
384  Am J Epidemiol   2004;160:384–392

American Journal of Epidemiology
Copyright  © 2004 by the Johns Hopkins Bloomberg School of Public Health
All rights reserved

Vol. 160, No. 4
Printed in U.S.A.

DOI: 10.1093/aje/kwh211

PRACTICE OF EPIDEMIOLOGYPRACTICE OF EPIDEMIOLOGY

Monte Carlo Sensitivity Analysis and Bayesian Analysis of Smoking as an 
Unmeasured Confounder in a Study of Silica and Lung Cancer

Kyle Steenland1 and Sander Greenland2

1 Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA.  
2 Departments of Epidemiology and Statistics, University of California, Los Angeles, Los Angeles, CA.

Received for publication September 5, 2003; accepted for publication February 27, 2004.

Conventional confidence intervals reflect uncertainty due to random error but omit uncertainty due to biases,
such as confounding, selection bias, and measurement error. Such uncertainty can be quantified, especially if
the investigator has some idea of the amount of such bias. A traditional sensitivity analysis produces one or more
point estimates for the exposure effect hypothetically adjusted for bias, but it does not provide a range of effect
measures given the likely range of bias. Here the authors used Monte Carlo sensitivity analysis and Bayesian
bias analysis to provide such a range, using data from a US silica-lung cancer study in which results were
potentially confounded by smoking. After positing a distribution for the smoking habits of workers and referents,
a distribution of rate ratios for the effect of smoking on lung cancer, and a model for the bias parameter, the
authors derived a distribution for the silica-lung cancer rate ratios hypothetically adjusted for smoking. The
original standardized mortality ratio for the silica-lung cancer relation was 1.60 (95% confidence interval: 1.31,
1.93). Monte Carlo sensitivity analysis, adjusting for possible confounding by smoking, led to an adjusted
standardized mortality ratio of 1.43 (95% Monte Carlo limits: 1.15, 1.78). Bayesian results were similar (95%
posterior limits: 1.13, 1.84). The authors believe that these types of analyses, which make explicit and quantify
sources of uncertainty, should be more widely adopted by epidemiologists.

Bayes theorem; confounding factors (epidemiology); epidemiologic methods; lung neoplasms; Monte Carlo 
method; occupational exposure; occupations; smoking

Abbreviations: RR, rate ratio; SMR, standardized mortality ratio.

INTRODUCTION

General considerations about uncertainty

Conventional confidence intervals reflect only uncertainty
due to random error, where the latter is often idealized as the
error due to random sampling of subjects from a hypothetical
superpopulation. Such sampling error does not reflect biases
that arise from confounding, mismeasurement, or
nonrandom selection of subjects. Because the amount of bias
from these sources is unknown and is not accounted for by
the confidence intervals, these intervals will often understate
the uncertainty one should have about the true effect; that is,

they will be too narrow. They may also be shifted upward or
downward because of the unknown bias.

Consider, for example, retrospective studies of occupa-
tional cohorts. Information on smoking is usually not avail-
able, and cohorts of blue-collar workers are often compared
with the general population via standardized mortality ratios
(SMRs). The general population is known to smoke less than
blue-collar workers, and an outcome of interest for inhaled
occupational toxins is often lung cancer, for which smoking
is a strong risk factor. This situation is likely to make
smoking an upward confounder of the SMR. The extent of
this confounding is uncertain, however, and this uncertainty
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is not reflected in conventional confidence intervals or p
values.

Quantitative assessment of likely sources of bias can
provide more realistic estimates of the total or actual uncer-
tainty, especially if the investigator has some idea of the
likely effects of bias from these sources. Given this informa-
tion, the investigator can use sensitivity analyses to illustrate
the possible extent of such biases (1, 2). Ordinary or tradi-
tional sensitivity analysis estimates what the true effect
measure (e.g., the rate ratio) would be in light of the observed
data and some hypothetical level of bias, and it produces one
or more hypothetically adjusted point estimates for the effect
measure of interest (2). While conducting ordinary sensitivity
analysis is an improvement over ignoring bias, it can become
difficult to summarize results as the number of parameters
determining the bias increases, and it usually does not provide
a full range for likely bias in the results (3). It is usually
conducted only when the bias in the point estimate is thought
to be pointing in a specific direction (e.g., upward
confounding), and even then it is often limited to assessing
how much bias in a specific direction would have been neces-
sary to obtain the observed estimate or lower confidence limit
if the null condition were true. Ordinary sensitivity analysis
can be improved upon through the use of Bayesian methods or
Monte Carlo sensitivity analysis.

