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1.6. Foundations

We have defined a variety of expected losses, and decision principles based
upon them, without discussing the advantages and disadvantages of each.
Such discussion will actually be a recurring feature of the book, but in this
section some of the most fundamental issues will be raised. The bulk of the
section will be devoted to perhaps the most crucial issue in this discussion
(and indeed in statistics), the conditional versus frequentist controversy,
but first we will make a few comments concerning the common misuse of
classical inference procedures to do decision problems. It should be noted
that, while easy mathematically, many of the conceptual ideas in this
foundations section are very difficult. This is a section that should frequently
be reread as one proceeds through the book.

1.6.1. Misuse of Classical Inference Procedures

The bulk of statistics that is taught concerns classical inference procedures,
and so it is only natural that many people will try to use them to do

everything, even to solve clear decision problems. One problem with such

use of inference procedures has already been mentioned, namely their
failure to involve perhaps important prior and loss information. As another
example (cf. Example 1) the loss in underestimation may differ substantially
from the loss in overestimation, and any estimate should certaintly take this
into account. Or, in hypothesis testing, it is often the case that the loss from
an incorrect decision increases as a function of the “distance” of 6 from
the true hypothesis (cf. Example 1 (continued) in Subsection 4.4.3); this
~ loss cannot be correctly measured by classical error probabilities.

One of the most commonly misused inference procedures is hypothesis
testing (or significance testing) of a point null hypothesis. The following
example indicates the problem.

EXAMPLE 8. A sample X, ..., X, is to be taken from a (8, 1) distribution.
It is desired to conduct a size a =0.05 test of Hy: 6 =0 versus H;: 6 #0.
The usual test is to reject H, if \/n\f| >1.96, where X is the sample mean.

Now it is unlikely that the null hypothesis is ever exactly true. Suppose,
for instance, that 8 = 107'°, which while nonzero is probably a meaningless
difference from zero in most practical contexts. If now a yery large sample,
say n = 10>, is taken, then with extremely high probability X will be within
107! of the true mean 6 =10"'". (The standard deviation of X is only
1072 But, for X in this region, it is clear that 10'%%|>1.96. Hence the
classical test is virtually certain to reject Hy, even though the true mean is
negligibly different from zero. This same phenomenon exists no matter what
size @>0 is chosen and no matter how small the difference, £>0, is
betweeen zero and the true mean. For a large enough sample size, the
classical test will be virtually certain to reject. '
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The point of the above example is that it is meaningless to state only
that a point null hypothesis is rejected by a size « test (or is rejected at
significance level «). We know from the beginning that the point null
hypothesis is almost certainly not exactly true, and that this will always be
confirmed by a large enough sample. What we are really interested in
determining is whether or not the null hypothesis is approximately true (see
Subsection 4.3.3). In Example 8, for instance, we might really be interested
in detecting a difference of at least 107 from zero, in which case a better
null hypothesis would be Hy: |8|=1072. (There are certain situations in
which it is reasonable to formulate the problem as a test of a point null
hypothesis, but even then serious questions arise concerning the “ﬁpal
precision” of the classical test. This issue will be discussed in Subsection
4.3.3.)

As another example of this basic problem, consider standard “tests of
fit,” in which it is desired to see if the data fits the assumed model. (A
typical example is a test for normality.) Again it is virtually certain that the
model is not exactly correct, so a large enough sample will almost always
reject the model. The problem here is considerably harder to correct than
in Example 8, because it is much harder to specify what an “approximately
correct” model is.

A historically interesting example of this phenomenon (told to me by
Herman Rubin) involves Kepler’s laws of planetary motion. Of interest is
his first law, which states that planetary orbits are ellipses. For the observa-
tional accuracy of Kepler’s time, this model fit the data well. For todays
data, however, (or even for the data just 100 years after Kepler) the null
hypothesis that orbits are ellipses would be rejected by a statistical signifi-
cance test, due to perturbations in the orbits caused by planetary interactions.
The elliptical orbit model is, of course, essentially correct, the error caused
by perturbations being minor. The concern here is that an essentially correct
model can be rejected by too accurate data if statistical significance tests
are blindly applied without regard to the actual size of the discrepancies.

The above discussion shows that a “statistically significant” difference
between the true parameter (or true model) and the null hypothesis can be
an unimportant difference practically. Likewise a difference that is not
significant statistically can nevertheless be very important practically. Con-
sider the following example.

ExaMpLE 9. The effectiveness of a drug is measured by X ~ N (6,9). The
null hypothesis is that 6 =0. A sample of 9 observations results in X =1.
This is not significant (for a one-tailed test) at, say, the a = 0.05 significance
level. It is significant at the a =0.16 significance level, however, which is
moderately convincing. If 1 were a practically important difference from
zero, we would certainly be very interested in the drug. Indeed if we had
to make a decision solely on the basis of the given data, we would probably
decide that the drug was effective.



