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Abstract

Case-control studies are dominant tools in epidemiologic research and consequently, there is
a substantial volume of frequentist literature on different aspects of case-control studies. The
Bayesian framework for case-control studies offer possibilities for flexible, hierarchical mod-
eling that may be necessary in many contexts but as of yet, the Bayesian pathways remain
relatively less explored. The present article reviews existing Bayesian work for analyzing
case-control data, some recent advancements and possibilities for future research.
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1 Introduction: The frequentist development

The contribution of statisticians to the development of case-control methodology is perhaps

the most important contribution that they have made to public health and biomedicine. The

central theme of a case-control study is to compare a group of subjects (cases) having the

outcome (typically a disease) to a control group (not having the outcome or disease) with

regard to one or more of the disease’s potential risk factors. The method gained popularity in

the 1920’s for studying rare diseases, especially cancer, where following a healthy population

or a cohort over time is impractical. It was believed in the early era of case-control studies

that such a study did not provide relevant quantitative information about the disease rates.

Cornfield (1951) demonstrated that the exposure odds ratio for cases versus controls equals

the disease odds ratio for exposed versus unexposed, and the latter in turn approximates

the ratio of the disease rates if the disease is rare. The following discussion will clarify the

issue. Consider two dichotomous factors, D, denoting the disease status and E, representing

the exposure status that characterize individuals in a population. The collected data is rep-

resented by a 2× 2 table of the following form:

D D̄
E a b
Ē c d

One measure of association between D and E is the odds ratio (OR) defined as

OR =
Pr(D|E)

Pr(D̄|E)
·
Pr(D̄|Ē)

Pr(D|Ē)
. (1)

The disease odds ratio may be estimated from any of the three popular study designs namely,

cohort, cross-sectional and case-control. It can be easily seen from (1) by using the Bayes

theorem, namely, by using the fact that Pr(E|D) = Pr(D|E)Pr(E)/Pr(D), that the expo-

sure odds ratio and the disease odds ratio are the same. Another measure of association is the

relative risk of the disease for different exposure values, defined as RR = Pr(D|E)/Pr(D|Ē).

When the disease is rare, both Pr(D̄|Ē) and Pr(D̄|E) are close to one and the exposure
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odds ratio approximates the relative risk of the disease (Cornfield (1951)).

The landmark paper by Mantel and Haenszel (1959) further clarified the relationship be-

tween a retrospective case-control study and a prospective cohort study. The paper considers

a series of I 2× 2 tables of the following pattern :

Disease Exposed Not Exposed Total
Status
Case n11i n10i n1i

Control n01i n00i n0i
Total e1i e0i Ni

The Mantel-Haenszel (MH) estimator of the common odds ratio across the tables is

θ̂mh =

∑I
i=1 n11in00i/Ni

∑I
i=1 n01in10i/Ni

. (2)

and the test statistic to test H0 : θ1 = · · · = θI is
∑I

i=1{n11i − E(n11i|θ̂mh)}
2/V ar(n11i|θ̂mh)

which follows an approximate χ2 distribution with I − 1 degrees of freedom under the null

hypothesis. The derivation of the variance of the MH estimator posed a challenge, and was

addressed in several subsequent papers (see Breslow, 1996 for details).

The next era saw development of likelihood based inference methods for the odds ra-

tio (Breslow and Day (1980)). Methods to evaluate the simultaneous effects of multiple

quantitative risk factors on disease rates started appearing in 1960’s.

In a case-control study the appropriate likelihood is the ‘retrospective’ likelihood of expo-

sure given the disease status. Cornfield et al.(1961) noted that if the exposure distributions

in case and control populations are normal with different means but a common covariance

matrix, then the prospective probability of disease (D) given the exposure (X) turns out to

be the logistic response curve,

P (D = 1|X = x) = H(α+ βTx) (3)

where H(u) = 1/{1 + exp(−u)}. Cox (1966), and Day and Kerridge (1967) confirmed

that the maximum likelihood estimate of β obtained by the logistic regression model in (3)
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was efficient in a semiparametric sense. The only conceptual complication was in using a

likelihood based on P (D|X) whereas the case-control sampling design naturally leads to a

likelihood containing terms of the form P (X|D). Anderson (1972) and Prentice and Pyke

(1979) investigated this problem and showed that the ordinary logistic regression coefficients

actually yielded the desired estimates of the relative risk parameters. They also established

that the estimating equations based on the prospective logistic likelihood is unbiased and

the asymptotic standard error of the resulting estimators of the relative risk parameters are

identical with those obtained from the retrospective model. Carroll, Wang and Wang (1995)

extended this prospective formulation to the situation of missing data and measurement

error in the exposure variable. They showed that the estimator of β obtained through

prospective formulation and ignoring the retrospective nature of the case control data is

consistent and asymptotically normally distributed with prospective standard errors that

are at worst conservative.

In a case-control set-up, matching is often used for selecting “comparable” controls to

eliminate bias due to confounding factors. Statistical techniques for analyzing matched case-

control data were first developed in Breslow et al.(1978). In the simplest setting, the data

consist of s matched sets and there are Mi controls matched with a case in each matched

set or stratum. We denote the i-th matched set by Si, i = 1, · · · , s. As before, one assumes

a prospective stratified logistic disease incidence model, namely,

P (D = 1|z, Si) = H{αi + βT (z − z0)} (4)

where αi’s are stratum-specific intercept terms. The stratum parameters αi are eliminated

by conditioning on the unordered set of exposures for the cases and controls in each stratum.

This is equivalent to conditioning on the number of cases in each stratum which is a complete

sufficient statistic for the nuisance parameters αi. The generated conditional likelihood, is

free of the nuisance parameters and yields the optimum estimating function (Godambe, 1976)

for estimating β. Assuming, without loss of generality, the first subject in each stratum is a
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case and rest of the subjects are controls, the derived conditional likelihood is

Lc(β) =
s

∏

i=1

exp(βTzi1)
∑Mi+1

j=1 exp(βTzij)
. (5)

The above method is known as conditional logistic regression(CLR).

The usual prospective likelihood for unmatched data and conditional logistic regression

for matched studies produce biased estimates of the relative risk parameters in the presence of

measurement error or misclassification in the exposure variable. Armstrong, Whittemore and

Howe (1989) proposed a correction to the estimates obtained through the classical methods

using normal discriminant analysis with normal differential measurement error (to be made

precise in Section 2). Carroll, Gail and Lubin (1993) proposed a pseudo-likelihood method

to handle this situation, where they assume a differential measurement error density with

a finite set of parameters, and empirical distribution functions are used in place of needed

distributions. Recently, McShane et al. (2001) proposed a conditional score method for

estimating bias-corrected estimates of log odds ratio parameters in matched case control

studies.

The classical methods for analyzing unmatched and matched studies suffer from loss

of efficiency when the exposure variable is partially missing. Lipsitz, Parzen and Ewell

(1998) proposed a pseudo-likelihood method to handle missing exposure variable. Rathouz,

Satten and Carroll (2002) developed a more efficient semiparametric method of estimation

in presence of missing exposure in matched case control studies. Satten and Kupper (1993),

Paik and Sacco (2000) and Satten and Carroll (2000) addressed the missingness problem

from a full likelihood approach assuming a distribution of the exposure variable in the control

population.

The above account of the frequentist development of case-control analysis is nowhere near

complete and is beyond the scope of the current article. Here we only attempt to review

the Bayesian contributions in this field. In spite of the enormously rich literature in the

frequentist domain, Bayesian modeling for case-control studies did not start until the late

1980’s. Bayesian analysis of case-control data seem particularly appealing with the rapid
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development of Markov chain Monte Carlo techniques. The possibilities include random

effects, measurement error, missingness, flexibility to incorporate hierarchical structure and

prior information in modeling the relative risk. In fact, epidemiology is indeed a science

where accumulated knowledge from similar prior studies should be utilized in the analysis

of a new one. In the subsequent three sections we attempt to review the available Bayesian

literature on modeling data arising from case-control studies. Sections 2 and 3 focus on

models for unmatched case-control data. In Section 2, we consider models for a single binary

exposure. Section 3 contains a review of more involved modeling of continuous exposure with

measurement error and categorical covariates. Section 4 is devoted to methods available for

the analysis of matched case-control studies. Section 5 focuses on some recent work on

equivalence of prospective and retrospective studies in a Bayesian framework and discusses

a new Bayesian interpretation to the method of conditional likelihood. Section 6 presents

concluding remarks and possible directions for future research.