Likelihood and Bayesian methods can be used to incorpo-
rate uncertainty regarding bias into the results of analyses
(4–11). Bayesian methods require that the investigator
specify prior distributions (priors) for unknown parameters.
In our example, we are interested in the effect of an occupa-
tional exposure on lung cancer, but our observed data do
not include smoking, a serious potential confounder. In a
Bayesian analysis, one might specify priors for 1) the
exposure-lung cancer rate ratio after adjustment for
smoking; 2) the rate ratio for the effect of smoking on lung
cancer, taken from the literature; and 3) the estimated
proportions of smokers in exposed and nonexposed popula-
tions, taken from surveys. As in conventional analyses, one
would then construct a model for the probability of the data
given these parameters (i.e., the likelihood function).
Finally, using Bayes’ theorem, the priors for unknown
parameters would be combined with the probability of the
observed data to produce a posterior distribution for the
parameter of interest (the smoking-adjusted rate ratio).

Bayesian methods can be somewhat involved and are not
easy to implement with standard software. Newer software
(e.g., WinBUGS) makes these calculations possible, but
learning how to use this software and understanding what it
does can in itself be somewhat daunting. As a result, analo-
gous but simpler Monte Carlo sensitivity analyses have been
proposed to account for likely bias (12–15); these analyses
can approximate Bayesian results under certain conditions
(8–10). These conditions include specification of a joint
prior distribution for the unknown parameters in as much
detail as is typically required in Bayesian analyses.

Monte Carlo sensitivity analysis is an expanded version of
ordinary sensitivity analysis, which repeatedly reestimates
the effect measure of interest (e.g., the smoking-adjusted rate
ratio relating exposure to lung cancer) based on the observed
data and the priors for bias sources. As in ordinary sensitivity

analysis (2), one can “correct” or adjust the lung cancer rate
ratio, dividing an observed (unadjusted) rate ratio by a bias
factor which represents the confounding effect of smoking.
This bias factor is a function of the proportions of smokers in
the exposed and nonexposed populations as well as the rate
ratio for the effect of smoking on lung cancer. One must
assign prior distributions to these unknown parameters. To
account for random error, the distribution of the observed
(smoking-unadjusted) rate ratio relating exposure to lung
cancer is estimated using conventional methods; for
example, the log of the observed rate ratio may be taken to be
normally distributed with a mean and variance estimated by
the usual likelihood procedures. One can then repeatedly
sample from the priors for the bias parameters and from the
estimated distribution of the observed rate ratio, each time
constructing a bias factor and then using this factor to adjust
the observed rate ratio for smoking (8–10). Alternatively, the
data themselves may be modified to include a simulated
smoking variable (14). In either approach, a distribution for
the parameter of interest is generated on the basis of repeated
sampling from priors followed by adjustment, rather than
sampling directly from a posterior distribution as in
Bayesian analysis.

To illustrate these ideas, we apply Monte Carlo sensitivity
analysis and Bayesian bias analysis to a common problem in
occupational epidemiology: an unknown degree of
confounding of lung cancer rates by cigarette smoking in
occupational cohort studies. Although our example is from
occupational epidemiology, the techniques we discuss can
be applied to any study in which one has some idea of the
possible form and size of bias sources (4–15). We start with
a brief review of ordinary sensitivity analysis, which forms
the core of our Monte Carlo sensitivity analysis.

Ordinary sensitivity analysis

Ordinary sensitivity analyses hypothesize differences
between the smoking habits of blue-collar workers and the
habits of the general population, as well as the effects of
smoking on lung cancer. One can then estimate the amount
of confounding in the observed rate ratio. Epidemiologic
sensitivity analysis for confounding was apparently intro-
duced by Cornfield et al. (16), with later developments by
Bross (17) and Axelson (18).

Suppose that the observed lung cancer rate ratio for an
occupational cohort is 1.60, that ever smokers constitute 60
percent of the occupational cohort but only 50 percent of the
general population (the reference group), and that the rate
ratio for ever smokers versus never smokers is 19. If I0 is the
lung cancer incidence rate for never smokers, then I0(19) is
the rate for ever smokers, and the expected lung cancer inci-
dence rate in the general population is

Inonexp = I0(0.5) + I0(19)(0.5) = I0[0.5 + (19)0.5] = I0(10.0).

