
as ‘randomization of units to treatment’, ‘random sampling of observed units and of data on
those units’ and ‘no measurement error’ (step (a)(i)}-(a)(iil) above). Most statistical methodol-
ogy concerns extensions of basic models, tests and estimators to complex sampling, allocation
and measurement structures. The identification of § is retained by treating these structures as
known or as jointly identifiable with 6 from A under the assumed model, making assumptions as
necessary to ensure identifiability (e.g. assumptions of ‘no unmeasured confounders’, ‘missing
at random’ and ‘ignorable non-response’).
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On the basis of assumptions about their operation, the effects of bias sources on L may be
modelled by using a bias parameter vector 7, so that the data distribution is represented by
an expanded model L(4; «,n). Examples include most models for uncontrolled confounding
and response bias (such as non-ignorable treatment assignment models and non-response mod-
els with unknown parameters) (e.g. Leamer (1974, 1978), Rubin (1983), Copas and Li (1997),
Robins et al. (1999), Gelman et al. (2003), Little and Rubin (2002), Rosenbaum (2002) and
Greenland (2003a)). Typically, « is not even partially identified without information on 7, in
that every distinct distribution in the family L(A; «,n) can be generated from a given « by find-
ing a suitable 7, and a prior that is uniform in 7 leads to p(a}A) =~ p(«). Thus, inferences about
« are infinitely sensitive to i, and L(A;a, 1) is uninformative for « (and hence §) without prior
information on 7. In the same manner, 7 is not identified without information on «, so that a
prior that is uniform in « leads to p(n|A) = p(n).

1 shall consider only large sample behaviour., “Unbiased’ will be mean /n-consistent uni-
formly asymptotically unbiased normal, as is customary in much epidemiologic statistics. For
simplicity I shall assume that « fully specifies the population distribution, but the theory can be
extended to semiparametric models by using familiar modifications of likelihood (conditional,
partial, etc.). I shall also assume that any necessary regularity conditions hold, e.g. the joint
parameter space of («, 7) is the product of the marginal spaces of « and 7, and all models and
functions are smooth in their arguments and parameters. Given these conditions, conventional
estimators of # extend naturally to the expanded model. For example, suppose that én and §, are
the maximum likelihood estimator (MLE) of # and its estimated standard error obtained from
L(A;c,m) when the bias parameter is fixed at a known value n. Under the models that are used
here, «9 1s unbiased for € and 6 +1.965; is a large sample 95% confidence interval when the
model and value of 7y that are used in it are correct. Parameterizing L so that =0 corresponds to
no bias, L(A; «, 0) then represents the conventional analysis distribution, 0, is the conventional
estimator, E(fy) — 6 is its (asymptotic) bias and fy — én is its estimated bias given 7).

2.2. Sensitivity analysis
Because 7 is unknown and not identified, the preceding results are of little use by themselves.
Sensitivity analyses display how statistics like é,, and derived confidence limits and P-values
vary with 7. Epidemiologic examples date back at least to Cornfield et al. {1959), and since
then the methods have been extended to many settings (e.g. Eddy et al (1992), Greenland
(1996), Copas and Li (1997), Copas (1999), Robins et al. (1999), Little and Rubin (2002) and
Rosenbaum (2002)). Yet sensitivity analysis remains uncommon in health and medical research
reports. This is not surprising, given the lack of motivation for its use and its relative unfamiliar-
ity: sensitivity analysis is mentioned in few journal instructions or statistics text-books. As with
informal discussions, those sensitivity analyses that are published rarely examine more than one
bias at a time and so overlook interactions, such as those that arise from covariate effects on
classification errors (Greenland and Robins, 1985; Flegal et al., 1991; Lash and Silliman, 2000).
To address this concern we can use a model L(A; «, 1)) that incorporates multiple bias sources;
indeed, my thesis is that realistic uncertainty analyses of observational data must do so. None-
the-less, the difficulty of examining a grid beyond three dimensions necessitates some sort of
summarization over the sensitivity results. If (as here) the net bias in the conventional estimator
fo is not constrained by the data, any reasonable summary will be determined entirely by the
choices of values for n and so will be arbitrarily sensitive to those choices (Greenland, 1998).
Furthermore, apparent data constraints on bias and hence on inference can depend entirely
on the structure of the data model and can disappear after only minor elaboration (Poole and
Greenland, 1997).
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These problems lead to another obstacle for the adoption of sensitivity analysis: its potential
for arbitrary or nihilistic output. In the present setting, for any preselected value 6, for 8, we can
find a value for » that yields 9,, =#,; thus, any output pattern can be produced by manipulating
7. Although an arbitrary or purely manipulative analysis (one that displays a pattern that is
preselected by the analyst) might be obvious in a simple case, it might not be so obvious with
multiple bias sources.

To summarize: sensitivity analysis only describes the dependence of statistics on 7. 7 is often
of high dimension. The complexity of the dependence can render sensitivity analyses difficult
to present without drastic (and potentially misleading) simplifications. Furthermore, sensitivity
analysis may exclude no possible value for ¢: results can be infinitely sensitive to », and hence
without some constraint on 7 the analysis will only display this fact. The constraints chosen can
play a pivotal role in the appearance of the results, and informed choices essentially correspond
to a prior for n (Greenland, 1998, 2001a).

2.3. Bayesian analysis and Monte Carlo sensilivity analysis
One way to address the limits of sensitivity analysis is to specify explicitly a prior density p{c, )
and base inferences for 6 = () on the marginal posterior

p(alA)a/L(A;a, n) pla,n) dn

(Leamer, 1974, 1978; Eddy et al., 1992; Graham, 2000; Little and Rubin, 2002; Gustafson,
2003; Greenland, 2001a, 2003a). To account for shared prior information (and the resulting
prior correlations) between components of 7, the bias parameter 1 may itself be modelled as
a function of known covariates and unknown hyperparameters [, resulting in a hierarchical
bias model (Greenland, 2003a), as below. None-the-less, many health researchers reject formal
Bayesian methods as too difficult if not philosophically objectionable: analytic solutions for
p(0]A) involving just one bias source can appear formidable (Eddy et al., 1992; Graham, 2000;
Gustafson, 2003), and sampler convergence remains crucial yet extremely technical (Gelman
et al., 2003; Gustafson, 2003).

An easier alternative specifies only a marginal prior p(n) for the bias parameters, samples 7
from this prior, computes 0 and 3, from each sample and summarizes the resulting distribution
of 9 and of statistics derlved from 9 and §,. The 9 that are generated by this MCSA have
various uses. The distribution of fy — 6’,, estimates the dlstrlbuuon of net bias under p(n), and the
distribution of 9 can be compared with the sampling distribution of f to measure the relative
importance of blas uncertainty and random error. Standard errors shrink as data accumulate
and hence bias uncertainty grows in importance and eventually dominates uncertainty due to
random error. As will be illustrated, the comparison of bias uncertainty and random error can
reveal that the benefits of study replication diminish far below those indicated by conventional
power calculations, for the latter ignore bias uncertainty.

With modification, MCSA can also provide approximate posterior inferences. Suppose that,
for each 5, @,7 is approximately efficient (e.g. is the MLE), p(a|n) is approximately uniform and
p(n|A) = p(n). We then have approximately p(a, 1) & p(n) and

plafA,m) o L(A; a,m) p(e, m)/ p(nlA) X L(A; o, m),

and

P(9|A=77)0</ L(A;a,m) da
0(o)=0

‘f\,j

ey

~



272 S. Greenland

with the latter approximately normal(én, 337) (Gelman et al. (2003), chapter 4). Thus, the MCSA
procedure can be modified to approximate sampling from

p(HIA)=/p<9|Am) p(nlA)dn

by

(a) drawing 7 from p(r])

(b) computing 9,7 and 52 5> and

(c) redrawing 9 from a normal(@n, s727) distribution or (equivalently) adding a normal(0, s2)
d1sturbance to 9,, (Greenland, 2003a).

If 7 partitions into 7 that are estimable given o and the remaining components 7_g, the algo-
rithm generalizes to arbitrary p(«, 77) by cycling among p(al|A, ) and the p(ng|A, o, n—g), draw-
ing from an approximate normal distribution at each step, whence it can be seen as a large sample
approximation to Gibbs sampling.