2 Early Bayesian work on a single binary exposure

Altham (1971) is possibly the first Bayesian paper which considered several 2×2 contingency

tables with a common odds ratio, and performed a Bayesian test of association based on this

common odds ratio. This paper is not specifically targeted towards a case-control design.

Later, Zelen and Parker (1986), Nurminen and Mutanen (1987), Marshall (1988) and Ashby

et al. (1993) all considered identical Bayesian formulations of a case-control model with a

single binary exposure X. The model can be described as follows:

Let φ and γ be the probabilities of exposure in control and case populations respectively.

The retrospective likelihood is

l(φ, γ) ∝ φn01(1− φ)n00γn11(1− γ)n10 . (6)

Where n01 and n00 are the number of exposed and unexposed observations in control popu-

lation, whereas n11 and n10 denotes the same for case population.
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Independent conjugate prior distributions for φ and γ are assumed to be Beta(u1, u2)

and Beta(v1, v2) respectively. After reparametrization one obtains the posterior distribution

of the log odds ratio parameter, namely, β = log{γ(1− φ)/φ(1− γ)} as

p(β|n11, n10, n01, n00) ∝ exp{(n11 + v1)β}
∫ 1

0

φn11+n01+v1+u2−1(1− φ)n10+n00+v2+u1−1

{1− φ+ φ exp(β)}n11+n10+v1+v2
dφ. (7)

The above posterior density of β does not exist in closed form but may be evaluated by

numerical integration.

Since interest often lies in the hypothesis β = 0, Zelen and Parker (1986) recommended

calculating the ratio of the two posterior probabilities p(β)/p(0) at selected deviates β. When

β is set at the posterior mode, a large value of this ratio will indicate concentration of the

posterior away from 0 and one would infer disease-exposure association. However the “critical

value” suggested for this ratio to detect presence of association is completely arbitrary. Zelen

and Parker also provided a normal approximation to the posterior distribution of β to avoid

numerical computation, and discussed the problem of choosing a prior distribution based

on prior data available on exposure values. Using their prior elicitation method and normal

approximation to the posterior, they analyzed data showing association between exposure in

utero to Diesthylstibestrol (a drug which came in 1940’s to prevent pregnancy complications)

and adenocarcinoma of vagina in young women. The ratio of the posterior density at the

posterior mode and at 0 turn out to be overwhelmingly large at 302, suggesting strong

evidence of association between disease and exposure. This paper also raised the possibility

of performing a case-control analysis without the presence of control sample if adequate

exposure information is available from prior studies.

Nurminen and Mutanen (1987) considered a more general parameterization based on a

general comparative parameter such as the risk ratio or the risk difference, and not just the

odds ratio. They provided a complicated exact formula for the cumulative density function

of this general comparative parameter. The formula can be related to Fisher’s exact test for

comparing two proportions in sampling theory. The Bayesian point estimates are considered

as posterior median and mode, whereas inference is based on the highest posterior density
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interval for the comparative parameter of interest.

Marshall (1988) provided a closed form expression for the moments of the posterior

distribution of the odds ratio. The paper mentions that an approximation to the exact

posterior density of the odds ratio parameter can be obtained by power series expansion of

the hypergeometric functions involved in the expression for the density, but acknowledge the

problem of slow convergence in adopting this method. Marshall then used Lindley’s (1964)

result on the approximate normality of log(OR) which works very well over a wide range

of situations. In the absence of any exposure information, he recommended using uniform

independent priors for the parameters. The paper suggests that a perception about the

value of the odds ratio should guide the choice of prior parameters rather than attempting

to exploit the exposure proportions as suggested in Zelen and Parker. Inference again is

based on posterior credible intervals. Marshall (1988) reanalyzed the Zelen-Parker data on

association of vaginal cancer and Diesthylstibestrol (DES). With the same prior as Zelen

and Parker, the posterior credible interval for the odds ratio turned out to be (7.8, 388).

Since this was a dataset with very few observations, the author chose a more conservative

set of priors which also suggested association between vaginal cancer and DES . The paper

concludes that the exact magnitude of the risk may not be quantified realistically based on

such a small dataset.

Ashby et al.(1993) analyzed a case-control study to assess risk of leukemia following

chemotherapy for Hodgkin’s disease from a Bayesian perspective and used it as a source

of prior information for a second study. They also proposed modeling the odds ratio di-

rectly through a normal normal model besides the usual beta-binomial modeling. The paper

emphasized practical relevance of Bayesian perspective from a epidemiological standpoint.

Epidemiology progresses by an accumulation of evidence about the existence and magni-

tude of risk factors; so a Bayesian approach offers a natural framework for integrating and

updating the knowledge available at each stage.

In cancers for which survival is good, there is a growing interest in the long-term effects
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of treatment. Hodgkin’s disease, which is cancer of the lymph nodes, has a 5 year survival

of about 80% and survivors have excess risks for leukemias and lymphomas. Although these

risks are very small, compared to the benefits of the treatment, there is interest in studying

these effects. The paper considers three such studies: an initial cohort study (Kaldor et

al., 1987), an international case-control study conducted in 1990 and a case-control study

finished in 1993 as a follow-up to the 1990 study with the same protocol as the earlier study.

The data for the 1990 case-control study is analyzed with no prior information, slightly

informative prior and then using the 1987 cohort study as prior evidence. Then a fraction of

data collected in a follow-up case-control study is analyzed with the initial 1990 study as prior

information. With small amount of data, prior information plays a vital role. Interesting

numerical differences may be noted for different choices of the prior. The paper makes a very

clear point that before embarking on a study of a possible etiological risk for any disease,

the investigators may consider existing evidence across a range of sources for arriving at a

more efficient strategy for design and analysis of the data following Bayesian principles.

3 Models with continuous and categorical exposure

Müller and Roeder (1997) introduced a novel aspect to Bayesian treatment of case-control

studies by considering continuous exposure with measurement error. This paper is a signif-

icant advance in Bayesian analysis of case-control data as it is the first attempt to address

non-trivial, unorthodox modeling scenarios beyond the earlier work on binary exposure as

discussed in Section 2.

Müller and Roeder used the validation group, for which error-free high quality measure-

ments are available to form a model that indirectly links the error-prone measurement to

the disease outcome through its relation to the error-free measurement. The set-up of their

paper is as follows:

Let D be a binary response observed together with covariates X and Z, where Z may

be vector-valued. The retrospective case-control sample is chosen by selecting n1 cases with
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D = 1 and n0 controls with D = 0. Errors in variables occur when for a subset of the

data, (referred as reduced data or R from now on) a proxy W is measured instead of the

true covariate X. For a typical validation study, for the remaining subjects (referred to as

complete data or C from now on) one has observations on both the gold standard X and the

proxy W .

The approach proposed in their paper is based on a nonparametric model for the ret-

rospective likelihood of the covariates and the imprecisely measured exposure. For reduced

data, this nonparametric distribution models the joint distribution of (Z,W ) and the missing

covariate XR. For complete data, the same distribution models the joint distribution of the

observed covariates (XC , Z,W ). The nonparametric distribution is a class of flexible mixture

distributions, obtained by using mixture of normal models with a Dirichlet Process prior on

the mixing measure (Escobar and West, 1995). The prospective disease model relating dis-

ease to exposure is taken as a logistic distribution characterized by a vector of log odds-ratio

parameters β. Also, if θ denotes the parameters describing the marginal distributions of

the exposure and covariates, under certain conditional independence type assumptions and

non-differential measurement error, i.e. p(D|X,Z,W,β) = p(D|X,Z,β), the retrospective

likelihood is shown to be compatible with the prospective model.