If smoking were the only reason the occupational cohort had
an elevated lung cancer risk, the expected lung cancer rate
among the exposed workers would be

Iexp = I0(0.4) + I0(19)(0.6) = I0[0.4 + (19)0.6] = I0(11.8).
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Note that Inonexp and Iexp are smoking-weighted averages of the
incidence rates for ever smokers and never smokers, but with
different weights. The bias factor due to differences in these
weights (i.e., the amount of confounding produced by differ-
ences in smoking prevalence) is Iexp/Inonexp = 11.8/10.0 = 1.18.
Figure 1 illustrates these calculations.

The bias factor of 1.18 is less than the observed rate ratio of
1.60, suggesting that the observed elevation in the rate among
the workers is not due solely to confounding by smoking. The
bias factor can also be used to adjust the observed rate ratio:
The adjusted estimate would simply be the observed estimate
divided by the bias factor, or 1.60/1.18 = 1.36. Many varia-
tions on this process have been developed, including formulas
for case-control studies and other designs and formulas for
correcting for misclassification and selection bias (2).

The above example is typical of actual data on
confounding by smoking in occupational studies (18–20),
which suggests that differences in smoking between blue-
collar workers and the general population probably result in
a bias factor on the order of 1.2 for lung cancer.

However, the above corrected point estimate does not
account for random error or for uncertainties about the relation
of smoking to occupation and lung cancer. To account for the
latter, one could consider several scenarios of likely smoking
difference (e.g., 70 percent ever smokers in the exposed, 50
percent in the nonexposed) and other smoking-lung cancer
rate ratios (e.g., a rate ratio of 15 for ever smoking) and derive
a table showing the adjusted rate ratios from each scenario.
However, such a table may be cumbersome and difficult to
interpret, and may even be misleading because it does not
indicate the relative plausibility of different scenarios (3).

FIGURE 1. Example of confounding of the silica-lung cancer relation by smoking, assuming no effect of silica exposure on lung cancer, in a
study of 4,626 US industrial sand workers followed from the 1950s to 1996.
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One way to expand the scope of ordinary sensitivity analysis is to use Monte Carlo sampling from distributions for
confounder prevalences and confounder effects or analogous Bayesian analyses (4–15). Below, we illustrate both of these
methods using data from a cohort study of lung cancer among workers exposed to silica (21).

METHODS

The cohort consisted of 4,626 industrial sand workers (99 percent males) exposed to relatively high levels of silica in 18 US
plants for an average of 9 years from the 1950s to 1996. A comparison of the cohort with the US population (controlling for
age, race, calendar time, and sex) estimated an SMR of 1.60 with 95 percent confidence limits of 1.31 and 1.93 (109 deaths
observed vs. 68.1 expected). As is customary, the limits assume that any variability in the observed number of deaths is random
and follows a Poisson distribution. Data from a sample of 199 male workers aged 25–64 years from 1987 showed 26 percent
never smokers, 40 percent current smokers, and 34 percent former smokers; comparable proportions from 1987 for US males
of the same age, based on national survey data (22), were 34 percent, 35 percent, and 31 percent, respectively.

A model for exposure and smoking effects

Let SMRunadj be the SMR for the association of exposure with lung cancer in the study cohort (unadjusted for smoking but
adjusted for other covariates, i.e., age, race, and calendar time), and define the following indicator (1 = yes, 0 = no) variables:
X1 = exposure, X2 = current smoking, and X3 = former smoking. Assuming that the rate ratios do not vary across covariate levels,
the usual log-linear model for the lung-cancer rate ratio (RR) comparing an exposure-smoking-specific group with nonexposed
nonsmokers within covariate strata is

Exposure-smoking-specific lung cancer RR =  exp(β1X1 + β2X2 + β3X3). (1)

In this model, exp(β1) is the rate ratio relating the exposure to the lung cancer rate within specific levels of smoking. It is also
SMRadj, the SMR adjusted for smoking and other covariates, the target parameter of interest in this analysis. Furthermore,
exp(β2) and exp(β3) are the rate ratios for current and former smokers versus never smokers, adjusted for exposure and the other
covariates.

Next, let pnever,exp, pcurrent,exp, pformer,exp, pnever,nonexp, pcurrent,nonexp, and pformer,nonexp be the proportions of never, current, and former
smokers in the exposed and nonexposed populations within a particular covariate stratum. Under model 1 (and similar to the
example in the Introduction), the elevation in the rate of the nonexposed due to smoking (i.e., the rate ratio for ever smokers vs.
never smokers among the nonexposed) is a weighted average of the rate ratios for nonexposed never, current, and former smokers,
using pnever,nonexp, pcurrent,nonexp, and pformer,nonexp as weights:

RRnonexp0 = pnever,nonexp + exp(β2)pcurrent,nonexp + exp(β3)pformer,nonexp.