To avoid normal approximations, some researchers resample the data as well as 7 at each
trial (Lash and Fink, 2003). Naive resampling (i.e. bootstrapping from the empirical data dis-
tribution) does, however, have its own small sample problems (Efron and Tibshirani, 1993); for
example, in tabular data it leaves empty observed cells as Os and so will never visit some points
in the support of the sampling distribution. To remove these Os, we may resample the data from
a smoothed table, then smooth each resample with the same procedure as that used to smooth
the original data.

2.4. Some useful specializations for discrete dala

Suppose now that 4 represents a count vector for a multiway cross-classification of the data.
Conventional approaches model 4 with a distribution L{A; E(A; o)} that depends on the pop-
ulation parameters only through the expected counts E(A; o). Suppressing « in the notation,
one extension takes E, = E(A; a, 1), with Eg= E(A; «, 0) the counts expected in the absence of
bias, so that the expanded model can be written L(A; Ey). Note that E;, is an estimable quantity
even though n and Ey are not separately identified. For example, with no constraint on 7 or Ey,
the multinomial MLE of E,, is the observed 4. Hence we can model E;, directly, as will be done
below for smoothing purposes.

For some models, E, =G, n(Eo) where the ‘bias function’ G, is a family of mappings indexed
by 7 and Gy is the identity; 6, may then be taken as the MLE of 6 from L{A;G,(Ep)}. These
models can be especially s1mple For example, if the only bias source is non-response and 7R is the
vector of log-response-rates within cells of the observed cross-classification, E, = G,(Eq;7R) =
diag{exp(nr) } Eo; 7r thus becomes a log-linear offset to the conventional model for Eg, and én
is the MLE from the offset model for E;. Confounding can also be represented by a log-linear
offset nc which can be added to the response-bias offset, although this offset is a non-linear func-
tion of unmeasured covariate effects (see the example below); in that case E,, = G, (Eq; 1) = By Ey
where B, =diag{exp(nc +7r)} (Greenland, 2003a).

Next, suppose that ¢;; is the probability that a unit will be classified in cell i of 4 given that
it should be in cell j. With Q the matrix of g;; and 1w = vec(Q), one model for confound-
mg and non-response followed by misclassification would be E, =G, (Ey;n) = B,Eq where

By, = Q diag{exp(nc +nr)}. Alternatively, suppose that p;; is the probability that a unit should
be in cell i given that it is classified in cell j; with P the matrix of p;; and v = vec(FP) we have
E,=G,(Eo;n) = By E where B, = P! diag{exp(nc +1r)}-
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Without validation data identifying P, acceptable assumptions or priors about misclassifi-
cation more often concern Q than P, as below. An important difference between the Q- and
P-models is that A4 is informative for Q even without information about ¢; hence use of Q may
lead to p(n|A) # p(n). For example, a non-zero observed cell i implies that ¢;; > 0 for some
j; further assumptions can lead to stronger constraints on Q. In contrast, 4 alone does not
constrain P. Thus, the above arguments for MCSA as an approximation to posterior sampling
do not strictly apply under the Q-model unless the support of the prior p(Q) falls within the
identified bounds.

2.5. Sequential correction

If G, is invertible, a ‘bias-corrected’ estimator @0,, of 6 can be obtained by applying a conven-
tional eﬁstimator Oy to the ‘corrected data’ F(A;n) = G, 1(A), where F(A;0) = A (Lash and Fink,
2003). oy, is an unbiased estimator of # given that n and the model are correct, but the ‘standard
error’ o, for 6y, that is obtained by applying a conventional variance estimator to F(A;7) is
not generally valid (see below).

F(A;n)is typically derived from separate correction formulae in conventional sensitivity anal-
yses (Rothman and Greenland (1998), chapter 19). There are many formulae Fc(-; 7c), FR(:;7R)
and Fy(-;nMm) that correct for confounding, response bias and misclassification. For example,
with nr the vector of log-response-rates, a correction that adjusts the relative frequencies for
non-response is Fr (A;7r) = diag{exp(c —nr)} A, where c¢ is a log-normalizing-constant vector
to preserve A-margins that are fixed by design. With P and O as above, correction formulae for
misclassification include Fy(A;nm) = PA and Fm(A; ) = 0! A; these formulae automati-
cally preserve fixed margins if (as is often the case) misclassification can only occur within the
strata that are defined by those margins, for then p;; =¢;; =0 when i and j are in different strata,
and hence P and Q are block diagonal when the indices are ordered by stratum.

Use of the observed counts in the formulae corresponds to using E;, = A, which is a saturated
model for E,,. Some formulae (like that based on Q) can yield impossible (e.g. negative) corrected
counts for certain values of 77, especially if Os are present in 4, which lead to breakdown (division
by 0) or wild behaviour of 90,7. These problems can often be avoided by preliminary smoothing of
A to remove non-structural Os, e.g. by averaging 4 with a model-fitted count (which generalizes
adding a constant to each cell (Bishop et al. (1975), chapter 12, and Good (1983), section 9.4),
or by replacing 4 with a count that is expected under a nearly saturated model that preserves
data patterns regardless of the statistical significance of the patterns (Greenland, 2004b).

Formulae can be applied in sequence to correct multiple biases, although the order of cor-
rections is important if the formulae do not commute (Greenland, 1996). One can imagine
each correction moving a step from the biased data back to the unbiased structure, as if
hypothetically ‘unwrapping the truth from the data package’. For example, suppose that the
data generation process is one in which causal effects (including effects of unmeasured con-
founders) generate population associations, subjects are sampled in a manner that is subject
to non-response and finally the responding subjects are classified subject to error. This chron-
ology suggests that we should correct misclassification first, then non-response, and then
uncontrolled confounding. With 5= (¢, 7R, nM), the resulting bias-corrected counts F(A;7)
are Fc[Fr{Fm(A;nm);nr };ncl- If the bias model is Ej = By Eo, we have F(A;n) = B;‘A; for
example, under the Q-model above,

B;l =diag{exp(c —nc —mr)} 0"

The sequential correction approach can be simpler both conceptually and computationally
than fully Bayesian or likelihood-based sensitivity approaches. We just plug the sampled bias
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parameters (7c, 7R, 7m) into their respective formulae, apply the resulting corrections in proper
sequence and compute 907, from the resulting F(A;7), possibly replacing 4 by a smoothed count.
If 6y has a closed form (e.g. a Mantel-Haenszel estimator) then 90,7 will also be of closed form,
resulting in a very rapid Monte Carlo procedure. In some examples such as that below, con-
founding and response bias corrections simplify to division of conventional stratum-specific
odds ratio estimates by independent bias factors free of the data, leading to an even simpler
and more rapid procedure. Finally, as with Bayesian analyses, in some simple cases the entire
MCSA distribution has a closed form approximation (Greenland, 2001a).

2.6. Sequential correction and posterior sampling
The earlier arguments for MCSA as approximate posterior sampling hinge on the use of the
MLE or an equivalent 0 derived under the expanded model L(A; Ep) and so do not extend
to the use of 90n Suppose that under the conventional model 6y is asymptotically equlvalent
to 6(&), where & is an inverse variance weighted least squares estimator of « from a regression
of A on the classification axes, e.g. as when « comprises log-linear model parameters and 6y is
the conventional MLE of a log-odds ratio. Then, if =0, § is asymptotically efficient and first
order equivalent to the conventional MLE. Because 90,7 treats F(A;n) as the observed counts,
however, when 7 # 0 the implicit weights are no longer the correct inverse variances and 90,7 is
no longer efficient.

As an example, using maximum likelihood log-linear Poisson regression, the weight matrix
for In{ F(A;n)} which is implicit in 90,7 is Wy, =diag{ F(E,;n)}. The asymptotic inverse covari-
ance matrix for In{ F(A;n)} is, however,

Wy ={D;, diag(E,) Dy}~

where Dy, =9 In{F(En,n)}]/BE If F(A;m) = B, B 1A, then D_ = B, diag(Ey) and hence W, =
B dlatg(E0 / E,,)B # Wo, = dlag(B 1E,7) = diag(Ep) unless B77 is the identity. Furthermore,
when By is dlagonal (as when only confoundmg and response bias are corrected), W, reduces
to diag(En) the weight matrix for the uncorrected regression, rather than to Woy.

