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Summary. Because primary data collection can be expensive, researchers are increasingly using infor-
mation collected in medical administrative databases for scientific purposes. This information, however, is
typically collected for reasons other than research, and many such databases have been shown to contain
substantial proportions of misclassification errors. For example, many administrative databases contain fields
for patient diagnostic codes, but these are often missing or inaccurate, in part because physician reimburse-
ment schemes depend on medical acts performed rather than any diagnosis. Errors in ascertaining which
individuals have a given disease biases not only prevalence estimates, but also estimates of associations
between the disease and other variables, such as medication use. We attempt to estimate the prevalence
of osteoarthritis (OA) among elderly Quebeckers using a government administrative database. We compare
a naive estimate relying solely on the physician diagnoses of OA listed in the database, to estimates from
several different Bayesian latent class models, which adjust for misclassified physician diagnostic codes via
use of other available diagnostic clues. We find that the prevalence estimates vary widely, depending on
the model used and assumptions made. We conclude that any inferences from these databases need to be
interpreted with great caution, until further work estimating the reliability of database items is carried out.
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1. Introduction
Medical administrative databases are increasingly being used
for research purposes. As one example, Gabriel, Crowson,
and O’Fallon (1995) estimated the prevalence of osteoarthri-
tis (OA) using an administrative database, where OA status
for each individual was ascertained from a physician diagno-
sis variable. Accurate disease ascertainment is important not
only for prevalence estimates, useful for planning purposes or
tracking changes in prevalence over time, but also for etiologic
research, such as determining whether use of a given medi-
cation may be associated with the disease. Many databases
claim near universal coverage of the target population, and
while most are known to contain imperfect and incomplete in-
formation (Green and Wintfeld, 1993; Swerdlow, Douglas, and
Vaughn, 1993; Rushton and Romaniuk, 1997; Quan, Parsons,
and Ghali, 2004; Wilchesky, Tamblyn, and Huang, 2004), they
are usually assumed to be sufficiently accurate for reasonable
estimation. Nevertheless, it is not difficult to demonstrate that
unadjusted inferences from imperfect database information
can sometimes lead to severely biased estimates.

Statistical methods have been developed in the diagnos-
tic testing literature, which can adjust prevalence estimates
for misclassified data, including works by Walter and Irwig
(1988), Joseph, Gyorkos, and Coupal (1995), Alonzo and Pepe
(1999), Johnson, Gastwirth, and Pearson (2001), Black and
Craig (2002), McInturff et al. (2004), Gustafson (2005), and
many others. See Pepe (2003) and Gustafson (2004) for recent
reviews. To our knowledge, these models have not been ap-
plied to administrative database studies, nor has the robust-
ness of estimates from these methods been evaluated across
a range of reasonable models. This is especially important
in this context, because all models rely on difficult to verify
assumptions and/or prior information.

In this article, we estimate the prevalence of OA using a
government administrative database. We compare estimates
across a variety of Bayesian latent class models, each using
a different set of assumptions, to the naive estimator (un-
adjusted physician diagnoses) used by most researchers. We
show that considerable uncertainty can surround prevalence
estimates from administrative databases, even when models
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that adjust for misclassification are used. Therefore, it is im-
portant for researchers to acknowledge that information from
a database alone, however convenient, may not always be able
to provide reliable estimates of some parameters. This is true
even if a database is large, has little selection bias, and reason-
able statistical methods provide inferences that are adjusted
for potential database errors.

We begin in Section 2 by describing the database we will
use and the three clues found in the database, each one an
imperfect indicator of the presence of OA, that we use to
ascertain OA status. We review various Bayesian latent class
models for estimating prevalence from misclassified data in
Section 3, and use these models to provide OA prevalence
estimates in Section 4. Section 5 presents concluding remarks,
including some suggestions for study designs based on further
data collection, which can help to minimize the problems we
discuss.