Similarly, the elevation in the rate of the exposed due to smoking is a weighted average of the same rate ratios for ever smokers,
current smokers, and former smokers, but using pnever,exp, pcurrent,exp, and pformer,exp as weights:

RRexp0 = pnever,exp + exp(β2)pcurrent,exp + exp(β3)pformer,exp.

As can be seen, any difference between RRnonexp0 and RRexp0 can only be due to differences in the distributions of smoking
among the nonexposed and the exposed. Hence, the elevation in rate due to smoking differences among the exposed relative to
the unexposed is RRexp0/RRnonexp0, which is the bias due to confounding by smoking:

(2)

This bias term would ordinarily vary across covariate strata with different smoking prevalences. If it were approximately
constant across the strata, the smoking-adjusted SMR could be estimated by dividing the unadjusted SMR by that constant bias
factor: SMRadj = SMRunadj/bias. For the present example, we will assume that the use of the crude smoking prevalences in equa-
tion 2 provides a reasonably accurate estimate of the smoking confounding in SMRunadj. At the cost of added complexity, such
assumptions could be avoided by sampling covariate-specific confounder (smoking) prevalences and effects and then using
those for covariate-specific adjustment of the exposure-disease relative risk estimate, followed by summarization across cova-
riate levels (9, 10).

Bias RRexp0 RRnonexp0⁄
pnever,exp exp(β2 )pcurrent,exp exp(β3 )pformer,exp+ +

pnever,nonexp exp(β2 )pcurrent,nonexp exp(β3 )pformer,nonexp+ +
---------------------------------------------------------------------------------------------------------------------------------------.= =
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Monte Carlo sampling

We used Monte Carlo sampling (comprising 5,000
randomly sampled confounding scenarios) to repeatedly
estimate the bias factor (equation 2). Each scenario was
based on a prior distribution for the proportions of current
and former smokers among the exposed and the US popula-
tion, independently sampling from a prior distribution for the
rate ratio relating smoking to lung cancer. These distribu-
tions were constructed from available data and so are largely
empirical, the chief subjective judgment being that those
data apply to our study. For each scenario, we also resampled
the observed rate ratio from its estimated distribution. We
then used the estimated bias factor to correct the resampled
exposure-lung cancer rate ratio, thus deriving a distribution
of smoking-adjusted rate ratios for the exposure-lung cancer
relation.

Our prior distribution for the smoking-lung cancer rate
ratios was computed from a large cohort study, the American
Cancer Society’s Cancer Prevention Study II, in which
follow-up began in 1982 (23). The rate ratio for current
smokers versus never smokers was 23.6 (95 percent confi-
dence interval: 19.6, 28.3), and the rate ratio for former
smokers versus never smokers was 8.7 (95 percent confi-
dence interval: 7.2, 10.4). These rate ratios are fairly repre-
sentative of those observed in other large cohort studies
conducted during the same time period. Given these data, we
expressed our remaining uncertainty about the smoking log
rate ratios β2 and β3 in model 1 (equation 1) by giving them
a normal distribution with mean values equal to ln(23.6) and
ln(8.7) and standard deviations equal to the standard errors
of these estimates (estimated from ln(upper confidence limit/
lower confidence limit)/3.92, which is 0.094 for both). Using
S-Plus (24), we generated 5,000 log rate ratios β2 and β3 for
current and former smoking from these normal distributions.
Because we did not have the original data, which would have
allowed us to estimate their correlation, we left these log rate
ratios uncorrelated.

Our prior distribution for the smoking prevalences
pnever,exp, pcurrent,exp, and pformer,exp in the exposed cohort was
based on the proportions of never, current, and former
smokers (26 percent, 40 percent, and 34 percent, respec-
tively) in the sample of 199 workers. Using standard
formulas (25) for normal approximations to the logit of a
proportion p, ln[p/(1 – p)], we generated the proportions as
follows. First, we sampled 5,000 logits of the proportions of
never and current smokers among the exposed workers,
logit(pexp,never) and logit(pexp,current), from a bivariate normal
distribution with respective means logit(0.26) = –1.05
and logit(0.40) = –0.41, standard deviations of
[199(0.26)0.74]–1/2 = 0.16 and [199(0.40)0.60]–1/2 = 0.14, and
a correlation of –[0.26(0.40)/0.74(0.60)]1/2 = –0.48 (the
proportions and hence the logits are negatively correlated;
for example, when the proportion of current smokers
increases, the proportion of never smokers decreases). Next,
we converted the sampled logits back to the proportions
pnever,exp and pcurrent,exp using the conversion formula: propor-
tion = 1/(1 + e–logit). Finally, we computed pformer,exp = 1 –
pnever,exp – pcurrent,exp. This method of generating the preva-
lences permits negative values for pformer,exp (which is nega-