With a prior p(β,θ), one obtains the joint posterior as

p(β,θ|XC ,W,D,Z) ∝ p(β,θ)
∏

i∈C

p(Xi, Zi,Wi|Di,β,θ)
∏

i∈R

{
∫

p(Xi, Zi,Wi|Di,β,θ)dXi}

By augmenting the parameter with the latent vector one can write the joint posterior of

parameters and missing exposure XR as,

p(β,θ, XR|XC ,W,D,Z) ∝ p(β,θ)
n

∏

i=1

p(Xi, Zi,Wi|Di,β,θ).

Under the additional assumption of non-differential measurement error,

p(β,θ, XR|XC ,W,D,Z) ∝ p(β,θ)
n

∏

i=1

p(Xi, Zi,Wi|θ)p(Di|Xi, Zi,β)/p(Di|β,θ)
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where p(Di|β,θ) =
∫

p(Di, Xi, Zi,Wi,β)dP (Xi, Zi,Wi|θ). Let θ = (θ1, θ2, .., θn). Then one

assumes the following mixture model with a multivariate normal kernel φθi
. Specifically.

p(Xi, Zi,Wi|θi) = φθi
(Xi, Zi,Wi) (8)

θi ∼ G

G ∼ DP (αG0)

Where θi =(µi,Σi), the parameters of the trivariate normal kernel and DP (αG0) denotes

a Dirichlet process with a base measure G0 and concentration parameter α. The hierar-

chy is completed by assuming a normal/Wishart hyperprior on the parameters of the base

measure G0 = N(µ0,Σ0) and a Gamma prior on the concentration parameter α. A non-

informative prior is assumed on β. A Markov chain Monte Carlo numerical integration

scheme is designed for estimating the parameters. The computation scheme becomes either

very expensive or inaccurate when the dimension of the (X,Z,W )-space increase as one has

to evaluate p(Di|β,θ) by numerical integration over the (X,Z,W )-space. This paper breaks

many new grounds in Bayesian treatment of case-control studies including consideration of

continuous covariates, measurement error and flexible nonparametric modeling for the expo-

sure distribution leading to robust, interpretable results quantifying the effect of exposure.

This paper brings out the tremendous possibility of using modern Bayesian computational

techniques to offer solutions to complex data scenarios in case-control studies.

Müller and Roeder analyzed a dataset extracted from Lipids Research Clinic’s prospective

study to estimate the risk of coronary heart disease given levels of LDL cholesterol and

triglycerides (TRG). An individual is classified as a case if he has experienced a previous

heart attack, an abnormal exercise electrocardiogram or a history of angina pectoris.

Since direct measurement of LDL is expensive, total cholesterol (TC) is often used as a

proxy. In their set-up, onset of coronary disease, log(TC), log(LDL) and log(TRG) play the

roles of D,W,X and Z respectively. Based on their analysis with and without the reduced

observations, it is clear that the reduced observations are highly informative and TC is
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an excellent proxy for LDL. The posterior distribution for the log-odds ratio parameter β1

corresponding to X (LDL) has a much smaller variance when the reduced data is used.

Müller and Roeder pointed out that categorical covariates required a different treatment

as assuming a multivariate normal kernel for the Dirichlet Process implicitly assumes con-

tinuous exposures. Seaman and Richardson (2001) extended the binary exposure model of

Zelen-Parker to any number of categorical exposures simply by replacing the binomial like-

lihood in (6) by a multinomial likelihood, and then adopting a MCMC strategy to estimate

the log odds ratio for the disease in each category with respect to a baseline category. The

set of multinomial probabilities corresponding to exposure categories in case and control

populations are assumed to have a discrete Dirichlet prior. The prior on the log odds ratios

could be chosen to be any distribution.

Seaman and Richardson also adapted the Müller-Roeder approach to categorical covari-

ates by simply modeling the multinomial probabilities corresponding to exposure categories

in the entire source population as opposed to looking at case and control populations sepa-

rately as in the generalized Zelen-Parker binary model described above. A non-informative

Dirichlet (0,0,..,0) prior is assumed for the exposure probabilities. Seaman and Richard-

son establish the equivalence of the generalized binary and adapted Müller-Roeder in some

limiting cases with noninformative Dirichlet (0,0,..,0) prior on φ.

Continuous covariates may be treated in the Seaman and Richardson framework by dis-

cretizing them into groups and little information is lost if discretization is sufficiently fine.

This opens up the possibility of treating continuous and categorical covariates simultaneously

which is not obvious in the Müller-Roeder approach.

Seaman and Richardson as well as Müller and Roeder assumed a prospective logistic

likelihood, assumed a flexible prior for the exposure distribution, and derived the implied

retrospective likelihood. In contrast, Müller et al. (1999) specified a retrospective likelihood,

and then derived the implied prospective likelihood. Müller et al. (1999) specified both

p(X|D = 0, θ) and p(X|D = 1, θ) as mixtures of multivariate normal distributions with
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M components. First we consider the simple normal case and begin with the notation,

p(X|D,θD) = N(µD,ΣD), where θD = (µD,ΣD) for D = 0 and 1; so θ0 and θ1 are

parameters of the exposure distributions in the control and case populations. Then we denote

the mixtures of multivariate normal distributions as p(X|D,θ) =
∑M

m=0 πDmN(µDm,ΣDm)

where θD = (πD0,µD0,ΣD0, · · · , πDM ,µDM ,ΣDM) for D = 0 and 1. These authors assumed

γ = P (D = 1), a constant prevalence of the disease. With this retrospective formulation,

the following can be shown:

Result. (i) In the simple normal case, i.e., when µDm = µD and ΣDm = ΣD for D=0,1, the

prospective log odds have a quadratic form ηp(X) =X ′AX+X ′b+c, with 2A = Σ−1
0 −Σ

−1
1 ,

b = Σ−1
1 µ1 −Σ

−1
0 µ0 and 2c = µ′

0Σ
−1
0 µ0 − µ

′
1Σ

−1
1 µ1 + 2log{γ/(1− γ)}+ log(|Σ0|/|Σ1|).

(ii) In the simple normal model, if in addition Σ1 = Σ0, then the prospective model is

the logistic with linear predictor ηp(X) =X ′b+ c.

(iii) In the mixture of normals model, the prospective log odds are of the form ηp(X) =

log{
∑M

m=0 π
∗
1m exp(X ′A1mX + X ′b1m + c1m)} − log{

∑M
m=0 π

∗
0m exp(X ′A0mX + X ′b0m +

c0m)}+ log{γ/(1− γ)}, where π∗
Dm = πDm|ΣDm|

− 1

2 , ADm = −1
2
Σ−1
Dm, bDm = Σ−1

DmµDm and

cDm = −1
2
µt
DmΣ

−1
DmµDm for D = 0, 1.

Result (ii) reiterates the classical result of Cornfield (1961) about discriminating the

exposure distributions in case and control populations using the prospective logistic model

when the exposures have a multivariate normal distribution with different means but common

covariance matrix in the case and control populations. Result (iii) is a generalization which

states that with the mixture of M normals retrospective model, the prospective odds ratio

turn out to be a weighted average of M quadratic regressions in the log odds which becomes

a weighted average of M linear regressions when the case and control distributions have the

same dispersion parameter. Their example shows that non-linear modeling of the odds ratio

as described in (iii) may be needed in some real situations. The choice of M, the number of

components in the mixture model is guided by two competing principles, easier estimation

and flexibility of modeling. In their example, Müller et al. use M=3.
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Müller et al. (1999) also addressed the problem of handling categorical and quantitative

exposure simultaneously. Conditional on the quantitative covariates, a multivariate probit

model is assumed for the binary covariates. They mentioned that this model could be

generalized for general categorical covariates as well, but did not specify exactly how this

might be done. They developed MCMC scheme for implementation of this model and for

inference and prediction. The computational difficulty of evaluating the normalizing constant

in using the prospective model as seen in Müller-Roeder is circumvented here through direct

modeling of the retrospective likelihood. Two other attractive features of this paper are

1) to incorporate inter-center variability while combining data from eight tumor registries

and 2) provide a natural framework of combining data coming from case-control and cohort

studies. For the latter, the likelihood is based on both prospectively and retrospectively

collected individuals. The risk factors for a retrospectively ascertained individual enter the

likelihood conditionally on whether the person is a case or a control. For a prospectively

ascertained individual, the disease outcome and individual risk factors are modeled jointly

in terms of p(X, D|θ, γ) where γ = p(D = 1) is the disease prevalence. Let P be the

set of indices corresponding to all prospectively ascertained patients. Then the combined

likelihood can be written as:

L(θ, γ) =
∏

Di=1

p(X i|D = 1,θ)
∏

Di=0

p(X i|D = 0,θ)
∏

i∈P

γDi(1− γ)1−Di

The example using the Cancer and Steroid Hormone (CASH) study indicates that the

two commonly adopted assumptions regarding the linearity of the log odds and homogeneity

of log odds ratio across studies need not always be true. Models based on non-linear and

non-homogeneous odds ratios may lead to a more complete account of uncertainties than

the usual logistic regression model.