2. Indicators of Osteoarthritis
from an Administrative Database

Assessing OA status in an individual is difficult, in part be-
cause of a lack of a definitive definition of the disease (Badley
and Webster, 1995; Lawrence and Helmich, 1998). OA is often
diagnosed on the basis of radiography, but many people with
radiographic evidence of OA have no symptoms or disability,
so it is unclear whether such persons should be considered as
having OA. In this article, we define OA as present if, using
the best available knowledge, a physician would classify the
subject as OA positive. Thus, the target parameter of our in-
vestigation, the prevalence of OA in Quebeckers aged 65 years
and over, is defined as the proportion of elderly Quebeckers
who would be classified as OA positive by their physicians.

The Quebec government’s Régie de l’Assurance Maladie
du Québec (RAMQ) database records include physician di-
agnoses using the International Classification of Diseases 9th
Edition (ICD-9) code, specialty of the billing physician, and
medical procedure codes. Pharmacy claims records includes
the drug identification number, drug dosage, dispensing date,
number of days supplied, and prescribing physician specialty.
Coverage is universal for those 65 years and older. We ob-
tained Quebec-wide RAMQ data on all people in this age
group in 2002 who were positive for at least one of our three
tests, which we now describe in detail.

Our first test is classified as positive for anyone who re-
ceived an ICD-9 diagnostic code for OA at least once during
the year 2002, and is otherwise considered as negative. Pos-
itive subjects can have diagnostic codes for more than one
condition, as long as at least one is for OA. Most researchers
(e.g., Gabriel et al., 1995) have used this variable only, without
adjustment for its imperfections, to ascertain disease status
in database studies.

Our second test is positive for those who filled at least
one prescription for acetaminophen or a nonsteroidal antiin-
flammatory drug (NSAID), but not methotrexate or plaque-
nil, medications specific to rheumatoid arthritis. Individuals
with other prescriptions and those who did not fill any pre-
scriptions are considered as test two negative. Since aspirin is
frequently prescribed for its antiplaquetary effect, it was not
included as an NSAID here.

Our third test is considered as positive if an individual re-
ceived an injection procedure common to OA patients, an
arthroplasty or a tibial osteotomy during 2002, even if they
also received other surgical procedures. All other subjects are
test three negative.

Subjects over age 65 years in 2002 and not listed in the
RAMQ database as testing positive for any of the above three
tests were considered as negative for all tests.

All of the above tests have serious limitations that virtu-
ally guarantee high rates of misclassification errors. While our
definition assumes that physicians are able to diagnose OA pa-
tients when the disease is in fact present, many false positive
and false negative cases are expected for our first test be-
cause of missing diagnostic codes, or early OA-like symptoms
that can arise from conditions other than OA. A recent study
(Wilchesky et al., 2004) comparing patient charts of general
practitioners’ to RAMQ records found that up to 30% of di-
agnostic records are missing from this database. Therefore,
while many researchers (e.g., Gabriel et al., 1995; Robertson,
Svenson, and Joffres, 1998; Romano, Schembri, and Rainwa-
ter, 2002; Papaioannou et al., 2003) have used unadjusted
administrative database diagnostic codes to estimate preva-
lence, these estimates can be severely biased.

NSAIDs are the most commonly used medications for mus-
culoskeletal disorders (Berger, 1994). Acetaminophen is rec-
ommended by both American and Canadian guidelines as a
first line therapy for OA (Wegman et al., 2004). Both ac-
etaminophen and NSAIDs are also used for relief of pain in
other conditions such as headaches, back pain, and various in-
juries. Therefore, considering a subject who has taken chronic
(30 or more days per year) OA medication while excluding
those who have taken medications specific to other chronic
musculoskeletal conditions (plaquenil and methotrexate, the
most commonly prescribed disease modifying antirheumatic
drugs) will lead to higher (although still imperfect) specificity.
The RAMQ prescription claims database provides a reason-
ably accurate measure of drug exposure in the elderly popula-
tion (Tamblyn, 1995), but imperfections still arise. For exam-
ple, not all written prescriptions are filled, and some drugs are
available without prescription. Substantial numbers of false
positive and false negative cases are, therefore, expected for
test two.

Arthroplasty (Thompson, 2001) and tibial osteotomy
(Grelsamer, 1995) are both surgeries carried out to treat se-
vere OA. Test three, therefore, will capture only the more
severe cases of OA while missing milder cases, so that we
expect to see many false negatives but fewer false positives
compared to the first two tests.