Because Wy, does simplify to Wy when 7 =0, the sequential estimator using 6’0,] can be viewed
as an approximation to the MLE 9 in a neighbourhood of 7= 0. The Monte Carlo distribution
of 0077 over p(n) might thus be reasonably expected to approximate that of the MLE 0 if p(n)
is centred on zero and is not too dispersed. Alternatively, if 90,7 has an explicit welghted form,
we could just estimate W;, directly and use that to compute 607, Unfortunately, after misclassifi-
cation correction, W, is not diagonal, does not readily simplify along with the bias corrections
and must be recomputed for each 7. To avoid these problems, we could just use the diagonal
matrix of uncorrected weights, which under the models that are used here would approximate
the correct weights in a neighbourhood of 7y =0 rather than just n=0. In examples based
on the data below and with similar priors, the latter estimator augmented by a normal(O,@%)
disturbance very closely approximated posterior distributions {Greenland, 2003a), so only this
modified sequential approach will be illustrated.

3. Magnetic fields and childhood leukaemia

3.1. The data

The example data in Table 1 are taken from a pooled analysis of 12 pre-1999 case—control studies
of residential magnetic fields and childhood leukaemia (Greenland, Sheppard, Kaune, Poole
and Kelsh, 2000), plus two additional studies unpublished at the time that the analysis was done




Multiple-bias Modelling 275

Table 1. Summary data from 14 case—control studies of magnetic fields and childhood leukaemia

Reference Country Number of Number of Odds ratio
cases controls (95% limits)

>3mG Total >3mG Total

Coghill et al. (1996) England 1 56 0 56 00
Dockerty et al. (1998) New Zealand 3 87 0 82 o0
Feychting and Ahlbom (1993) Swedent 6 38 22 554 4.53(1.72,12.0)
Kabuto (2003) Japan 11 312 13 603 1.66 (0.73,3.75)
Linet et al. (1997) USAL 42 638 28 620 1.49 (0.91,2.44)
London et al. (1991) USAZ 17 162 10 143 1.56 (0.69,3.53)
McBride et al. (1999) Canada} 14 297 11 329 1.43 (0.64,3.20)
Michaelis et al. (1998) Germany 6 176 6 414 2.40 (0.76,7.55)
Olsen (1993) Denmark} 3 833 3 1666 2.00(0.40,9.95)
Savitz et al. (1988) USAZ 3 36 5 198 3.51(0.80,15.4)
Tomenius (1986) Sweden 3 153 9 698 1.53 (0.41,5.72)
Tynes and Haldorsen (1997) Norwayt 0 148 31 2004 0

UK Childhood Cancer Study UK$§ 5 1057 3 1053 1.66 (0.40,6.98)

Investigators (1999)

Verkasalo et al. (1993) Finlandf 1 32 5 320 2.03(0.23,18.0)
Totals§§ 115 4025 146 8740 1.69 (1.28,2.23)

tCalculated fields (the others are direct measurement),

1120 V-60 Hz systems (the others are 220 V-50 Hz).

§Comparison of >4 mG versus <2mG, excluding 16 cases and 20 controls at 2-4mG.

§§The final column is the MLE of the common odds ratio (lower P =0.0001; homogeneity P=0.24).

(Kabuto, 2003; UK Childhood Cancer Study Investigators, 1999). Because the UK childhood
cancer study did not supply individual data, its estimate compares the published categories of
greater than 4 mG versus less than or equal to 2 mG. Itisincluded here on the basis of several con-
siderations. First, it appears to be sufficiently consistent with the remainder to pool. Second, a
reanalysis of the pre-1999 studies using the cut point at 4 mG changed the pooled estimate by only
5% (Greenland, Sheppard, Kaune, Poole and Kelsh, 2000), suggesting that the use of 4 rather
than 3 mG is of little importance (apart from increasing instability). Third, as will be discussed
further, the classifications are at best a surrogate for a true unknown measure, and there are other
measurement differences among the studies of potentially much greater importance. Fourth, as
with most of the previous studies, covariate adjustment had almost no effect on the estimates.
Two other recent studies were excluded. Green et al. (1999) presented only analyses based on
quartile categories, resulting in upper cut points of only 1.3-1.5mG. This study was excluded
because the use of such low cut points strongly influenced estimates from earlier studies (Green-
land, Sheppard, Kaune, Poole and Kelsh, 2000); it did, however, report positive associations on
contrasting the top and bottom quartiles. Schiiz et al. (2001) had only three highly exposed cases;
this study was excluded because of evidence of severe upward bias (twofold or threefold, with
odds ratios from 5 to 11) in the reported estimates due to sparse data (Greenland, Schwartzbaum
and Finkle, 2000), and because of insufficient reporting of raw data to allow further evaluation.

3.2. A conventional analysis
Leukaemia is a very rare disease and the usual justifications for interpreting the observed odds
ratios as rate ratio estimates apply (Rothman and Greenland (1998), chapter 7). The odds ratios
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are remarkably consistent across studies (homogeneity P =0.24), and the pooled MLE suggests
a 70% higher leukaemia rate among children with estimated average exposure above 3mG.
Much like the ML results in Table 1, a Mantel-Haenszel analysis produces an estimated odds
ratio for the field-leukaemia association of 1.68, with 95% confidence limits of (1.27, 2.22) and
a lower deviance P-value of 0.0001. Adding study-specific random effects, the usual moment-
based overdispersion estimates are 0 owing to the homogeneity, leaving the summary odds ratio
and limits virtually unchanged. Under a model with a common rate ratio £} across the under-
lying study populations, no bias and a uniform prior for # =In((2), the lower P-value can be
interpreted as p(6 < 0]A), the posterior probability that § < 0.

The association is not explained or modified by any known study characteristic or feature of
the available data. The results are unchanged by using finer categories (e.g. contrasting greater
than 3mG versus less than or equal to 1 mG) or continuous field measurements, and there is
no evidence of publication bias (Greenland, Sheppard, Kaune, Poole and Kelsh, 2000). None-
the-less, taking the statistics in Table 1 as unbiased for the field effect is equivalent to assuming
that each study reported an experiment in which children were randomized to known residen-
tial field levels, were never switched from their initial assignment and were followed until either
leukaemia, selection as a control or random censoring occurred.

Put another way, the statistics in Table 1 ignore every source of uncertainty other than random
error, including

(a) possible uncontrolled shared causes (confounders) of field exposure and leukaemia,

(b) possible uncontrolled associations of exposure and disease with selection and participa-
tion (sampling and response biases) and

(¢) magnetic field measurement errors.

Regarding (a), several confounders have been suggested (especially social factors) but there are
fewer data on most of these factors than on magnetic fields, and their estimated associations with
leukaemia are mostly less than that observed for magnetic fields (to account for the association
a factor must by itself have a much stronger association with leukaemia) (Langholz, 2001; Brain
et al., 2003). Regarding (b), data suggest that there has been control selection bias in several
studies that used direct field measurement (Hatch et al., 2000; Electric Power Research Institute,
2003). Regarding (c), no one doubts that measurement errors must be large. Unfortunately there
is no reference measure (‘gold standard’) for calibration or validation of the measures, in part
because no-one knows what an aetiologically relevant magnetic field exposure would be (if one
exists). There is only a ‘surrogacy’ hypothesis that the known covariate, contact current, is the
‘true’ (actiologically relevant) exposure that is responsible for the observed associations (Kavet
and Zaffanella, 2002; Brain et al , 2003), and that magnetic fields are simply an indirect measure
of this covariate. Studies are under way to address this hypothesis.

3.8. Initial simplifications
Because of the great uncertainty about the bias sources, the inferential situation is very complex
and several defensible simplifications will be made. One simplification restricts attention to the
dichotomization of field measurements at 3 mG, which greatly eases specification. It was sug-
gested by the repeated observation of almost no field-leukaemia association below 3mG and
was justified by the small changes in conventional statistics that were obtained from a continu-
ous or more finely categorized exposure model (Greenland, Sheppard, Kaune, Poole and Kelsh,
2000; Kabuto, 2003; UK Childhood Cancer Study Investigators, 1999).

Of the three covariates that were uniformly defined and measured on most subjects (study
source, age and sex), only study source (modelled as an indicator vector S) is used here. On
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prior grounds, age and sex among preschool children should be weakly related or unrelated
to the exposure and the disease; for example, as noted at least 300 years ago, the sex ratio of
births is highly invariant across all factors (Stigler, 1986); also, the rate of leukacmia is only
20% higher among males than females (Brain et al., 2003). Thus, since nearly all the subjects
are preschool children, it appears that age and sex can be ignored, and the data conform closely to
this expectation; for example, Table 4 of Greenland, Sheppard, Kaune, Poole and Kelsh (2000)
shows the small changes in conventional statistics on age—sex adjustment, and adjustment also
has little effect in the later studies (Kabuto, 2003; UK Childhood Cancer Study Investigators,
1999). With one exception (London et al., 1991), race is nearly homogeneous within studies and
so is automatically controlled by including S in the models. If further covariate modelling were
desired, however, one would expand the vector S to include other covariates.