tive if pnever,exp + pcurrent,exp > 1). However, the negative
correlation of the logits of pnever,exp and pcurrent,exp makes it very
improbable that pformer,exp will be negative; if a negative value
does occur, that scenario should be discarded. (One can
make sure this does not happen by generating the preva-
lences from a Dirichlet distribution, which is a multivariate
generalization of the beta distribution (25), but this distribu-
tion may not be familiar to many readers and is not as widely
available as the normal distribution; our bivariate normal
distribution is derived as an approximation to the logit of a
Dirichlet distribution.)

Similarly, our smoking distribution pnever,nonexp, pcurrent,nonexp,
and pformer,nonexp in the unexposed cohort is based on the
proportions of never, current, and former smokers (34
percent, 35 percent, 31 percent, respectively) in the male US
population aged 25–64 years in 1987 national survey data
(22). These estimates are based on 56,000 such men, but to
allow for extra variance due to the clustered design and extra
uncertainty due to possible nonresponse and other problems,
we used an effective sample size of one fourth of this value,
14,000 (which doubles the standard deviations of the logits).
First, we sampled 5,000 logits of the proportions of never
and current smokers among the exposed workers,
logit(pnonexp,never) and logit(pnonexp,current), from a bivariate
normal distribution with respective means logit(0.34) =
–0.66 and logit(0.35) = –0.62, standard deviations of
[14,000(0.34)0.66]–1/2 = 0.018 and [14,000(0.35)0.65]–1/2 =
0.018, and a correlation of –[0.34(0.35)/0.66(0.65)]1/2 =
–0.53. Next, we converted the sampled logits back to the
proportions pnever,nonexp and pcurrent,nonexp. Finally, we computed
pformer,nonexp = 1 – pnever,nonexp – pcurrent,nonexp.

We then sampled 5,000 unadjusted exposure-lung cancer
rate ratios from a normal distribution with a mean equal to
the log of the original unadjusted estimate, ln(1.60) = 0.47,
and a standard deviation equal to the standard error of that
estimate, 0.099. This step adds random-sampling error into
the Monte Carlo analysis.

We used the 5,000 generated sets of proportions of never,
current, and former smokers in the cohort and in the general
population and the 5,000 generated lung cancer rate ratios
for current and former smokers versus never smokers to
compute 5,000 bias factors using equation 2 above. We then
used each of these bias factors to adjust a sampled unad-
justed rate ratio. The S-Plus code for our calculations is
provided in Appendix 1.

Bayesian analysis

For comparison with the Monte Carlo approach, we
conducted a Bayesian analysis (5), in which the observed
data are entered into a data model and then combined with
prior distributions for the parameters in the model to derive a
posterior distribution for the parameters. We performed this
analysis using WinBUGS (26), which generates samples of
the parameters from the posterior distribution. The
WinBUGS code is provided in Appendix 2. The data model
specified that the observed number of lung cancer deaths
(n = 109) was from a Poisson distribution with mean equal to
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the expected number of deaths based on the US population
(68.1) times the product of the unknown smoking-adjusted
rate ratio (RRadj) and the unknown bias factor. To parallel the
Monte Carlo sensitivity analysis (which does not use a prior
for RRadj), we specified an essentially noninformative distri-
bution (i.e., one with very large variance) for the log of RRadj
(a normal distribution with mean 0 and variance 10,000).
The bias factor was again calculated as in equation 2. The
same informative prior distributions for these ratios and
proportions were specified as in the Monte Carlo analysis.
After a burn-in of 5,000 observations, we generated 100,000
smoking-adjusted rate ratios from the posterior distribution
using WinBUGS.