The above “diagnostic test” definitions are of course not
unique. Variations on the above criteria can be useful in as-
sessing robustness of prevalence estimates across changes in
test definitions. We investigated two main changes: for test
one, we required two or more diagnoses of OA in 2002, rather
than just one. Similarly, for test two, we required that an
acetaminophen or an NSAID be prescribed at least twice in
2002, with total days supplied exceeding 30 days. In both
cases, stricter criteria are expected to increase specificity at
the expense of sensitivity.

It is obvious that none of our “tests” are perfect indicators
of OA. In particular, it is clear that naive use of physician
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diagnosis alone will likely provide a biased prevalence esti-
mate. The question is: by combining the information from all
three tests and using statistical methodology that adjusts for
known database imperfections, can reliable prevalence esti-
mates be derived?

3. Adjusting for Misclassification: Identifiable
and Nonidentifiable Latent Class Models

We now discuss the inputs and assumptions required for each
of the several related models. While these models are not new,
they have not been previously applied to database studies,
nor have prevalence estimates been compared across different
models.

Let D+ and D− denote true disease status, “diseased” and
“non-diseased,”respectively. Similarly, let T+ and T− repre-
sent test positive and test negative outcomes on a given test.
In the absence of a perfectly accurate test, estimating the
prevalence θ will depend on the test characteristics, partic-
ularly the sensitivity S = P (T+ |D+) and specificity C =
P (T− |D−), where P(A |B) denotes the conditional proba-
bility of A given B. The probability of testing positive is the
sum of the probabilities of being a true positive and the prob-
ability of being a false positive, that is, P (T+) = p = θS +
(1 − θ)(1 − C). In the single test situation when S and C are
exactly known, algebraically solving for θ, an expression for
the prevalence, adjusted for imperfect sensitivity and speci-
ficity, is given by θ = p− (1−C)

S +C − 1 . Note that in the case that
S = C = 1 then θ = p, and no adjustment is needed.

Test properties S and C are not usually exactly known, and
so have to be estimated along with θ. This presents a noniden-
tifiable estimation problem, as three unknown parameters (θ,
S, and C) must be estimated, but the dichotomous data of
test positive and test negative subjects provide only one de-
gree of freedom (Walter and Irwig, 1988; Joseph et al., 1995;
Gustafson, 2005). Formally, a model expressed via the den-
sity function f(x | θ) is identifiable if f(x | θ1) = f(x | θ2) for
all x implies θ1 = θ2. In nonidentifiable problems, it is clear
that the data alone cannot provide consistent estimators of
θ. Estimates can nevertheless be derived via Bayesian meth-
ods, where prior information can separate out the likelihood
of θ1 from that of θ2 when the data cannot distinguish be-
tween these values. In our problem, the prevalence estimate
can be formed by averaging the adjusted estimate given above,
θ = p− (1−C)

S +C − 1 , over the prior distributions of S and C. Thus, the
estimate depends not only on the data leading to p, but also
on the prior distributions of the test properties. Of course, any
estimates are then only as reliable as the prior distributions
used, and these, in turn, can be quite difficult to ascertain due
to the complex way in which most administrative databases
are created.

When data for a single test are available, that is, when x
positive tests are observed in n subjects, the likelihood func-
tion for (θ, S, C) is proportional to

l(x | θ, S,C) ∝ px(1 − p)n−x

= {θS + (1 − θ)(1 − C)}x{θ(1 − S) + (1 − θ)C}n−x.

From Bayes theorem, if the joint prior distribution of θ, S, and
C is given by f(θ, S, C), the joint posterior density becomes

f(θ, S,C |x) ∝ f(θ, S,C)l(x | θ, S,C).

Posterior inferences can then either be derived through the
Gibbs sampler (Joseph et al., 1995) or the SIR algorithm
(Rahme, Joseph and Gyorkos, 2000).