Recently, Gustafson et al.(2002) considered another Bayesian approach to handle expo-

sure variables that are measured imprecisely. They considered approximation of the imprecise

exposure distribution by a discrete distribution supported on a suitably chosen grid. In the

absence of measurement error, the support is chosen as the set of observed values of the
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exposure, a device that resembles the Bayesian Bootstrap (Rubin, 1981). In the presence

of measurement error, these authors proposed strategies for selection of these grid points

depending on the validation design. A Dirichlet(1,...,1) prior was assigned to the probability

vector corresponding to the set of grid points. The posterior distributions of the parameters

of interest were derived directly from the retrospective likelihood of data and design, and

a MCMC computing scheme was used for carrying out posterior inference. Interestingly, in

the process of devising the MCMC algorithm, they showed that the posterior distribution

as derived from a prospective likelihood can be used as an approximation to the posterior

distribution directly derived from the retrospective likelihood. They also proposed an im-

portance sampling scheme based directly on the posterior derived from retrospective data.

It is observed that if the importance weights exhibit little variation, then the inference based

on the prospective model suffices. In the subsequent data analysis, very small differences

are noted between prospective and retrospective models for moderate sample sizes and the

authors continue to work with the prospective model which is more amenable to the MCMC

analysis. This paper is the first one to shed some light on the interplay between the equiv-

alence of prospective and retrospective studies in a Bayesian perspective which we continue

to discuss in Section 5. The equivalence established in Gustafson et al. (2002) is an ap-

proximate equivalence whereas Seaman and Richardson (2004) established exact equivalence

results (see Section 5).

4 Analysis of matched case-control studies

All the articles discussed so far in the Bayesian domain considered unmatched case-control

studies. One requirement for a case-control study is that the selection of cases and controls

is independent of their exposure status. In the simplest form of study designs, cases and

controls are identified and information on exposure and relevant confounder variables (age,

sex, race) are determined on the sampled subjects. The subsequent analysis tries to adjust

for the confounding effects by including the additional terms in the model or by doing a
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stratified Mantel-Haenszel analysis. The design could potentially be somewhat inefficient if

large number of controls fall within confounder-defined strata which contain only a few cases.

In such a situation the control information is effectively wasted. Matched case-control designs

try to circumvent this problem by keeping the ratio of cases to controls constant within each

sub-group defined by the relevant confounders, called the matching variables. Frequency

matching corresponds to maintaining constant case-control ratios across broad strata whereas

individual matching selects a set of matched controls for each sampled case. As discussed in

Section 1, frequentist inference in the matched set-up proceeds via conditional likelihood .

However, Bayesian attempts to analyze a matched case-control study have started appearing

only very recently.

Diggle, Morris and Wakefield (2000) present the first Bayesian analysis for situations

when cases are individually matched to the controls and as a result, nuisance parameters are

introduced to represent the separate effect of matching in each matched set. Diggle et al.

(2000) consider matched data when exposure of primary interest is defined by the spatial

location of an individual relative to a point or line source of pollution.

The basic model of Diggle et al. (2000) for an unmatched set-up is as follows: Let the

locations of individuals in the population at risk follow an nonhomogeneous Poisson process

with intensity function g(x) and the probability that an individual at location x becomes a

case is p∗(x). Then the odds of disease amongst sampled individuals are:

r(x) = (a/b)p∗(x)/(1− p∗(x)),

where a and b are the sampled proportions of cases and controls. Typically, r(x) ≡ r(x, θ)

involves some unknown parameter θ, and is modeled as

r(x, θ) = ρh(x, θ)

where h(x, θ) involves interpretable parameters of interest θ. The extension of this model

to J individually matched case-control pairs in a study region is made in the following way.

Suppose, the J locations for cases and controls are denoted by x0j and x1j respectively,
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j=1,..,J. The probability of disease for an individual at location x in stratum j is modeled

as:

pj(x, θ) =
rj(x,θ)

1+rj(x,θ)
= ρjh(x,θ)

1+ρjh(x,θ)
,

where ρj are varying baseline odds between matched pairs and are considered as nuisance

parameters. Conditioning on the unordered set of exposures within each matched set, one

has the conditional probability of disease of an individual at distance x in stratum j as,

pc(xj0, θ) =
h(xj0,θ)

h(xj0,θ)+h(xj1,θ)

In case of 1 : M matching in each stratum and in presence of q additional covariates zk(xji)

measured for the i-th individual in j-th stratum at location xji, i = 1, ..M ; j = 1, ..J ; k =

1, ..q, the full fledged conditional probability can be modeled in the form:

pc(xj0, θ, φ) =
h(xj0,θ) exp(

∑q

k=1
zk(xj0)φk)

∑M

i=0
h(xji,θ) exp(

∑q

k=1
zk(xj0)φk)

,

with the conditional log likelihood being of the form:

L(θ, φ) =
J

∑

j=1

logpc(xj0, θ, φ).

Diggle et. al. (2000) considered the likelihood as well as Bayesian approach for estimation

of parameters and inference in this model with specified form of h(x, θ). Often in studying

environmental pollution, there is a putative point source at location x∗ and interest is on

how the risk surface changes in relation to x∗. Let d = ‖x− x∗‖ be the distance of location

x from the source. In such instances they propose h of the form

h(x) = 1 + α exp(−(d/β)2), for fixed x∗.

This model has a natural interpretation with α being the proportional increase in disease

odds at the source, while β measures the rate of decay with increasing distance from the

source in units of distance. Standard likelihood inference for such models based on the

likelihood ratio statistic may not be reliable as the likelihood involved is highly non-regular.
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The Bayesian paradigm provides an alternative when likelihood surface is highly irregular.

In the paper independent normal priors are assumed on the covariate related regression

parameters φ and independent uniform priors are chosen for α and β. Estimation is carried

out by adopting a MCMC technique and inference is conducted by computing the Bayes

factor for testing the null hypothesis h(x) = 1 which amounts to saying that the risk of the

disease does not depend on the distance from the putative source.

Diggle et al. analyzed two sets of data, collected to study the relationship between

proximity of residence to main roads and increased risk of respiratory disease. The first

dataset consisted of 125 asthma cases, and the second 124 chronic obstructive airways disease

(COAD). Cases were clear-cut diagnoses attending the casualty deprament at the Royal

London Hospitals in 1991-92. Controls were selected from non-chest related admissions.

Each case was individually matched to a single control using sex, race and consultant team.

The analysis was based on the distance odds model as described above. For the Asthma data,

no association could be detected between asthma and distance of residence to main roads.

The COAD data exhibited a reasonable evidence of elevated risk close to main roads, but the

functional form of the variation in risk with distance could not be estimated with precision.

The paper indicates introducing a stochastic spatial component in the model which could be

an interesting direction for further research. This paper indicates using conditional likelihood

as a basis for Bayesian inference and what assumptions are implicitly made regarding the

choice of priors when such an analysis is carried out. This issue is investigated in detail by

Rice (2004) as discussed in Section 5.