Misclassification, non-response and confounding are the bias sources that are believed impor-
tant by most investigators in this area and will be the only sources that we model. Another source
which is often important is publication bias (Copas, 1999), but in the present context such bias
1s thought to be highly unlikely because of the great public interest in null results (Greenland,
Sheppard, Kaune, Poole and Kelsh, 2000). The parameters of the three modelled sources will
be given independent priors, so that the full prior covariance matrix is block diagonal with three
blocks. This block independence greatly simplifies specification of the prior; misclassification
effects on prior information about non-response and confounding will not be considered.

As in almost all the sensitivity analysis literature, confounding will be modelled via a latent
variable U such that the US conditional field-leukaemia association is unconfounded, i.e. con-
ditioning on U removes any confounding that is left after conditioning on S and induces no
other confounding. As discussed in Appendix A, the existence of such a sufficient U is guaran-
teed under certain causal models, and in special cases this U may have as few as three levels. Two
practical simplifications are made here: U is further reduced to a binary variable, and the US
conditional field-leukaemia odds ratios are assumed homogeneous across U given S. These sim-
plifications greatly ease specification of the prior, do not constrain the amount of confounding
in the conventional estimate and appear to have little effect on the results (Greenland, 2003a).

With the above simplifications the classification axes (study variables) are the study, exposure
and disease, coded by S, the row vector of all 14 study indicators, X, the indicator of field mea-
surement in the top category, and Y, the leukaemia indicator. The observed data vector 4 com-
prises the 14(2%) = 56 SXY counts of cases and controls in each field category. Define the study
level indicators Dy =1 if a study used direct (compared with calculated) field measurements and
Vi =11f a study was of 120 V-60 Hz (compared with 220 V-50 Hz) systems. Dy and V; also code
study location: V; =1 codes North American studies, and Dy = 0 for all Nordic countries except
for the study of Tomenius (1986) (Table 1). Finally, let D=(D,1 — D) and V=(V;,1— V}).
D and V are functions of S, so S contains all the covariate data that are used here.

3.4. Preliminary estimation of uncorrected parameters

As mentioned earlier, certain sequential estimators break down with zero cell counts. Prelim-
inary smoothing eliminates such counts and has theoretical advantages as well (Bishop et al.,
1975; Good, 1983). To minimize alteration of data patterns, the observed count vector A4 is
replaced by a ‘semi-Bayes’ estimate of E,, (Greenland, 2004b), which averages 4 (the counts
that are expected under a saturated model, regressing X on YS) with those that are expected
under a highly saturated model that eliminates Os, a logistic regression of X on ¥, S, YD and
YV|. The E,-estimates that are used here are penalized likelihood fitted values from a mixed
effects logistic regression with fixed effects ¥, S, YD; and YV; and normal(0, o2) logit residuals
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(random effects), where o =1n(20)/2(1.96) =0.764. This estimated E,, is an iterative refinement
of averaging the empirical logits (weighted by their inverse empirical variances, with zero weights
for undefined logits) with the fixed effects predicted logits (weighted by 1/0%); see Greenland
(2001b) for a more general example and description of the fitting method. The o-2-value implies
that each exposure odds falls within a 20-fold range of the fixed effects prediction with 95%
probability, which is a very weak restriction compared with the fixed-effects-only model. The
resulting estimated E, are very modestly shrunk from A towards the fixed effects predictions:
the largest absolute change in a count is 1.01, the mean absolute change is 0.31, the Mantel-
Haenszel statistics are unchanged to the third decimal place and the patterns among study-
specific odds ratios (e.g. orderings) are unchanged. This data-structured smoothing should be
contrasted with adding a constant to each cell, which is equivalent to averaging observed counts
with those fitted from an intercept-only model (Bishop et al. (1975), chapter 12).

The uncorrected study-specific odds ratios are now the S-specific smoothed sample odds
ratios

wxy (8) = E115E00s/ E10sEo1s

where E ., is the smoothed count (the estimated E,-component) at X=x,Y =y and §=s. fo
will be the logarithm of the Mantel-Haenszel weighted average of the wxy (s) over the studies:
WMHO = ) Ws wxy (5)/Wa,
s
where ws = E1o5Eg15/2xy Exys and wy = Xsw;; 55 will be the standard error estimate of In(wprg)
of Robins ef al. (1999) (Rothman and Greenland (1998), page 272). In light of the above dis-
cussion regarding efficient weighting, the uncorrected weights w; will be used throughout; this
fixed weighting over MCSA trials also avoids adding study reweighting effects to bias correction
effects in the distribution of corrected estimates.

An alternative that is often used in meta-analysis, the weighted least squares (Woolf) esti-
mator, averages In{wxy(s)} by using approximate inverse variance weights (¥, E;}}s)“l and so
(given = 0) is first order efficient for the common odds ratio w. In contrast, wnpo is efficient
only when w =1, although it is only slightly inefficient in realistic examples with w # 1 and
exhibits much better behaviour than other estimators when the data are sparse (Breslow, 1981).

3.5. Classification error

X will be treated as a misclassified version of a single ‘true’ (but latent) exposure indicator
T. Misclassification correction converts the S-specific smoothed sample XY proportions into
fitted values for the sample 7Y odds ratios wry(s),

pT=1Y=1,5)/p(T=0]Y=1,5)
p(T=1Y=0,s)/p(T=0]Y =0,s)’

where p is used to denote sample probability (expected sample proportion). This conversion
requires information on the TX -relationship. Typical prior information concerns the values of
the error rates p(X=x|T=1—x,y,5). Leteg=p(X=0|T=1,y,s) and g1 = p(X =1|T=0,y,s),
leaving the dependence on ¥ and S implicit; then g and ] are the false negative rates and false
positiveratesand 1 —~gp=p(X =1{T =1, y,5) and | —g; = p(X =0|T =0, y, s) are the sensitivity
and specificity of X as a measure of 7. Within Q, the e, and 1 — &, are the ¢;; within blocks
defined by S and Y; g;; =0 outside those blocks.

It will be assumed that the error rates satisfy the weak condition &, < p(X =x|T =x,y,s).
The quantity p(X =x|y,s) is then an identifiable upper bound on g, and the low exposure

(1)

wry (8) =

W

Ny
L
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prevalences that are seen in Table 1 and in surveys imply that the g; cannot be very large. This
does not imply that X is probably correct; for example, we may still have (and often do have)
p(T=1|X=1,y,5) < p(T=0|X =1, y,s) if the true exposure prevalence p(T =1y, s) is small.
All the studies sought to use identical measurement protocols on cases and controls, and in
all the studies very high values for &, (especially &) are implausible. Hence it will be further
assumed that within studies the same bound applies to cases and controls, and that this upper
bound has a user-specified maximum m, across studies:

gx < mx,s) =min{p(X=x|Y =1,s), p(X =x|Y =0,5),m,}. 2)

This condition is much weaker than the common assumption that the &, do not vary with
Y (error ‘non-differential’ with respect to Y), although the &, will be given a very high within-
study between-Y correlation. The smoothed data estimates of the p(X = x|y, s) will be used to
estimate the m(x, s).
The Q correction formula (applied to sample expected counts) is equivalent to the standard
conversion formula
p(X=x|y,s) —&x

p(T=x|y,s)= 1 3
— &) —¢€]

(Rothman and Greenland (1998), chapter 19), which is positive under the above constraints.
The sample 7Y odds ratio at § =s then simplifies to

_{pX=1IY=1,5) —&1}/{p(X=0]Y=1,5) — &0}

) = X =Y =0,5) — 1}/ {p(X=0[Y =0,5) — 0}

C)

Corrections are computed by replacing the p(X = x|y, s) by the smoothed sample proportions
E\ys/ 25 Exys, specifying a model for the ¢,, and then sampling the model coefficients from a
joint prior distribution. At each sampling, the ¢, are computed from the model; the corrected
sample odds ratios are then computed from the resulting ¢,.