On the other hand, when using three conditionally indepen-
dent tests (Demissie et al. 1998), the problem is identifiable,
as there are seven degrees of freedom (from the eight pos-
sible outcomes) from which to estimate the seven unknown
parameters (S and C from each of three tests, and θ). In
practice, this means that estimates of all parameters can be
found by maximum likelihood or Bayesian methods with non-
informative prior distributions, avoiding the reliance on find-
ing good prior estimates of test properties. Unlike the one test
situation, however, this method relies on the difficult to ver-
ify assumption of conditional independence between the three
tests. Under conditional independence, the tests are assumed
to be statistically independent of each other, conditional on
the true disease status of the subject. This assumption may
not hold, for example, because the records for the diagnosis
of OA and any prescriptions will sometimes be derived from
the same visit to a single physician.

To see how the likelihood function from the three test model
is constructed, consider Table 1. When three test results are
available for each subject, each result could be either positive
or negative, as can the (latent) true status of each individual,
leading to 16 possible combinations of observed and latent
data. Let Y 1, . . . ,Y 8 be latent data that represents the num-
ber of true positive subjects out of a, . . . , h, subjects in each
possible category for the observed test results, respectively.
We denote the likelihood function over the observed and la-
tent data by L(a, b, . . . ,h, Y 1, Y 2, . . . ,Y 8 | θ, S1, S2, S3, C1,
C2, C3). The likelihood function of the observed and latent
data is proportional to the product of each entry in the like-
lihood contribution column of Table 1 raised to the power of
the corresponding entry in the number of subjects column of
the table.

Estimates are derived either by maximizing the likelihood
function (Walter and Irwig, 1988), or by Bayesian methods,
which will provide similar numerical methods to maximizing
the likelihood if little prior information over (θ, S1, S2, S3,
C1, C2, C3) is used, but has the added advantage of increased
precision if reliable prior information is available, especially
in small data sets (Joseph et al., 1995). In either case, ana-
lytic solutions are not feasible, so the EM algorithm or the
Gibbs sampler are typically used in practice to maximize
the likelihood or estimate Bayesian posterior distributions,
respectively.

In the one test case we are essentially replacing the con-
ditional independence assumption of the three test case with
prior information over the test sensitivity and specificity. The
situation for two tests is intermediate between the one and
three test situations, with the likelihood function derived sim-
ilarly to that of the three test case above, as given in Joseph
et al. (1995). Similar to the three test case, conditional inde-
pendence between the two tests used is required, but this is of
course a weaker condition than requiring all three tests to be
conditionally independent. Similar to the one test case, the
problem is nonidentifiable (five parameters to estimate, but
only three degrees of freedom), and so substantive prior in-
formation is required on at least two of the five parameters in
order to obtain reasonable estimates. Similar to the one test
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Table 1
Likelihood contributions of all possible combinations of observed and latent data for the case

of three diagnostic tests. θ represents the prevalence, and Si and Ci represent the
sensitivity and specificity, respectively, of the ith test. The vector of observed numbers of
subjects with each possible combination of test results is given by (a, b, . . . , h), and within

each of these cells, we have the unobserved number of truly positive subjects, represented by
the vector of latent data, (Y 1, Y 2, . . . ,Y 8).

Truth Test 1 Test 2 Test 3 Likelihood Number of
result result result contribution per subject subjects

+ + + + θS1S2S3 Y 1
+ + + − θS1S2(1 − S3) Y 2
+ + − + θS1(1 − S2)S3 Y 3
+ + − − θS1(1 − S2)(1 − S3) Y 4
+ − + + θ(1 − S1)S2S3 Y 5
+ − + − θ(1 − S1)S2(1 − S3) Y 6
+ − − + θ(1 − S1)(1 − S2)S3 Y 7
+ − − − θ(1 − S1)(1 − S2)(1 − S3) Y 8
− + + + (1 −θ)(1 − C1)(1 − C2)(1 − C3) a − Y 1
− + + − (1 − θ)(1 − C1) (1 − C2)C3 b − Y 2
− + − + (1 − θ)(1 − C1)C2(1 − C3) c − Y 3
− + − − (1 − θ)(1 − C1)C2C3 d − Y 4
− − + + (1 − θ)C1(1 − C2)(1 − C3) e − Y 5
− − + − (1 − θ)C1(1 − C2)C3 f − Y 6
− − − + (1 − θ)C1C2(1 − C3) g − Y 7
− − − − (1 − θ)C1C2C3 h − Y 8

case, estimates are derived by combining the information in
the prior distributions with that provided by the data through
the likelihood function.