Ghosh and Chen (2002) developed general Bayesian inferential techniques for matched

case-control problems in the presence of one or more binary exposure variables. The model

considered was more general than that of Zelen and Parker (1986). Also, unlike Diggle,

Morris, and Wakefield (2000), the analysis was based on an unconditional likelihood rather

than a conditional likelihood after elimination of nuisance parameters. Any methodology

based on the conditional likelihood is applicable only for the logit link. The general Bayesian
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methodology based on the full likelihood as proposed by Ghosh and Chen worked beyond

the logit link. Their procedure included not only the probit and the complementary log links

but also some new symmetric as well as skewed links. The propriety of posteriors was proved

under a very general class of priors which need not always be proper. Also, some robust

priors such as multivariate t-priors were used. The Bayesian procedure was implemented via

Markov chain Monte Carlo.

To illustrate their general methodology, Ghosh and Chen considered the L.A. Cancer

data as given in Breslow and Day (1980), and studied the effect of gall-bladder disease on

the risk of endometrial cancer as a single exposure variable, and both gall-bladder disease

and hypertension as multiple exposure variables. In the case of one case and one control,

it was demonstrated that the Bayesian procedure could yield conclusions different from the

conditional likelihood regarding association between the exposures and the disease. This is

because, while the conditional likelihood ignores all concordant pairs, the Bayesian procedure

based on the full likelihood utilizes these pairs as well.

Rice (2003) considered a matched case-control analysis where a binary exposure is po-

tentially misclassified. His method can be interpreted in a Bayesian framework with prior

information incorporated on odds ratios, misclassification rates and other model parameters.

Recently Sinha et al. (2004, 2005a,b) have proposed a unified Bayesian framework for

matched case-control studies with missing exposure and a semiparametric alternative for

modeling varying stratum effects on the exposure distribution. They considered s, 1 : M

matched strata with a disease indicator D, a vector of completely observed covariate Z and

an exposure variable X with possible missing values. The missingness is assumed to be at

random (MAR in the sense of Little and Rubin (1987)). They assume a prospective model

for the disease status as,

P (Dij = 1|Xij,Zij, S) = H(β0(S) + βT1Zij + β2Xij),

where ij refers the jth individual in the ith stratum, j = 1, · · · ,M +1 and i = 1, · · · , s. The

distribution of the exposure variable X in a control population is assumed to be a member
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of general exponential family, namely

p(Xij|Zij, Si, Dij = 0) = exp[ξij{θijXij − b(θij)}+ c(ξij, X)] (9)

where the canonical parameter θij is modeled in terms of the completely observed covariate

Zij and stratum specific varying intercept terms, namely θij = γ0i + γTZij. They propose

two important lemmas which are useful to write down the likelihood.

Lemma 1.
pr(Dij=1|Z ij ,Si)

pr(Dij=0|Z ij ,Si)
= exp

[

β0(Si) + βT1Zij + ξij{b(θ
∗
ij)− b(θij)}

]

, where θ∗ij = θij +

ξ−1ij β2.

Lemma 2. Based on the above two model assumptions, one can derive the distribution of

the exposure variable in the case population as:

p(Xij|Dij = 1,Z ij, Si) = exp[ξij{θ
∗
ijXij − b(θ∗ij)}+ c(Xij, ξij)]. (10)

Using the above two lemmas and assuming data missing at random, the prospective joint

conditional likelihood of the disease status and the exposure variable given the completely

observed covariate, the stratum effect and the conditional event that there is exactly one

case in each stratum can be shown to be proportional to,

s
∏

i=1

P (Di = 1, Di2 = · · ·DiM+1 = 0, {Xij ,∆ij}
M+1
j=1 |Si, {Z ij}

M+1
j=1 ,

M+1
∑

j=1

Dij = 1)

∝
s

∏

i=1

{

P (Di1 = 1, Di2 = · · · = DiM+1 = 0|{Z ij}
M+1
j=1

M+1
∑

j=1

Dij = 1, Si)

×p∆i1(Xi1|Zi1, Di1 = 1, Si)×
M+1
∏

j=2

p∆ij(Xij|Zij, Dij = 0, Si)

}

=
s

∏

i=1

{

P (Di1 = 1|Z i1, Si)/P (Di1 = 0|Z i1, Si)
∑M+1

j=1 P (Dij = 1|Z ij, Si)/P (Dij = 0|Z ij, Si)

×p∆i1(Xi1|Zi1, Di1 = 1, Si)×
M+1
∏

j=2

p∆ij(Xij|Zij, Dij = 0, Si)

}

,

In the above expression it is assumed that the first observation in each stratum is the one

coming from case population, ∆ij is the missing value indicator and takes value 0 if X ij is

missing and 1 otherwise.
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The parameters were estimated in a Bayesian framework by using a non-parametric

Dirichlet Process prior on the stratum specific effects γ0i in the distribution of the exposure

variable and parametric priors for all other parameters. Since the number of these stratum

specific parameters grow with the sample size, estimating these effects from a conditional

MLE perspective may lead to the Neyman-Scott phenomenon. The novel feature of the

Bayesian semiparametric method is that it can capture unmeasured stratum heterogeneity

in the distribution of the exposure variable in a robust manner. The proposed method has

been extended to the situation when one has multiple disease states (see Sinha, Mukherjee

and Ghosh, 2004). The method is appealing as a unified framework as one can not only

handle the missingness in the exposure variable but also possible measurement error and

misclassification in the exposure variable. The method may also be extended to take into

account the possible association schemes that may exist in a mixed set of continuous and cat-

egorical multiple exposures with partial missingness (Sinha, Mukherjee and Ghosh, 2005b).

Their examples and simulation results indicate that in presence of missingness, if association

among exposures truely exist, one gains efficiency in estimating the relative risk parameters

by modeling the exposure association instead of ignoring it.

In the following subsections we present some of the examples presented in Sinha et al.

(2004, 2005a) of Bayesian analysis of matched case control study.

4.1 A continuous exposure: The equine epidemiology example

The first example is equine epidemiology example earlier analyzed by Kim, Cohen and Carroll

(2002). The data consist of 498 strata with 1 : 1 matching in each stratum. Participating

veterinarians were asked to provide data monthly for one horse treated for colic and one

horse that received emergency treatment for any condition other than colic, between March

1, 1997, and February 28, 1998. A case of colic was defined as the first horse treated during a

given month for signs of intra-abdominal pain. A control horse was defined as the next horse

that received emergency treatment for any condition other than colic. Age was considered as
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a single exposure variable (X) measured on a continuous scale with one binary covariate (Z)

indicating whether the horse experienced recent diet changes or not. For scaling purposes

the authors linearly transformed age so that X was on the interval [0, 1]. The proposed

method for the general exponential family, as described in the previous section, applies here

with continuous exposure X. Sinha et al. (2005a) assumed that conditional on Dij = 0,

i.e., for the control population the exposure variable age has a normal distribution of the

following form :

[Xij|Dij = 0, Zij , Si] ∼ Normal(γ0i + γ1Zij, σ
2), (11)

where γ0i are stratum effects on the exposure distribution and γ1 is the regression parameter

for regressing Xij on the measured covariates Zij. They also assumed the logistic regression

model for disease status. From Lemma 2 it follows the exposure distribution among the cases

is Normal with mean γ0i+ γ1Zij +σ2β2 and variance σ2. The conditional likelihood can now

be derived using these facts. Suitable priors are chosen on the parameters. For estimation

of the parameters, a Markov chain Monte Carlo numerical integration scheme was used. For

simulating observations from the posterior distribution of the γ0i, the methods proposed

in West, Müller and Escober (1994), Escober and West (1995) and Neal (2000) was used.

For generating random numbers from the conditional distribution of other parameters, the

authors followed a componentwise Metropolis-Hastings scheme.

For each of the examples as presented in sections 4.1-3 and in Sinha et al. (2005a), three

analyses were conducted. One is the proposed Bayesian semiparametric analysis (BSP).