There is no quantitative prior information on the error rates. A few studies measured sub-
sets of subjects with different techniques, but the differences in results are highly unstable and
there is no evidence on which technique provides a more accurate measure of a true ‘high expo-
sure’ indicator 7. None-the-less, everyone expects considerable heterogeneity in the error rates.
Direct and calculated measurements (distinguished by D) are vastly different procedures. North
American and European power systems (distinguished by V) differ in ways that could affect
error rates. Because measurement protocols varied greatly across studies, other between-study
differences in error rates should also be expected.

The hierarchical misclassification (M) model will thus regress the error rates g, on S as well
as D and V', with Y included to allow for possible differentiality of errors:

M (xly,s) =In[e, /{m(x,s) — e }]
= oMm{ Omx +508msx +dBmpx + vBmvx + (3, 1 — ¥) Omyx } (5)

for x=0,1, where nm(x]y,s) is the logit of the error rate e, rescaled to the {0,m(x, s)} range
of the rate. The model intercepts Bm, have variances TI%,IX . The remaining S-coefficients (Bumsy,
BmDx» Pvive, BMyx) represent the dependence of the &, on the second-stage (group level) covari-
ates S, D, V and Y, and are taken as independent bivariate column vectors whose components
are independent with variances (72) such that TI%,IX + TI%,[ ot Tf,l px T TI%,IYX =1. The coefficient
scale factor o is a known constant which is introduced solely to make the coefficient variances
sum to 1, a feature that eases numerical translation of prior correlations between the ny into
the variance components 72.
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Let By denote the vector of all the unknowns (the 5) in the error model, and let wry(s; Oum) be
the study-specific corrected odds ratio that is obtained by substituting this model into wry(s).
To reflect the lack of information for ordering the ¢,, I gave all the Gyr-components zero means
and for convenience gave them normal distributions. To reflect that most of the expected het-
erogeneity of the ¢, is attributed to the type of measurement and study protocol, I assigned
72-values to produce a simple but plausible prior correlation structure among the mv (x|y, s):
with 51 and s coding distinct studies (distinct values of S) I wanted correlations of mv(x|1,s1)
with nv (x]0, s¢) ranging from small (0.30) among studies that share neither D nor V' to large
(0.70) among studies that share both D and V. Within studies, I wanted a nearly perfect case—
control correlation (0.95) of nyv(x|1,s) with v (x]0,s); non-differentiality would correspond
to perfect correlation, which is equivalent to dropping Y from the model. Because there are
arguments for positive and negative correlations of the error rates when T =1 compared with
when T =0, the nv(1]y,s) were left uncorrelated with the nv(0]y, s); to induce a correlation
we could introduce components that are shared between the coefficients for these two logits.
By back-calculation, these choices require TI%,I . TI%,WX = TI%,[YX =0.09 and TI%I pr =0.31, leaving
iy =0.42.

Unlike with non-response and confounding, there are no data on which to ground the scale
factors and maximum upper bounds m, for the &,. Hence the scale factor o was set to 2, which
makes each g, nearly uniform on its support. The m, are the most arbitrary and so will be the
focus of a small meta-sensitivity analysis, followed by an analysis in which they are treated as
unknown bias parameters.

3.6. Non-response
Let R(t, y,s) be the response rate among population members with T=1¢,Y =y and § =s. The
sample probabilities p are related to the population probabilities P by

Plioly, ) = Plto]y,5) Rito,3,) | Y Py, ) R(t,3,9), (6)
t

where the sum is over all possible values of T. The response bias factors are then
R(T=1,Y=1,5)/R(T=0,Y=1,s)

B =
RO) = R T =1, Y =0,5)/R(T =0,Y =0,5)" M
and hence the population 7Y odds ratios
PT=1Y=1,5)/P(T=0[Y=1,5) P(Y=1|T=1,s)/P(Y=0|T=1,s
Oy (5) = ( | ) B | ) K I /P( | ) ®)

P(T=1|Y=0,5)/P(T=0]Y =0,5) P(Y=1|T=0,5)/P(Y =0]T=0,s)

can be obtained from the sample 7Y odds ratios by Qv (s) =w7rv(s)/Br(s).

Variables that may have important relationships to the response include continent (coded
by V) and idiosyncrasies of the study design and location (coded by S). D has an expected
relationship to the response supported by data on X direct measures (Dy = 1) require entry
to private property, leading to a low response among controls (¥ = 0) and among the exposed
(Hatch et al., 2000); in contrast, there is high prior probability that studies with calculated fields
(D7 =0) have little or no response bias. Hence the model that is used here is

nr(s) =In{Br(s)} =orp(Or +sBrs +dPrp + vOrV) )

where the 3-coefficients represent the dependence of Br on the second-stage (group level) co-
variates S, D and V. The variance of the intercept 8r is denoted 7-12{, and the factor coefficients
Brs, Brp and Bry are taken as independent bivariate column vectors whose components are
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independent with variances (r%) such that T}% + TI% T 712{ pt T}%V = 1. The scale factor orp is
treated as known but will depend on D.

Now let Br denote the vector of all unknowns (3) in this specification, and Bgr(s; 5r) the
response bias model that is obtained by substituting the specification into the bias factor Br (s).
To reflect lack of information on response bias sources apart from measurement type, I gave all
OBr-components mean 0, except that component 1 of Srp was given mean In(1.2)/erp on the
basis of the elevated non-response among exposed controls that was observed by Hatch ef al.
(2000) and others (Electric Power Research Institute, 2003). For convenience I gave the compo-
nents normal distributions. To reflect the high prior correlation for non-response across studies,
I assigned 72-values to produce 7R (s) correlations ranging from moderate (0.60) between studies
with different D and ¥ to very high (0.90) between studies with the same D and V’; these are
produced by TI% = 7'1% p=0.36 and sz{v =0.09, leaving TI% ¢ =0.19. To reflect the greater uncer-
tainty about the amount of response bias in studies with direct measurement, I specified prior
50th, 5th and 95th percentiles for Br(s) of 1.20, 0.90 and 1.60 (widely dispersed around 1.2)
when D =1, and prior 50th, 5th and 95th percentiles for Br(s) of 1.00, 0.91 and 1.10 (con-
centrated around 1) when D =0. These percentiles result from assigning orp =In(1.33)/1.645
when Dy =1 and orp =1n(1.10)/1.645 when D; =0.

8.7. Confounding
Let

Qus)=PU=1T =Y =0,5)/P(U=0|T=Y=0,s)

be the population odds of the latent confounder U among unexposed non-cases (which com-
pose over 95% of populations in this example), let Q77 (y, 5) be the (population) TU odds ratio
given YS, let Q7y(u,s) be the TY odds ratio given US and let Qyy(z,s) be the UY odds ratio
given T'S. As mentioned earlier, I assumed that there is no three-way TUY -interaction given .S,
so0 that these S-specific odds ratios are constant over T, U and Y respectively. The change in
the S-specific TY odds ratio from ignoring U is then Bc(s) = Q7y (s)/Qr1y (1, 5).

Given disease rarity, Bc(s) is also the degree of T'Y-confounding by U (bias from ignoring
U) when S =s. The correction formula is thus Qry (u, ) =Q7v (s)/ Bc(s), where

{Qm v, Quy(t,s) Qus) + 1H{Qu () +1}

B = {0 529 )+ TH R o) ) + 1}

(10)

(Yanagawa, 1984). By analogy with response bias we could model In{Bc(s)} directly (Robins
et al., 1999). None-the-less, typical prior information refers instead to the odds ratios in equa-
tion (10) and considers those parameters a priori independent, which makes it easier to model
the Q directly. The models that are used here are

nru(8) =In{Qmy () } = o7 Br + 5875 +dfrp +vB1v), (1
nu(8) =In{Qy ()} =y By + sBus +dBup + vBuv), (12)
nuy () =In{Quy ()} = oy (By + sBys + dByp +vByv). (13)

As with the earlier models, for convenience the linear predictors are rescaled by specified factors
o7, oy and oy so that the variances (72) of their random (3-) components sum to 1.