We will provide nine different estimates of the prevalence
of OA: three using results from each test separately, from
each of the three possible combinations of two tests, and from
all three tests together. For three tests, we provide estimates
both using and ignoring prior information, and for both our
original and more strict test definitions.

In order to derive the prior distributions (Table 2), we con-
sulted with clinicians familiar with the treatment of OA sub-
jects and in filling in claims forms for the RAMQ database.
We directly asked for estimates of proportions of both truly

Table 2
Equal tailed 95% probability ranges, and coefficients of the

Beta prior distributions for the test parameters of OA
“diagnostic tests.” A uniform distribution was used for the

prior distribution for the prevalence of OA.

Sensitivity Specificity

Test 1 (physician diagnosis)
Range 70% to 80% 90% to 100%
Beta coefficients α = 55.5, α = 17.1,

β = 18.5 β = 0.9

Test 2 (medications)
Range 70% to 80% 55% to 65%
Beta coefficients α = 55.5, α = 57.0,

β = 18.5 β = 38.0

Test 3 (medical acts)
Range 20% to 30% 90% to 99%
Beta coefficients α = 18.5, α = 17.1,

β = 55.5 β = 0.9

positive and truly negative subjects who would test positive or
negative on each of our “tests.” For example, to derive the sen-
sitivity of physician diagnosis, we asked “Out of all patients
in Quebec who truly have OA, what proportion do you think
would have an OA diagnosis recorded in the RAMQ database
in any given year?” These estimates were presented in the
form of ranges, which we converted to beta distributions. For
example, it was thought that 70% to 80% of subjects truly
positive for OA in a given year would have an ICD-9 code for
OA in the database in that year. This implies a mean value
of about 75%, and a standard deviation of about 2.5%, so
that four standard deviations (approximately a 95% interval)
would cover the given range. This implies beta parameters of
α = 55.5, and β = 18.5 (see Joseph et al., 1995). Throughout,
we used a uniform prior distribution for the prevalence of OA,
our parameter of main interest.

We used the Gibbs sampler (for three tests) or the SIR
algorithm (for the lower dimensional one or two test situa-
tions) to derive inferences. Both the Gibbs sampler and the
SIR algorithm were run several times each to ensure stability
of the results to Monte Carlo variations and different starting
values. User-friendly software implementing the Gibbs sam-
pler for diagnostic test data is available from the web page
www.medicine.mcgill.ca/epidemiology/Joseph/Bayesian-

Software-Diagnostic-Testing.html.
Table 3 provides a summary of our models’ properties

and assumptions. If three or more conditionally independent
tests can be identified in the database, then the standard la-
tent class model will be identifiable (Walter and Irwig, 1988;
Joseph et al., 1995), so that OA prevalence can be accurately
estimated from the data alone, but the conditional indepen-
dence assumption may not always hold. For example, if a
patient is truly OA positive and a physician correctly pro-
vides a diagnostic code for OA, they may also be more likely
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Table 3
Properties and assumptions of the models used when data
from one, two, or three diagnostic tests are available. DF

represents degrees of freedom.

Number Number Assumes Requires
Number of unknown of DF in conditional substantive
of tests parameters model independence? prior input?