RESULTS

The median and geometric mean values of the bias factors
generated from the Monte Carlo analysis were both 1.12.
The 5,000 unadjusted exposure-lung cancer rate ratios were
divided by the 5,000 bias factors to generate 5,000 exposure-
lung cancer rate ratios adjusted for confounding by smoking.
The median and geometric mean values of the adjusted rate
ratios were both 1.43, and the 2.5th and 97.5th percentiles
(95 percent Monte Carlo limits) were 1.15 and 1.78.
Bayesian posterior sampling yielded median and geometric
mean values for the 100,000 adjusted rate ratios of 1.44 and
1.43, respectively, with 2.5th and 97.5th percentiles (esti-
mated 95 percent posterior limits) of 1.13 and 1.84—very
similar to the Monte Carlo sensitivity analysis.

Both sets of results should be compared with the original
point estimate of 1.60 and 95 percent confidence limits of
1.31 and 1.93. Figure 2 shows the estimated distribution of
the original (smoking-unadjusted) rate ratios and the distri-
bution of smoking-adjusted rate ratios from the Monte Carlo
sensitivity analysis. The Monte Carlo distribution has a
mean that has shifted downward by approximately 10
percent relative to the original point estimate and is a bit
more spread out: The ratio of the upper limit to the lower
limit (a measure of uncertainty) has increased from the orig-
inal 1.47 (1.93/1.31 = 1.47) to 1.54 (1.78/1.15 = 1.54) for the
Monte Carlo limits (and to 1.63 (1.84/1.13 = 1.63) for the
Bayesian limits). The conventional limits give the impres-
sion that the silica exposure is probably associated with an
increase in the lung cancer rate of at least 30 percent and
quite possibly more than 90 percent (relative to the US popu-
lation), whereas the Monte Carlo and Bayesian results give
the impression that this increase could easily be less than 20
percent and is unlikely to be more than 90 percent.

DISCUSSION

The results from the Monte Carlo sensitivity analysis are
improvements over traditional sensitivity analyses in that
they provide a distribution for the smoking-adjusted rate
ratio, rather than just a few hypothetical guesses. Of course,
this distribution depends on the input distributions, but these
are displayed in a precise manner to allow scrutiny, and
readers who dispute the specification can rerun the analysis
using their own inputs, if they wish.

Although the Monte Carlo limits were shifted downward,
the ratios of upper limits to lower limits (1.54 in the Monte
Carlo analysis and 1.63 in the Bayesian analysis) only
modestly exceeded the ratio of the 95 percent confidence
limits (1.47). This reflects the fact that the correction did not
vary widely across scenarios, which in turn reflects the fact
that both smoking-lung cancer associations (i.e., current and
former smokers vs. never smokers) were sampled with rela-
tively high precision and that the observed differences in
smoking habits between the cohort and the US population
(based on a sample of workers) tended to be small, which
limited the generated bias factors to a small range. In situa-
tions where the prior information is less precise, the bias
distribution will lead to substantially wider Monte Carlo and
Bayesian intervals relative to the conventional confidence
intervals (which reflect only random error). Monte Carlo
sensitivity analysis and Bayesian bias analysis will also
produce much wider intervals when the conventional confi-
dence intervals are narrow, as in large studies, pooling
projects, and meta-analyses (9, 10). Another key aspect
determining the final results will be the shift (or location) in
the final distribution, relative to the original confidence
limits. In the example, neither the widening of the interval
nor the location shift due to confounding by smoking was
large, but together they added up to considerably reduce the
lower limit (from 1.31 to 1.15 or 1.13).

FIGURE 2. Unadjusted and smoking-adjusted lung cancer stan-
dardized mortality ratios (SMRs) in a study of 4,626 US industrial
sand workers followed from the 1950s to 1996.
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No analysis will capture every conceivable source of
uncertainty; the goal of bias analysis is to adequately reflect
the major sources while avoiding unimportant details. There
are some aspects of confounding by smoking that we did not
consider. First, we estimated the proportions of never,
current, and former smokers in our data at one point in time
(1987) based on a sample of the cohort. It is possible to esti-
mate smoking habits in the cohort over time, by using
surveys of US blue-collar males over time, and to do the
same for the US population. We felt, however, that use of
actual data from 1987 for a sample of the cohort was prefer-
able to use of data from surveys of blue-collar workers.
Another refinement would use data on the amount smoked
rather than categories of never, current, and former smokers.
However, we did not have data from our sample of workers
with which to estimate pack-years of smoking. Finally, our
rate ratios for lung cancer among current and former
smokers versus never smokers were chosen from one large
cohort of US males. One might instead choose to conduct a
meta-analysis of studies of male US smokers; but, as we
noted above, the American Cancer Society smoking-lung
cancer rate ratios tend to be similar to those observed in other
large cohorts studied during the same period.