The other is a parametric Bayesian (PB) version of the work of Satten and Carroll (2000)

by considering a constant stratum effect γ0i ≡ γ0 and then assuming a normal prior on

this common stratum effect parameter γ0. They emphasize here and in the tables that

the parametric Bayesian method is simply the Bayesian version of the method of Satten

and Carroll (2000). The authors also present the frequentist alternative for analyzing this

matched data through a standard conditional logistic regression (CLR) analysis (Breslow

and Day, 1980).
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They ran the three analyses mentioned above on the equine dataset with all 498 strata

and reran the analyses where they randomly deleted 40% of the age observations. The results

are given in Table 1.

Briefly, with no missing data the results of the methods are roughly in accordance with

one another. The slightly small standard error estimates for the Bayesian methods may be

a reflection of the fact that unlike CLR, they are full likelihood based semiparametric and

parametric methods. With missing data, of course, one can see that the Bayesian methods

yield much smaller standard errors than CLR, reflecting the fact that their methods use all

the data, and not just the pairs with no missing data. There is little difference between

the semiparametric analysis and the parametric Bayes version of the method of Satten and

Carroll (2000), a phenomenon that can be explained as follows. The average variance among

the γ0i’s is very small (about 0.0054), suggesting that the stratum effects are almost constant

across strata. Thus the parametric model with constant stratum effect essentially holds for

this example, and hence it is not surprising that the two methods give similar results.

4.2 A binary exposure: endometrial cancer study

In the Los Angeles 1:4 matched case-control study on endometrial cancer as discussed in

Breslow and Day (1980), the variable obesity may be considered as a binary exposure variable

(X) for contracting endometrial cancer. This variable had about 16% missing observations.

Sinha et al. (2005a) considered the presence of gall bladder disease in the subject as our

completely observed dichotomous covariate Z.

In such a case with dichotomous exposure variable, the exposure distribution for control

population is naturally assumed to have a logistic form: pr(Xij = 1|Zij) = H(γ0i + γ1Zij),

where H(·) is the logistic distribution function. From Lemma 2 the exposure distribution in

the case population is again of the logistic form with: pr(Xij = 1|Zij) = H(γ0i+ γ1Zij +β2).

In the LA study there were 63 strata. The original data contained missing observations

on the exposure variable obesity. They modeled the missingness in the exposure variable
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in both the parametric Bayes (the Bayesian version of the Satten and Carroll method with

fixed stratum effects) and the semiparametric Bayes analysis. They also conducted classical

conditional logistic analysis. Table 2 presents the results. Although there are certainly some

interesting numerical differences, in the main the results are reasonably comparable.

The average variance among the γ0i’s over the last 5000 MCMC runs is approximately

4.5. This is fairly large, and if there were major covariate effects one would expect the BSP

and the parametric Bayes version of the method of Satten and Carroll (2000) to be different.

However, in this example the analyses suggest that β2 = 0 is plausible, so that D and X are

essentially independent and whether the γ0i’s are constant or not does not cause a model

bias. This is an example where there is stratum variability and natural missingness in the

data.

4.3 Another binary exposure: low birthweight study

In Example 4.1 on equine data, there was no appreciable stratum effect variability though

the exposure had a significant effect on disease probability. Example 4.2 on the other hand

has natural missingness, appreciable stratum variability but the exposure variable obesity

did not have significant effect on disease probability. The example considered in this section

illustrates a case when there is significant stratum variability and modeling it causes some

interesting differences in inference about the exposure effect when compared to a constant

stratum effect model.

This example involves a matched case-control dataset coming from a low birth weight

study conducted by the Baystate Medical Center in Springfield, Massachusetts. The dataset

is discussed in Hosmer and Lemeshow (2000, Section 1.6.2) and is used as an illustrative

example of analyzing a matched case-control study in Chapter 7 of their book. Low birth

weight, defined as birth weight less than 2500 grams, is a cause of concern for a newborn as

infant mortality and birth defect rates are very high for low birth weight babies. The data

was matched according to the age of the mother. A woman’s behavior during pregnancy
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(smoking habits, diet, prenatal care) can greatly alter the chances of carrying the baby to

terms. The goal of the study was to determine whether these variables were “risk factors”

in the clinical population served by Baystate Medical Center. The matched data contain

29 strata and each stratum has one case ( low birthweight baby) and 3 controls (normal

birthweight baby). One can possibly think of many different models for explaining the

disease in terms of the possible covariates recorded in the data set. The authors considered

smoking status of mother as a single exposure variable. Two other covariates, a binary

variable denoting presence of uterine irritability (UI) in mother and weight of the mother at

last menstrual period (LWT) are also included in the model.

In this example the average stratum variability is about 3.82 justifying the need for a

varying stratum effect model even in the absence of any missingness. Consequently, one can

note in Table 3 that in the full data case, the significance of smoking is more pronounced

with a varying stratum effect model when compared to the CLR and the parametric Bayes

version of Satten and Carroll which assumes a constant stratum effect. The latter two

models only exhibit marginal significance of the exposure. The association between smoking

and low birth weight has been clinically well-established (Walsh, 1994) though the exact

mechanism of decreased birth-weight is not yet known. With introduction of missingness,

the BSP estimate for the log odds ratio in Table 4 for smoking remains very close to the

full data counterpart whereas the estimates from the constant stratum effect models change

appreciably.

4.4 Example of a matched case-control study with multiple dis-

ease states

For this example Sinha et al., (2004) again considered the low birth weight data discussed

in section 4.3. They divided the cases, namely, the low birth-weight babies into two cate-

gories,very low (weighing less than 2000 gms) and low (weighing between 2000 to 2500 gms)

and tried to assess the impact of smoking habits of mother on the chance of falling in the two

low birth-weight categories relative to the baseline category (normal birthweight, weighing
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more than 2500 grams). Presence of uterine irritability in mother and mother’s weight at

last menstruation period were considered as relevant covariates. It was noted that smoking

mothers had a higher relative risk of having a low birth weight child when compared to

a non-smoking mother. However, the risk of having a very low birth weight child did not

depend on smoking significantly.

For the analysis the conditional probabilities of the disease variable given the covariate,

exposure and the stratum are given by,

P (Dij = k|Si,Zij, Xij) =
exp{β0k(Si) + βT1kZij + β2kXij}

1 +
∑K

r=1 exp{β0r(Si) + βT1rZij + β2rXij}
for k = 1, · · · , K. (12)

and binary variable smoking status is assumed to follow a Bernoulli distribution. In their

example K = 2. Three analyses were performed, namely Bayesian Semiparametric (BSP),

Parametric Bayes (PB) and the third one is iid parametric (PBV) where they assumed all

the stratum effects are different and each of the n stratum effect parameters γ0i, i = 1, · · · , n

are coming from n independent normal distributions.

Table 5 contains the posterior means, posterior standard deviations and 95% HPD cred-

ible intervals for the parameters of interest under the proposed Bayesian Semiparametric

method (BSP) and the parametric Bayes (PB the PBV) methods as discussed before. To

illustrate the methods in presence of missingness, the authors deleted 40% of exposure values

completely at random and reran the three analyses. The results are presented in Table 6.

The full data analysis indicates that smoking of mother is a significant risk factor for low

birth-weight category (category 1) and is not very significant in the very low birth-weight

category (category 2). UI on the other hand shows an opposite association, showing signif-

icance in category 2 and almost no significance in category 1. LWT does not seem to be a

significant covariate in any of the categories. The BSP and the PBV methods are in closer

agreement whereas the PB estimates show some numerical differences. Obviously, without

the finer classification into two weight categories, the fact that smoking is not so significant

for category 2 and UI is appreciably significant for category 2 cannot be concluded from

looking at the overall analysis.
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For the analysis with 40% missing observations on smoking one notices that the estimates

corresponding to smoking in the BSP method comes closer to their full data counterparts

even though the inferences are same in all three methods. As one might expect, with 40%

missingness, the parameter estimates for smoking lose precision and the effect of smoking

now appears to be insignificant in both categories 1 and 2. Inferences on the other two

covariates remain essentially unchanged when compared to full data inferences.