Let B¢ be the vector of all the 3 in these three formulae, and let B¢ (s; 8¢) be the confounding
model that is obtained by substituting the specification into the bias factor B¢ (s). The prior that
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is used here is intended to address vague suggestions that some sort of biologically and physically
independent leukaemia risk factor may be associated with fields. To reflect the lack of informa-
tion on specific confounding sources, I gave all Sc-components mean 0 and for convenience
gave them normal distributions. Effects of unmeasured factors on leukaemia (parameterized
by the nyy) would be heavily determined by human cancer biology, which is expected to vary
little with location, although the distribution of those factors could easily vary. In contrast, the
associations of those factors with fields (r7y) and even more the background prevalences of
those factors (whose logits are the 7;) would be heavily affected by local conditions such as
wiring practices. Hence, I assigned 72-values to produce higher correlations between the 7y (s)
than between the 77y (s), and higher correlations between the 77y (s) than between the 7y (s).
For nyy (s) the correlations ranged from 0.85 between studies that share neither D nor ¥ to 0.95
between studies that share both D and ¥, produced by 7& =0.72 and 7, =78, = 0.09; for nry (s)
the correlations ranged from 0.60 between studies that share neither D nor V to 0.90 between
studies that share both D and ¥, produced by 72 =72, =0.36 and 72, = 0.09; and for 7y (s)
the correlations ranged from 0.50 between studies that share neither D nor V to 0.70 between
studies that share both D and ¥, produced by 75 =0.25 and 17, = 5, =0.12.

The scale factors were based on results of Langholz (2001), who studied 13 factors associated
with household wiring in a survey by Bracken et al (1998). Those data exhibited factor preva-
lences from very low to very high, so oy was set to 2 to produce a nearly uniform distribution
for Pr(U =1]x, v, 5). The same data also exhibited odds ratios as high as 5.3, which suggests that
or =1n(6)/1.645 is reasonable (because this choice makes 6.0 the 95th percentile of the wry (s)
distribution). There are no analogous data on which to base oy, although general observations
on the size of composite effects in cancer epidemiology suggest that the symmetrical choice
oy =or =1n(6)/1.645 is reasonable.

3.8. Results from single corrections
The results in Table 2 are based on 250000 trials for each case and so have Monte Carlo 95%
limits within the level of precision that is displayed; hence I shall refer to the observed propor-
tions as probabilities. Before combining corrections, it is instructive to see the effect of each
one alone. As a reference point, the first row of Table 2 provides percentiles of the estimated
sampling distribution of the uncorrected estimate

WMHO =D Ws Wxy (s)/ W+,

N

which is the distribution of estimates corrected for random error only by drawing a normal(0, 3%)
error and subtracting it from In{wmpo) (Greenland, 2003a). From the ‘proportion < 1’ column,
there is only a 0.01% chance that the random error in the original summary estimate exceeds
wmno (i.e. that random error alone could have moved the summary from less than or equal to
1 to wmmo).

In an analogous fashion, the second row provides percentiles of estimates 3wy wxy (s)/ Br (s;
Or)w.. corrected for non-response only. Under the above prior, non-response is a much larger
source of uncertainty than random error; for example it yields a 5% probability that the net
response bias equals or exceeds the observed wypyg (i.e. that non-response alone could have
moved the summary from less than or equal to 1 to wympg). The third row gives percentiles of
the estimates ¥,w; wxy (s)/ Bc(s; Bc)wo. corrected for confounding only. Under the above prior,
confounding uncertainty is similar to uncertainty due to random error; for example, there is
only a 0.2% probability that the net confounding equals or exceeds wypo (i-e. that confounding
alone could have moved the summary from less than or equal to 1 to wmyg)-

&

L
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Table 2. Percentiles of corrected Mantel-Haenszel odds ratios from multiple-bias analy-
ses of 250000 trials each, with different maximum upper bounds m, and m; for the false
negative rates e = p(X =0|T =1,y, s) and false positive rates ¢, =p(X=1|T =0,y, s)

Factors corrected for 2.5th 50th 97.5th Proportion  Proportion
percentile  percentile  percentile <l <1.27
Random error onlyt 1.27 1.68 2.22 0.0001 0.025
Response bias only 0.94 1.45 2.28 0.05 0.29
Confounding only 1.32 1.69 2.33 0.002 0.019
mo = 0.05, my = 0.01
Classification only 1.55 2.07 7.81 <0.0005 <0.0005
All bias sources] 1.01 1.90 7.32 0.023 0.12
All plus random error§ 0.95 1.91 7.50 0.036 0.14
mg= 0.05, my=0.05
Classification only 1.24 3.63 46.7 0.003 0.031
All bias sources 0.96 3.26 42.6 0.031 0.089
All plus random error§ 0.92 3.27 43.2 0.037 0.095
mo =025 m;=0.01
Classification only 1.72 2.04 6.95 <0.0005 <0.0005
All bias sources] 1.06 1.90 6.59 0.015 0.10
All plus random error§ 0.99 1.91 6.73 0.027 0.12
mo=0.25, m;=0.05
Classification only 1.41 3.45 41.3 <0.0005 0.008
All bias sources} 1.06 31 38.1 0.017 0.068
All plus random error§ 1.01 3.14 38.6 0.023 0.077
mg, my random§§
Classification only 1.42 2.92 35.1 0.001 0.011
All bias sources} 1.04 2.67 32.0 0.019 0.077
All plus random error§ 0.99 2.70 325 0.026 0.088

TLower 95% limit, point estimate, upper 95% limit and lower P-value from a Mantel-Haenszel
analysis.

tCorrecting for bias from misclassification, non-response and confounding.

§Adding estimated normal random error (from the first row) to the distribution with all biases.
§§mq and m1 logit normal(0, 4) on (0.025,0.40) and (0.005,0.105) respectively (roughly uniform
on their support).

The first rows of the next four blocks in Table 2 provide percentiles of the estimates
Yswy wry () /w.., corrected for misclassification only, under some reasonable pairs for the maxi-
mum bounds m, of the g, across studies. With mq=0.05 and m; =0.01 (which forces ¢ < 0.05
and g1 < 0.01 in all studies), the above specification results in a probability of less than 0.05%
that the misclassification bias equalled or exceeded wimpo (i-e. that misclassification alone could
have shifted the summary estimate from less than or equal to 1 to wmmg). Increasing m; alone
to 0.05 increases this probability to 0.3%, but then increasing mg to 0.25 reduces the probability
to below 0.05% again. In all cases, however, it appears improbable that misclassification alone
moved the summary from 1 or less to wmpo-

It may seem paradoxical that increasing classification error bounds can reduce the probabil-
ity of bias exceeding wymg. With ‘nearly’ non-differential misclassification, however, the bias
that is produced by the misclassification is on average towards 1, in accord with the idea that
non-differential exposure measurement error that is independent across units attenuates the
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observed association. As a result, the correction to the observed positive association must on
average be upwards, and so (as can be seen in Table 2) the corrected estimates are distributed
mostly above wypo, regardless of the bounds. The behaviour of the lower tail of the distribution
is more complex, however. First, note that when mo =m] =0 there is no misclassification (all
g, =0), and so the probability that the classification correction exceeds wmmp 1s 0. As the m,
increase from 0 the ¢, can vary more widely, and hence the dispersion of the corrected esti-
mates initially expands as the location shifts upwards. The dispersion and location change in a
highly non-linear fashion and have opposing effects on the lower tail percentiles. The dispersion
can increase more rapidly than the location and thus increase the probability that the correc-
tion exceeds wypo (for example, compare the results for mg=0.01 and m =0.05 with those
for mg=m1 =0.05) but can also decline as the range of misclassification rates increases and
thus reduce the probability that the correction exceeds wymo (for example, compare the results
for mg=0.25 and m1 =0.05 with those for mg=m] = 0.05). These phenomena can be further
explained algebraically but for brevity I omit the details.

3.9. Combined corrections, and subsequent inferences
Let 8=(fc, Ar, Bm). Table 2 provides the percentiles of the multiple-corrected estimates

Qrv (B) = ws wry (s; Bm)/ B (s; B0) Br (s; Br)w-+

for different m,-pairs. It also gives percentiles after including log-normal random error at each
draw of 3, i.e. percentiles of Q7y (8) exp(Z) where Z 1s normal(0, 33). ‘We can now look at features
of the distribution of the corrected estimates without and with correction for random error and
compare these results with those of the conventional analysis (which accounts only for random
error). Uncertainty about the T'Y -effect due to uncertainty about classification error is sensitive
to the m,, especially to the false positive bound m  (which is unsurprising, given the low preva-
lence of exposure). For example, with random error included, the probability that the corrected
estimate falls below 1 (i.e. that bias plus random error explain the observed association) is 3.6%
for the first pair of m, but 2.3% for the last pair. The results are also sensitive to the form of the
&,-distributions within their support (which are not shown). These features should temper any
conclusions about the T'Y -effect that might be drawn from the conventional results.