There may always be other confounders besides smoking.
However, because of the strength of its effect and its high
prevalence, we think smoking is the main potential
confounder for lung diseases, since other potential
confounders are either unlikely to have differed in prevalence
substantially between our cohort and the US population (e.g.,
asbestos exposure) or are only modestly related to lung cancer
(e.g., diet). A possible healthy worker effect might also have
led to some underestimation of the exposure effect.

Uncontrolled confounding by smoking may be the largest
bias in our example. Selection bias would be limited because
follow-up was relatively complete (95 percent). Exposure
(dichotomous) is unlikely to be seriously misclassified: For
the worker cohort, exposure status was based on employment
with the companies in the study, where silica exposure had
been documented; in the general population, only a negligible
proportion would be exposed occupationally to silica. If one
attempted a dose-response analysis, however, issues relating
to measurement error would have to be addressed.

CONCLUSION

It takes an appreciable amount of work to conduct a bias
analysis, but such an analysis has the advantage of explicitly
and quantifiably taking into account likely sources of bias.
Those sources are usually discussed in a more qualitative
and abbreviated manner in the Discussion section of most
papers, as we did for misclassification and selection bias. If
it is very clear that the biases must be small or if the conven-
tional confidence intervals are so wide that nothing could be
inferred even in the absence of bias, these discussions may
be sufficient. However, if there are concerns that biases may
be large, or if the conventional results appear very precise
(and thus potentially very misleading if taken at face value),
bias analyses can play a crucial role in forming inferences.
They help by forcing the investigators to make their judg-
ments about bias sources explicit and precise and by

showing the impact these judgments should have on infer-
ences. We thus recommend that bias analysis become a
required component of training in epidemiologic methods
and that it be implemented whenever conventional confi-
dence intervals that will be used for policy or planning
purposes appear decisive or narrow.
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APPENDIX 1

S-Plus Code for Monte Carlo Sensitivity Analysis

muexp<–c(–1.05, –0.41)
## means for multivariate normal distribution of logit of

proportions of never and current smokers among exposed
munexp<–c(–0.66, –0.62)
## means for multivariate normal distribution of logit of

proportions of never and current smokers among nonex-
posed

covexp<–matrix(c(0.026, –0.011, –0.011, 0.021), ncol=2)
## variance-covariance matrix for logits of proportions of

never and current smokers among exposed
covnexp<–matrix(c(0.00032, –0.00017, –0.00017, 0.00031),

ncol=2)
## variance-covariance matrix for logits of proportions of

current smokers, exposed and nonexposed
xexp<–rmvnorm(5000, mean=muexp, cov=covexp, d=2)
## draw from a multivariate normal distribution for logits of

proportions of never and current smokers among exposed
xnexp<–rmvnorm(5000, mean=munexp, cov=covnexp, d=2)
## draw from a multivariate normal distribution for logits of

proportions of never and current smokers among nonex-
posed

bcur<–rnorm(5000, 3.16, sd=0.0939)
## prior normal distribution for log rate ratio (RR) for male

current smokers versus never smokers, from Cancer
Prevention Study II data; RR = 23.6 (95 percent confi-
dence interval: 19.6, 28.3)

bform<–rnorm(5000, 2.16, sd=0.0938)

## prior normal distribution for log RR for male former
smokers versus never smokers, from Cancer Prevention
Study II data; RR = 8.7 (95 percent confidence interval:
7.2, 10.4)

bexposure<–rnorm(5000, 0.47, 0.1)
## observed exposure-disease log RR and standard error,

with no adjustment for smoking; reflects random error
pnev1<–exp(xexp[,1])/(1+exp(xexp[,1]))
## proportion of never smokers in exposed, derived from

1987 sample of exposed cohort, males aged 25–64 years
pnev0<–exp(xnexp[,1])/(1+exp(xnexp[,1]))
## proportion of never smokers in nonexposed, derived from

1989 US survey of males aged 25–64 years
pcur1<–exp(xexp[,2])/(1+exp(xexp[,2]))
## proportion of current smokers in exposed, derived from