5 Some equivalence results in case-control studies

5.1 Equivalence of retrospective and prospective analysis

Prentice and Pyke (1979) showed that if the disease risk is modeled by logistic regression

function (3) and the subjects are selected into the study irrespective of their exposure value,

prospective and retrospective analysis of the case-control data yield the same estimate of

the association parameter β. Moreover, the asymptotic standard error of the estimate are

the same in both the methods. However, the intercept parameter of the prospective model

of the disease risk is not identifiable in a retrospective likelihood unless we know the disease

prevalence in the population. Generally, the prospective model involves fewer parameters,

and hence is easy to implement. Prentice and Pyke (1979) provided the theoretical validity

for prospective analysis of data collected retrospectively.

Roeder, Carroll, and Lindsay (1996) proved a similar result when exposure variables are

measured with error. They showed that the profile likelihood function of the association

parameter obtained from a retrospective likelihood is the same as the one obtained through

the joint distribution of the disease variable, true exposure variable, and its error prone

surrogate variable. Carroll, Wang and Wang (1995) extended Prentice-Pyke type results to

situations with missingness and measurement error in the exposure variable.

Recently, Seaman and Richardson (2004) proved a Bayesian analogue of the Prentice-

Pyke equivalence result. They considered a discrete exposure vector X with J support

points {z1, . . . , zJ}. Let n0j and n1j be the number of cases and controls having the exposure
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value X = zj, j = 1, · · · , J . Now if pr(X = zj|D = 0) = θj/
∑J

j=1 θj, and odds of disease

associated with X = x is exp(βTx), then the natural retrospective likelihood for the case-

control data is

LMR =
1

∏

d=0

J
∏

j=1

{ θj exp(dβ
Tzj)

∑J
k=1 θk exp(dβ

Tzk)

}ndj

. (13)

If one assumes that the data came from a cohort study, then the natural prospective likeli-

hood is

LMP =
J

∏

j=1

1
∏

d=0

{ αd exp(dβTzj)
∑1

k=0 α
k exp(dβTzj)

}ndj

, (14)

where α is the baseline odds of disease when exposure X = 0. The authors proved the

following two results.

Theorem 1. The profile likelihood of β obtained by maximizing LMR with respect to

θ = (θ1, · · · , θJ) is the same as the profile likelihood of β obtained by maximizing LMP with

respect to α.

The next theorem proves the Prentice-Pyke type equivalence result in Bayesian context for

a specific class of priors.

Theorem. Suppose that random variables ndj (d = 0, 1; j = 1, · · · , J) are independently

distributed as ndj ∼ Po(λdj), where logλdj = dlogα + logθj + dβTzj. Assume independent

improper priors, p(α) ∝ α−1 and p(θj) ∝ θ
aj−1
j , for α and θ, and a prior, p(β) for β

that is independent of α and θ. Let n+j = n0j + n1j, and nd+ =
∑J

j=1 ndj. Also, let

nT = (n01, · · · , n0J , · · · , n11, · · · , n1J).

(i) The joint posterior density of (ω,β), where ω = logα, is

p(ω,β|n) ∝ p(β)
J

∏

j=1

{exp(ω + βTzj)}
n1j

{1 + exp(ω + βTzj)}n+j+aj
. (15)

(ii) The posterior density of (π,β), where π = (π1, · · · , πJ) and πj = θj/
∑J

k=1 θk is

p(π,β|n) ∝ p(β)
J

∏

j=1

π
aj−1
j

1
∏

d=0

[

∏J
j=1{πj exp(dβ

Tzj)}
ndj

{
∑J

j=1 πj exp(dβ
Tzj)}nd+

]

. (16)

The proportionality is upto a constant.
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Corollary: The marginal posterior densities of β obtained from the joint densities in

(15) and (16) are the same.

The above corollary states that one may fit either the prospective model or the retro-

spective model and obtain the same posterior marginal distribution for the parameter of

interest β. One can note that the prospective model contains only one nuisance parame-

ter α, whereas the retrospective model contains J nuisance parameters. Consequently, the

prospective model is easier to fit.

The equivalence result of Seaman and Richardson (2004) is a significant contribution to

the Bayesian literature on case-control studies. However, the results are limited in the sense

that they only apply to the Dirichlet prior on the exposure distribution in the control pop-

ulation. The equivalence results for any other type of prior still an open question. Another

limitation is that the exposure variable is assumed to be discrete. For continuous expo-

sure, the authors recommend categorization which is not an ideal solution. The extension of

the results to individually matched case-control studies under missingness and/or measure-

ment error in exposure values may provide deeper insight into the Bayesian equivalence of

prospective and retrospective model formulation.

5.2 Equivalence between conditional and marginal likelihood for

analyzing matched case-control data

The disease risk model (4) for matched case-control study involves a set of nuisance pa-

rameters αi’s which capture the stratification effect on the disease risk. A natural way of

analyzing matched case-control data is the conditional likelihood approach, where one con-

siders conditional likelihood of the data conditioned on an approximately ancillary statistic

for the parameter of interest (see e.g. Godambe (1976)). In a matched case-control study

we condition on the complete sufficient statistic for the nuisance parameters αi, namely, the

number of cases in each matched set. Alternatively, one can work with a marginal likelihood

obtained by integrating the nuisance parameters over a mixing distribution, say G. Rice

(2004) showed that the full conditional likelihood can exactly be recovered via marginal like-
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lihood approach by integrating the nuisance parameter with respect to a particular mixing

distribution G. The author derived the necessary and sufficient conditions on the class of

distributions G for the two approaches to agree. The conditions invoke certain invariance

properties of the distribution G and such invariant distributions are shown to exist under cer-

tain mild natural condition on the odds ratios. In the light of this agreement, in a Bayesian

framework, the posterior distribution of the disease-exposure association parameter, β, of a

matched case-control study using an invariant mixture distribution as a prior on the nuisance

parameter and a flat prior on the association parameter, is proportional to the conditional

likelihood. This provides a validation of using informative priors together with conditional

likelihood as done in Diggle, Morris and Wakefield (2000).

6 Conclusion

In this review article we have focused on Bayesian modeling and analysis of case-control

studies. The Bayesian paradigm offers a great deal of flexibility to accommodate unusual,

unorthodox data situations and incorporating prior information on risk related parameters

but comes with certain computational challenges. The popularity and use of these methods

is highly dependent on developing user friendly softwares for implementing the analysis.

There are other issues besides analysis, like that of Bayesian variable selection (Raftery

and Richardson, 1996), sample size determination (De Santis et al., 2001) in case-control

studies which are not discussed in this article but are interesting in their own right.

Case-control studies bear enough promise for further research, both methodological and

applied. One potential area of research is to extend the methodology when longitudinal

data are available for both cases and controls. Hierarchical Bayesian modeling, because of

its great flexibility, should prove to be a very useful tool for the analysis of such data. A

second important area of research is to adapt the method for the analysis of survival data.

Some work in this regard has been initiated in a frequentist framework by Prentice and

Breslow (1978), but Bayesian inference for such problems seems to be largely unexplored.

29



For example the methods could potentially be adapted to bivariate survival models in family

based study design (see Oakes, 1986, 1989 and Shih and Chatterjee, 2002). Finally, genetic

case-control study is a new emerging area of research where one of the objectives is to

study the association between a candidate gene and a disease. In many such instances, the

population under study is assumed to be homogeneous with respect to allele frequencies,

but comprises subpopulations that have different allele frequencies for the candidate gene

(see Satten et. al., 2001). If these subpopulations also have different disease risks, then an

association between the candidate gene and disease may be incorrectly estimated without

properly accounting for population structures. Accounting for population stratification may

pose some interesting statistical challenges in case-control studies of disease-gene or disease-

gene-environment association.

Bayesian approach could also be useful to analyze data coming from other designs used

in an epidemiologic context (Khoury, Beaty and Cohen (1993)). For example, another fre-

quently used design is a nested case-control design (Wacholder, 1996) where a case control

study is nested within a cohort study. This type of study is useful to reduce the cost and labor

involved in collecting the data on all individuals in the cohort as well as to reduce computa-

tional burden associated with time-dependent explanatory variable. Unlike the case-control

design this design allows us to estimate the absolute risk of the disease by knowing the crude

disease rate from the cohort study. Some other study designs along this line are the case

cohort design (Prentice, 1986), proband design (Gail, Pee and Carroll (2001)) and case-only

design (Armstrong, 2003). In a recent article, Cheng and Chen (2005) propose Bayesian anal-

ysis of case-control studies of genetic association, specifically for assessing gene-environment

interaction via case-only design under independence of genetic and environmental factors.