Uncertainty about appropriate bounds suggests adding the m, to the model as hyperprior
parameters. As an example, the final set of results in Table 2 comes from sampling mg and
m) from logit-normal(0,4) distributions rescaled to (0.025,0.40) and (0.005,0.105) respectively,
which are close to uniform on these intervals. The net result of this extension is an averaging
of the fixed m, results over the range of the m, in the sensitivity analysis. Similar results can be
obtained by making oy unknown with a prior.

Given the prior, the results in Table 2 might be taken as favouring the hypothesis of a leukaemo-
genic effect of magnetic fields or a close correlate for which they are a surrogate. None-the-less,
no agreement about the existence of an effect (let alone its size) could be forced by the data
without more precise knowledge of the classification errors. Classification error is the largest
source of uncertainty because (unlike non-response and confounding) there are simply no rele-
vant data or theory from which to develop a precise prior for nv. Even if that information were
available, uncertainty that is due to non-response is comparable with uncertainty that is due to
random error, and so the overall uncertainty would remain high even if enormous studies with
perfect measurements (which will never exist) were added to the analysis. The only positive note
is that confounding alone seems to be of lesser importance than other biases, given the prior
information that is used here.
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Finally, before the earliest studies little credibility was given to the hypothesis that residential
fields cause leukaemia. Thus, if we added a substantively justified prior for 6 to the specification,
the final distributions would be shifted towards the null because such a prior is concentrated
near the null (Greenland, 2003b).

4. Discussion

4.1. Model forms

As in most conventional analyses, I have not addressed uncertainty about model forms; I used
log-linear and logistic models with normal random effects only for tractability and to enforce
range restrictions. This source of uncertainty could be included by adding parameters to index
the model form (as is done in Bayesian model averaging), although that would greatly increase
the complexity of the bias model and the priors.

In my experience, many users of statistics think that their results do not depend on the form
of their model because they use categorized variables or purely tabular analyses. None-the-
less, the justification and performance of categorical and tabular statistics depend on implicit
regression models; for example, the tabular Cochran—Mantel trend test that is popular in epi-
demiology is the score test of the slope parameter in a logistic model with binomial errors, and
it can be quite misleading when that model form poorly approximates reality (Maclure and
Greenland, 1992). Such issues are ordinarily addressed by model diagnostics; on expansion to
include bias parameters, however, the model forms (as well as their parameters) are not identi-
fied. Thus, in bias modelling the model form is an integral component of the prior specification,
rather than a structure that is selected with guidance from the data, as most statistical research
treats it.

4.2. Some problems in interpretation

Analysts sometimes conclude that the combination of bias and random error is sufficient to
explain an elevated estimate if a plausible value or distribution of 7 could by itself produce a
value that is as high as the conventional lower confidence limit; similarly, some analysts call
inference about the null sensitive to hidden bias if a plausible value for 5 could make the two-
sided P=0.05. These interpretations are misleading because they do not coherently integrate
the uncertainties regarding bias and random error. In particular, they suggest that the bias prior
makes the null more probable than it actually does. Consider Table 2: the correct probability
(under the prior) that the combination of bias and random error equal or exceed the observed
association (wypo) is the ‘proportion < 1’ in the ‘all plus random error’ row. This probability is
always much smaller than the corresponding probability that bias alone could have produced
an elevation that is as high or higher than the conventional lower limit (the ‘proportion < 1.27°
in the ‘all bias sources’ row). Given a positive observed association, the use of the lower limit or
P =0.05 as the criterion for evaluating bias sensitivity implicitly assumes that the random error
is improbably positive (at least as positive as the difference between the point estimate and the
lower limit, an event with only 2.5% probability). These criteria are thus biased in favour of the
null hypothesis.

Other analysts report percentiles from MCSA as frequentist statistics; for example, in sum-
marizing the distribution of corrected estimates, they may present the percentage below the
null value as a one-sided lower P-value and refer to the 2.5th and 97.5th percentiles as 95%
confidence limits. None-the-less, because the distributions of these summaries have a heavily
subjective prior component p(n), conventional frequentist interpretations are unjustified (Green-
land, 20014a).
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4.3. Metasensitivity and objections to bias modelling

Bayesian and MCSA outputs depend completely on the prior p(n), which suggests that a meta-
sensitivity analysis of the dependence is essential. Moving in this direction reintroduces the
problem of basic sensitivity analysis, however: given the limitless possibilities for p(n), a thor-
ough metasensitivity analysis would only illustrate how various conclusions can be reached. A
conclusion about the target 8, however, would require constraints on the p(n). These constraints
would constitute a subjective prior on priors (a hyperprior); incorporating them into the anal-
ysis would produce a subjective average of results over the hyperprior, as in the final block of
Table 2. This result would itself be subject to concerns about sensitivity to the hyperprior, which
would continue on into an infinite regress.

This regress is as unnecessary as it is impractical. Multiple-bias modelling can be treated as
a project to discover and exhibit a prior that is arguably reasonable or defensible (in that it is
consistent with known facts and established theory), and that leads to borderline conclusive
results according to some operative criterion (e.g. a posterior probability for the null of 0.025)
(Greenland, 2003a). Such a prior can help to show why the data cannot force agreement between
all reasonable observers: defensible perturbations to such a prior can make the results appear
moderately inconclusive or moderately conclusive, as the results in Table 2 do when evaluated
against a two-sided 0.05-criterion (a criterion that is used in laws and precedents in the USA;
see Greenland (2001a)). As an example, in the year following the publication of Greenland,
Sheppard, Kaune, Poole and Kelsh (2000) one official of the California State Department
of Health publicly asserted, with near certainty, that fields caused childhood leukaemia; this
assertion fed demands on the Public Utilities Commission to impose very costly interven-
tions to reduce field levels at schools and homes. Multiple-bias modelling can counter-
balance such overconfident assessments of ambiguous evidence and provide more realistic
inputs for decision makers (whose decisions will be guided by cost—benefit as well as evidential
concerns).

The unlimited nature of metasensitivity may cause some to label bias modelling as a futile
exercise. These objections correctly note that, for most topics in which bias modelling might be
worthwhile, it would only show how all of an observed association can be plausibly attributed
to bias and random error. This objection is no fault of bias modelling, however, but it instead
reflects the weakness of available evidence. The demonstration of this weakness is worthwhile
if not imperative in many cases, as above.

Metasensitivity has also led to charges that the quantification of uncertainty that is achieved
under bias modelling is spurious. There is, however, nothing spurious about the quantification if
the prior approximates the views of the analyst, for then the output gives the analyst an idea what
his or her posterior bets about the value of # should be. From a more broad perspective, charges
of spurious precision embody a double standard relative to the status quo: the apparently precise
quantification of uncertainty that is offered by conventional analysis is far more spurious than
that from bias modelling. Within health sciences, at least, I believe that most researchers fail
to grasp how poorly conventional analyses capture uncertainty, and they fail to compensate
sufficiently for these deficits. Intuitive discussions of bias often rely on flawed heuristics, such
as ‘non-differential misclassification introduces a bias toward the null in virtually every study’
(Rothman (1986), page 88). Such flawed heuristics ignore the effects of bias uncertainty, effects
which are revealed by an exercise in bias modelling (see Section 3.8). A recent sample survey of
the epidemiologic literature revealed that most papers do not even deploy flawed heuristics but
instead dismiss biases as unlikely to be important, or else simply fail to mention the problems
(Jurek et al., 2004). In the rare case that sensitivity analysis is added, it is almost never coherently
combined with the assessment of random error.
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Another objection is that possible biases are always omitted from modelling. That is true, but
the inevitable omission of some bias sources cannot justify the omission of all (which is what
conventional analyses do) any more than the inevitable failure to apprehend all murderers can
justify ignoring all the murderers who can be apprehended. The inevitability of omissions does
suggest that no analysis can do more than to provide a lower bound on the uncertainty that
we should have in light of the data and a prior. None-the-less, bias modelling can provide less
misleadingly optimistic bounds than can conventional analysis.