1987 sample of exposed cohort, males aged 25–64 years
pcur0<–exp(xnexp[,2])/(1+exp(xnexp[,2]))
## proportion of current smokers in nonexposed, derived

from 1989 US survey of males aged 25–64 years
pform1<–1–pnev1–pcur1
## estimated proportion of former smokers in exposed
pform0<–1–pnev0–pcur0
## estimated proportion of former smokers in nonexposed
bias<–(pnev1+exp(bcur)*(pcur1)+exp(bform)*(pform1))/

(pnev0+exp(bcur)*(pcur0)+exp(bform)*(pform0))
## bias parameter
bnew<–bexp–log(bias)
## value of RR for exposed versus nonexposed corrected for

bias due to confounding by smoking
exp(mean(bnew))
exp(quantile(bnew,probs=0.025))
exp(quantile(bnew,probs=0.50))
exp(quantile(bnew,probs=0.975))
## percentiles of smoking-adjusted rate ratio
mean(bias)
## mean bias parameter
quantile(bias,probs=0.50)
## median bias parameter

APPENDIX 2

WinBUGS Code for Bayesian Analysis

model
{
pnev1<–exp(xexp[1])/(1+exp(xexp[1]))
# proportion of never smokers among exposed, a function of

the logit of this proportion
pnev0<–exp(xnexp[1])/(1+exp(xnexp[1]))
# proportion of never smokers among nonexposed, a func-

tion of the logit of this proportion
pcur1<–exp(xexp[2])/(1+exp(xexp[2]))
# proportion of current smokers among exposed, a function

of the logit of this proportion
pcur0<–exp(xnexp[2])/(1+exp(xnexp[2]))
# proportion of current smokers among nonexposed, a func-

tion of the logit of this proportion
pform1<–1–pcur1–pnev1
# proportion of former smokers among exposed
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pform0<–1–pcur0–pnev0
# proportion of former smokers among nonexposed
bias<–(pnev1+exp(betacur)*(pcur1)+exp(betaform)*(pform1))/

(pnev0+exp(betacur)*(pcur0)+exp(betaform)*(pform0))
# bias is the bias parameter; it is a function of the proportions

of never, current, and former smokers among exposed and
nonexposed and the rate ratios for current and former
smoking

betaobs<–betanew+log(bias)
# log standardized mortality ratio (SMR) observed

(confounded) = log SMR adjusted for confounding +
log(bias)

lambda<–68*exp(betaobs)
# Poisson mean of observed deaths is the expected number of

deaths times the SMR observed
obs~dpois(lambda)
# observed number of deaths are distributed as a Poisson

variable with mean lambda
betanew~dnorm(0,0.0001)
# assumed distribution of log SMR true (unconfounded), a

diffuse prior distribution
# note, WinBUGS uses inverse of variance
betacur~dnorm(3.16,113.65)
# an informative prior for lung cancer rate ratio for current

smoking, from American Cancer Society data; rate ratio =
23.6 (95 percent confidence interval: 19.6, 28.3) 

betaform~dnorm(2.16,113.65)
# an informative prior for lung cancer rate ratio for former

smokers, from American Cancer Society data; rate ratio =
8.7 (95 percent confidence interval: 7.2, 10.4) 

xexp[1:2]~dmnorm(muexp[1:2], covexp[1:2, 1:2])

# logits of proportions of never and current smokers in
exposed, assumed correlated –0.48, multivariate normal

xnexp[1:2]~dmnorm(munexp[1:2], covnexp[1:2, 1:2])
# logits of proportions of never and current smokers in

nonexposed US population, assumed correlated –0.53,
multivariate normal

}
list(obs=109, muexp=c(–1.05,–0.41), munexp=c(–0.66,–0.62),
covexp=structure(.Data=c(3.9333208, 2.0603109, 2.0603109,

48.698258),.Dim=c(2,2)),
covnexp=structure(.Data=c(4409.6728, 2418.2077, 2418.2077,

4551.9203),.Dim=c(2,2)))
# observed data, a single observation, the observed number

of lung cancer deaths in the exposed
# assumed means of the logit of proportions of never and

current smokers among exposed, taken from observed data
for a sample of the exposed cohort, in which proportions of
never and current smokers aged 25–65 years were 0.26 and
0.40, respectively

# assumed means of the logit of proportions of never and
current smokers among the nonexposed, taken from US
population data, in which proportions of male never and
current smokers were 0.34 and 0.35, respectively

# assumed inverse of covariance matrix for logits of propor-
tions of never and current smokers in exposed, assuming
these are correlated at –0.48

# assumed inverse covariance matrix for logits of propor-
tions of never and current smokers in nonexposed,
assuming these logits are correlated at –0.53

# end
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