They use informative power prior (Ibrahim and Chen (2000)) which in their analysis is taken

to be the retrospective likelihood based on historic data raised to a suitable power.

It is important to note that case-control designs are choice-based sampling designs in

which the population is stratified on the values of the response variable itself. Among others,
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this was noticed in Scott and Wild (1986) who compared in such cases a maximum likelihood

based approach with some other ad hoc methods of estimation. Breslow and Cain (1988)

considered in such cases a two-phase sampling design. In later years, there is a long series

of publications on inference for such designs, but any Bayesian approach to these problems

is still lacking, and will be a worthwhile future undertaking.
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Full Equine Data
Method β1 β2 10× γ1 10× σ2

Bayes Semiparametric
Mean 2.16 2.18 0.18 0.23
s.e. 0.33 0.39 0.14 0.01

Lower HPD 1.57 1.36 -0.10 0.21
Upper HPD 2.80 2.88 0.40 0.25

Bayes Parametric
Mean 2.14 2.10 0.22 0.26
s.e. 0.32 0.41 0.17 0.01

Lower HPD 1.60 1.32 -0.20 0.24
Upper HPD 2.87 2.88 0.60 0.28

CLR
Mean 2.13 2.05
s.e. 0.32 0.47

Lower CL 1.50 1.13
Upper CL 2.76 2.97

Equine Data With 40% Missing Data
Method β1 β2 10× γ1 10× σ2

Bayes Semiparametric
Mean 2.16 2.30 0.14 0.23
s.e. 0.32 0.48 0.24 0.01

Lower HPD 1.70 1.30 -0.25 0.19
Upper HPD 2.80 3.42 0.60 0.25

Bayes Parametric
Mean 2.13 1.90 0.17 0.28
s.e. 0.32 0.47 0.20 0.02

Lower HPD 1.56 0.92 -0.20 0.24
Upper HPD 2.85 2.85 0.67 0.31

CLR
Mean 2.81 2.79
s.e. 0.59 0.77

Lower CL 1.65 1.47
Upper CL 3.96 4.49

Table 1: Results of the Equine Data example. Here “Mean” is the posterior mean, “s.e.” is
the posterior standard deviation, “Lower HPD” and “Upper HPD” are the lower and upper
end of the HPD region respectively,“Lower CL” and “Upper CL” are the lower and upper
end of the confidence limit respectively, The parametric Bayesian method is the Bayesian
version of the method of Satten and Carroll (2000).



Gall Bladder Obesity
Method β1 β2 γ1
Bayes Semiparametric

Mean 1.29 0.70 -0.15
s.e. 0.39 0.41 0.49

Lower HPD 0.54 -0.10 -0.99
Upper HPD 2.18 1.49 0.99

Bayes Parametric
Mean 1.19 0.49 0.42
s.e. 0.39 0.36 0.62

Lower HPD 0.58 -0.15 -0.70
Upper HPD 2.12 1.25 1.78

CLR
Mean 1.28 0.44
s.e. 0.39 0.38

Lower CL 0.52 -0.30
Upper CL 2.04 1.19

Table 2: Results of the Endometrial Cancer Data example. Here “Mean” is the posterior
mean, “s.e.” is the posterior standard deviation, “Lower HPD” and “Upper HPD” are the
lower and upper end of the HPD region respectively,“Lower CL” and “Upper CL” are the
lower and upper end of the confidence limit respectively, The parametric Bayesian method
is the Bayesian version of the method of Satten and Carroll (2000).



BSP PBC CLR
Parameter Mean Sd HPD region Mean Sd HPD region Estimate S.E
SMOKE 1.21 0.56 (0.15,2.31) 0.96 0.46 (-0.01,1.85) 0.86 0.45
LWT -1.17 1.26 (-3.39,1.78) -1.34 1.25 (-3.75,1.15) -1.13 1.36
UI 0.91 0.49 (0.03,1.98) 0.79 0.52 (-0.31,1.86) 0.85 0.51

Table 3: Full data analysis of low birth weight data. BSP stands for Bayesian semiparamet-
ric method whereas PBC stands for parametric Bayes method assuming constant stratum
effects. CLR stands for usual conditional logistic regression for analyzing matched data.

BSP PBC CLR
Parameter Mean Sd HPD region Mean Sd HPD region Estimate S.E
SMOKE 1.19 0.82 (-0.45,2.85) 0.65 0.59 (-0.47,1.98) 0.65 0.53
LWT -1.12 1.27 (-3.51,1.46) -1.22 1.24 (-3.70,1.21) -1.06 1.62
UI 0.96 0.55 (-0.01,2.20) 0.86 0.53 (-0.30,1.91) 0.88 0.60

Table 4: Analysis of low birth weight data with 30% missingness in the SMOKE variable.
BSP stands for Bayesian semiparametric method whereas PBC stands for parametric Bayes
method assuming constant stratum effects. CLR stands for usual conditional logistic regres-
sion for analyzing matched data.
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BSP PB PBV
Logit Parameter Mean Sd HPD region Mean Sd HPD region Mean Sd HPD

SMOKE 1.42 0.60 (0.33 ,2.72) 1.26 0.56 (0.25 ,2.50) 1.48 0.65 (0.26,2.08)
1 LWT -0.86 1.39 (-3.78 ,1.81) -1.03 1.35 (-3.58 ,1.86) -0.73 1.36 (-3.40,2.01)

UI 0.15 0.67 (-1.27 ,1.46) 0.10 0.67 (-1.19 ,1.52) 0.18 0.67 (-1.14,1.52)

Logit Parameter Mean Sd HPD region Mean Sd HPD region Mean Sd HPD region
SMOKE 0.37 0.83 (-1.35 ,2.05) 0.23 0.66 (-1.10 ,1.54) 0.38 0.85 (-1.30,2.17)

2 LWT -0.52 1.61 (-3.76 ,2.52) -0.55 1.59 (-3.73 ,2.41) -0.55 1.62 (-3.65,2.79)
UI 1.81 0.83 (0.18 ,3.51) 1.78 0.83 (0.30 ,3.59) 1.81 0.87 (0.27,3.72)

Table 5: Analysis of low birth weight data with two disease states, using full dataset. BSP stands for Bayesian semiparametric
method whereas PBC and PBV stand for parametric Bayes methods assuming constant and varying stratum effects respectively.
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BSP PB PBV
Logit Parameter Mean Sd HPD region Mean Sd HPD region Mean Sd HPD region

SMOKE 0.86 0.88 (-0.88,2.55) 0.55 0.78 (-0.84,2.18) 0.56 0.86 (-0.71,2.49)
1 LWT -0.92 1.31 (-3.63,1.51) -1.03 1.34 (-3.50,1.83) - 1.01 1.33 (-3.57,1.75)

UI 0.19 0.69 (-1.11,1.49) 0.21 0.67 (- 1.10,1.55) 0.20 0.69 ( -1.31,1.48)

Logit Parameter Mean Sd HPD region Mean Sd HPD region Mean Sd HPD region
SMOKE 0.54 1.04 (-1.46, 2.07) 0.13 0.93 (-1.85 ,1.88) 0.12 0.93 (-1.10,1.54)

2 LWT -0.43 1.62 (-3.98,2.38) -0.59 1.63 (-3.75,2.59) - 0.54 1.54 (-3.62,2.45)
UI 1.82 0.86 (0.34,3.65) 1.80 0.83 (0.24,3.46) 1.87 0.82 (0.43,3.63)

Table 6: Analysis of low birth weight data with two disease states after deleting 40% observations on smoking completely at
random. BSP stands for Bayesian semiparametric method whereas PB and PBV stand for parametric Bayes methods assuming
constant and varying stratum effects respectively
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