1 3 1 No Yes
2 5 3 Yes Yes
3 7 7 Yes No

to prescribe an NSAID. Similarly, even if a physician incor-
rectly provides a diagnostic code for OA, they may still be
more likely to prescribe an NSAID. Depending on the de-
gree of correlation between the tests within subjects with and
without OA, the violation of this assumption may or may
not have a large effect on prevalence estimation (Dendukuri
and Joseph, 2001; Black and Craig, 2002). While such models
can be run, they are again nonidentifiable unless data from
at least four tests are available and, therefore, will again rely
on prior information about the degree of between-test corre-
lations, and so are likely to add even more uncertainty. As the
conditional independence assumption is difficult to verify in
practice (but see Section 5 below), other models that rely less
(two tests) or not at all (one test) on this assumption can be
useful, although these typically require other difficult to verify
inputs, such as substantive prior information about diagnostic
test properties. As no method is perfect, considering results
from a variety of models is useful, and final conclusions can be
based on the relative confidence the researcher has in various
assumptions required by each method. If prevalence estimates
vary substantially depending on the model used, however, and
if there is doubt about which set of modeling assumptions is
most likely to be correct, researchers must admit that any
final inferences remain uncertain.

4. Results
The data on our three “tests” for OA from the RAMQ
database are given in Table 4. The naive prevalence estimate

Table 4
Results of the three diagnostic tests for OA on elderly individuals resident of Quebec in 2002. Test 1
represents physician diagnosis as determined by ICD-9 code, Test 2 indicated OA medications (but
not lupus or RA medications) as per drug identification number code, and Test 3 represents OA

related procedures, including injection procedures, arthroplasty or a tibial osteotomy.

Number of Number of
Test 1 Test 2 Test 3 individuals observed individuals observed
Phys. diagnosis Medication Medical acts (main test definitions) (revised test definitions)

+ + + 11,816 7104
+ + − 57,222 19,595
+ − + 3320 2570
+ − − 25,651 9416
− + + 9610 11,208
− + − 260,923 204,008
− − + 5002 8866
− − − 595,415 706,192

using only physician diagnosis without any adjustment for
misclassification error is 10.1%, with 95% credible interval
(CrI) 10.1–10.2. This is a very narrow interval, but it accounts
only for uncertainty due to random variation. Not only is the
extra variability due to misclassification errors ignored, but as
Greenland (2005) points out, the meaning of random sampling
is not clear in observational studies. How much confidence
should we place in this seemingly very accurate estimate?

When this same physician diagnosis data are used, but the
estimate is now adjusted by our prior distributions for the
sensitivity and specificity of this “test” as given in Table 2,
the prevalence becomes much less certain, at 11.5% (95% CrI
4.5–14.2). Similarly, when prescribed medications (NSAID or
acetaminophen but not methotrexate or plaquenil) are used
alone as a diagnostic test (test two), the estimated prevalence
is 9.5% (95% CrI 3.3–22.2). When medical procedures (test
three) was used, the prevalence estimate is 10.6% (95% CrI
5.2–18.6).

When information from all three diagnostic tests are com-
bined and uniform priors are used across all parameters, the
estimated prevalence of OA is 14.8% (95% CrI 14.5–15.1).
Using informative prior distributions for all parameters (as
given in Table 2), the estimated prevalence of OA matches
that given above to at least one decimal place. This is not
surprising given the large sample size of the data set in this
identifiable problem. While the results for three tests, there-
fore, do not substantially depend on prior distributions, they
do depend on the conditional independence assumption, and
on the reasonableness of all three tests for OA, which together
implicitly define OA positivity (Alonzo and Pepe, 1999). As
expected, when only partial data are used (one test), the CrI
are wider compared to the situation when three tests are used.
The posterior estimates of the sensitivity and specificity us-
ing one test are not all within the range of the priors given in
Table 2, partially explaining the discrepancies in prevalence
estimates between the different analyses. We return to this
point in the discussion.

For two tests, when combining diagnostic code and pre-
scribed medication, the posterior prevalence of OA is 11.8%
(95% CrI 8.6–14.8). When combining diagnostic code and
medical procedures, OA prevalence is estimated by 9.8% (95%
CrI 6.4–13.7). Finally, when combining prescribed medication
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Table 5
Marginal posterior medians (upper entry of each cell) and lower and upper limits of the posterior equal tailed 95% CrI (lower
entry of each cell) for the prevalence (θ), the sensitivities (S1, S2, S3), and the specificities (C1, C2, C3) from each analyses

(i.e., three tests, two tests, one test, and three tests with new definitions).