4.4. Bias analysis versus better data?

Some recommend that formal bias analysis should be eschewed in favour of improving measure-
ment, response and covariate data. This recommendation is a non sequitur and is often wildly
impractical. Bias modelling and collection of better data are not mutually exclusive, although
bias modelling is often the only feasible option. Exhortations ‘just to collect better data’ are
especially empty when (as in the example) we can neither identify a gold standard measurement
nor force subjects to participate or to submit to better measurements (which tax co-operation
of subjects). Even when we can envision a way to collect better data, decisions must often be
made immediately and so can only be based on currently available data; as in the example, it
may be essential to model those data fully to counter naive judgments.

‘Collect better data’ becomes a relevant slogan when it is feasible to do so. Multiple-bias mod-
elling is then a useful ally in making clear that the added value of more observations of previous
quality (e.g. case—control studies with unknown and possibly large amounts of bias) is much
less than conventional statistical formulae convey (Eddy et al., 1992). Conventional standard
errors shrink to 0 as the number of observations increases, and total uncertainty approaches the
combined bias uncertainty. At some point, mere replication or enlargement of observational
studies is not cost effective, and innovations to reduce bias are essential. This point is passed
when random error contributes a minority share to total uncertainty. In the example, three
more studies of magnetic fields and childhood leukaemia have been published since completion
of the pooling project, but none controlled the biases that are described above. Hence, adding
these studies has little effect on the final uncertainty distributions; in fact, adding a study with
no random error (infinite sample size) but the same bias uncertainty would have little effect.

Most would agree that proposals to confirm or test previous results should include effective
safeguards to reduce sources of bias that were suspected in earlier findings, or at least should
supply validation data that could provide usefully precise estimates of bias parameters. But
the cost of such improvements may be prohibitive. Decisions about funding should also involve
considerations of research value (Eddy et al., 1992); the high cost of doing a very informative
study may not justify the usual claim that ‘more research is needed’ (Phillips, 2001). When the
cost of better data is prohibitive, multiple-bias analysis of existing data may become the best
feasible option.

4.5. Concluding remarks

Extreme sensitivity of results to the priors is inevitable and unsurprising, given the many uniden-
tified parameters in realistic bias models. It reflects an irreducible core of uncertainty about the
mechanisms generating non-experimental observations (Leamer, 1978; Rubin, 1983). Unfor-
tunately, this core uncertainty is hidden by adherence to identified models. It is more honest
instead to bring uncertainty to the fore and to attempt to discover which parameters contribute
most to the final uncertainty. Such discovery can help to guide research planning by focusing
resources on reducing the largest sources of uncertainty. Those sources are not necessarily the
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largest sources of bias, but rather are the sources that are most poorly determined by prior
information.

Compared with conventional analysis, multiple-bias modelling better captures uncertainty
about effects but requires the specification of a much larger model and demands far more
subject-matter knowledge. It also requires much more presentation space and more effort by
the reader. Its key advantages may only make it more unappealing: if conducted and presented
properly, it depicts how, in the absence of experimental evidence, effects of interest are identified
by prior distributions for bias sources rather than by data. It thus belies methods that claim to
‘let the data speak for themselves’: without external inputs, observational data say nothing at all
about causal effects. In many settings it also shows that only indefensibly precise (overconfident)
priors can produce firm conclusions, and that conventional methods produce definitive looking
results only because they assign probability 1 to the extremely implausible assumption of no
bias (1 =0).

Multiple-bias modelling can be superfluous when conventional standard errors make clear
that substantive inferences are unwarranted, as when only a few small studies are available. It
may, however, be essential when an analysis purports to draw causal inferences from obser-
vational data, when bias uncertainty is comparable with random error or when decisions with
costly consequences must be made on the basis of the available evidence (Eddy er al., 1992). I thus
argue that bias modelling should become part of the core training of scientists and statisticians
who are entrusted with the analysis of observational data. For research planning and allocation,
multiple-bias modelling can show when conventional approaches to reducing uncertainty, such
as increasing the sample size or replicating studies, have become inefficient (in the magnetic field
controversy, this point was reached with studies published in the mid-1990s). To be worthwhile
after that point, further studies must give estimates that are more precise and unbiased than
previous estimates or else must give precise estimates of biases. When improved studies are pro-
hibitively expensive, multiple-bias modelling may be the best option for decision-making input.
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Appendix A

‘Unconfounded’ and ‘confounding’ have been formalized in various ways (Greenland et «l., 1999); for
the present exposition the precise definition is unimportant as long as it implies that there is a U such
that the true causal effect of T on Y can be identified from P(T,Y|S,U). This U may be a compound
of other variables. Existence can be shown under various causal models. For example, under a directed
acyclic graphical model for causation, all confounding can be traced to common causes of 7 and Y, and
hence such a U will exist if (as here) S is unaffected by T or Y (Pearl (2000), chapter 6). Existence is also
guaranteed under a potential outcome model for the effect of 7" on Y, for U can then be taken as the
potential outcome vector (Frangakis and Rubin, 2002). In the present analysis, with binary T, any suffi-
cient multidimensional U can be reduced to a sufficient univariate summary; for example, the propensity
score P(T =1|S, U) is such a summary. This score is usually categorized and five levels are often deemed
adequate (Rosenbaum, 2002); if the range of the score is very restricted or the relationship of (S, U)to Tor ¥
is weak, fewer levels may be needed, although more may be needed if the relationship of (S, U)to T'and Y is
very strong. Note that, under a deterministic monotone effect model for a binary Y, the potential outcome
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vector U = (Y1, Yp) has only three possible levels: (0,0), (1,1) and at most one of (1,0) or (0,1) (Angrist
et al., 1996).
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Discussion on the paper by Greenland

John Copas (University of Warwick, Coventry)

Tt is a pleasure to welcome Professor Greenland to the Society and to propose the vote of thanks for his
interesting paper. Most of the work that is reviewed in the paper is published in the epidemiological litera-
ture, which is not widely read by statisticians working in other areas. But the central problems of response
bias, measurement error and confounding rear their ugly heads in many and probably most applications of
statistics, not just in the areas that are usually associated with epidemiology. This is therefore an important
topic for all of us.

We are so used to using conventional statistical methods which convert information about a sample S
into a conclusion C about the population that we all too easily forget the essential impossibility of arguing
from the particular to the general. Such induction is only possible if we make assumptions A, i.e. statistical
inference is (S, A) — C and not S — C. Fisher was the first to show that, if we can choose how to obtain
S, then we can do so in such a way that A is self-evident, in the sense that the randomization that we
have actually used to obtain S also gives us the probability space from which we can obtain C. If everyone
agrees on the truth of 4 then there is no need to mention it explicitly. But in all other cases honesty requires
us to emphasize that C depends on A4 as well as on .S, and failure to do so is an abuse of our subject. Every
day the media invite us to believe claims like ‘studies show that if you eat Corn Flakes for breakfast you are
twice as likely to ...". No doubt S is observational, and A is some absurd assumption of randomization.
If A4 is not mentioned how can we assess it? If the conclusion is unbelievable, then what is discredited is
not A4, as it should be, but statistics, and hence statisticians. I welcome Professor Greenland’s paper for his
clear discussion of these issues.

The late George Barnard, in one of these discussion meetings, once remarked “We statisticians spend
too much time trying to find sensible answers to silly questions’. What question can we ask from Table 2?
We see that the upper ends of the intervals for the odds ratio § vary very widely across the different settings
for (mg, m,), but from Professor Greenland’s discussion there seems no very clear reason for preferring
any one setting over any other. So, if the question is ‘how big is the risk’, then perhaps we should follow
Barnard and answer ‘the quality of the data is not sufficiently good for us to make any sensible estimate’.
But, if the question is ‘do we have clear evidence that there is a risk’, we note the remarkable finding that
the lower ends of the intervals are all near the null value, even including the setting mg =m =0 if we take
this from the ‘response-bias-only’ figures. If we can show that this happens for all reasonable attempts to
model these biases, then we have a non-silly question, and the answer is no. This would be an important
and perhaps the only convincing analysis of these data.

Professor Greenland argues that sources of bias should be modelled simultaneously and not one by one,
as is usually done. Approximating this in terms of sequential transformations on the expected cell counts
is an attractive simplification, both conceptually and computationally. So it is a pity that the example does
not demonstrate the force of his argument, at least as far as bias is concerned. If we think of each source
of bias as adjusting the estimate up or down by a certain factor, and assume that these factors are additive
on the log-scale, then we can use the 50% points in the single bias rows of Table 2 to predict the 50% points
for the combined bias rows. This gives adjusted values that are very close to the 50% points calculated for
the multiple-bias models.
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