θ S1 S2 S3 C1 C2 C3

Prior distribution 50.0 75.0 75.0 25.0 95.0 60.0 95.0
0.0–100 70.0–80.0 70.0–80.0 20.0–30.0 90.0–100 55.0–65.0 90.0–100

One test
Physician diagnosis alone 11.5 72.8 95.4

4.5–14.2 63.2–82.4 92.8–99.9
Prescribed medication alone 9.5 72.3 71.1

3.3–22.0 62.5–81.9 66.3–75.6
Medical procedure alone 10.6 22.1 99.2

5.2–18.6 14.7–33.8 97.9–99.9
Two tests

Combination of physician 11.8 75.1 76.1 98.9 70.5
diagnosis and prescribed 8.6–14.8 68.4–81.4 73.9–78.4 98.1–99.1 70.1–71.3
medication

Combination of physician 9.8 74.1 23.5 96.7 99.2
diagnosis and medical acts 6.4–13.7 63.2–83.2 15.9–31.1 94.3–99.6 98.6–99.3

Combination of prescribed 10.0 77.6 24.0 70.6 99.6
medication and medical acts 6.8–16.4 72.2–83.3 18.2–38.2 68.2–72.5 99.3–99.9

Three tests—Original test definitions
Three tests using 14.8 58.1 78.3 18.2 98.1 72.4 99.5

informative priors 14.5–15.1 57.1–58.7 77.6–79.0 17.8–18.5 98.0–98.2 72.3–72.6 99.5–99.5
Three tests using 14.8 58.2 78.3 18.2 98.1 72.4 99.5

noninformative priors 14.5–15.1 57.0–59.0 77.6–79.0 17.8–18.5 98.0–98.3 72.3–72.6 99.5–99.5

Three tests—stricter test definitions
Three tests using 8.6 41.5 72.9 27.2 99.6 79.6 99.2

noninformative priors 8.5–9.0 41.0–42.8 72.6–74.4 26.6–27.9 99.6–99.7 79.5–79.8 99.2–99.3

and medical procedures, the estimated prevalence is 10.0%
(95% CrI 6.8–16.4). While all point estimates hover close to
the 10.1% naive prevalence estimate using physician diagno-
sis alone, the CrI are roughly 60 to 80 times wider than the
naive confidence interval. Even when the problem is identi-
fiable (three test case), the CrI is approximately 10 times
wider compared to the naive confidence interval. Clearly, in
this case, most uncertainty arises from sources other than ran-
dom variation.

In further sensitivity analyses, we changed the test def-
initions for tests one and two to be more restrictive (data
given in last column of Table 4). Using data from all three
tests and uniform prior distributions across all parameters,
the estimated prevalence of OA was 8.6% (95% CI 8.5–9.0).
As expected, S1 and S2 decreased while C1 and C2 increased
compared to the analysis using less restrictive test one and
test two definitions. Table 5 displays all results, including sen-
sitivity and specificity estimates.

5. Discussion
Many researchers have derived prevalence estimates using a
physician diagnosis field from a database, without any adjust-
ment for the almost inevitable misclassification errors. The
unadjusted prevalence estimate for OA using only physician
diagnosis was 10.1%, compared to the 14.5% estimate using
all three “tests,” and adjusting for misclassification. This rep-
resents an almost 50% increase in the prevalence estimate.
While nothing guarantees that the estimate of 14.5% is cor-
rect or even necessarily better than the naive 10.1% estimate,

the latter is almost surely based on the incorrect assump-
tion of perfect database information on diagnosis of OA, and
has a confidence interval that is much too narrow. Calculat-
ing estimates across a variety of alternative models displays
the impact not only of adjusting for misclassification error,
but also shows how different modeling assumptions affect pa-
rameter estimates. We have found that the prevalence of OA
varies between 3.3% and 22.0%, depending on the statisti-
cal model assumed and prior distribution chosen. This quite
large interval shows that estimating prevalence from adminis-
trative databases can be highly problematic. To substantially
shrink this interval, one needs to select a model as the “correct
model,” which is difficult since all rely on largely unverifiable
assumptions or uncertain prior distributions on the sensitivity
and specificity of the “tests.”

While there has been some preliminary work on the relia-
bility of administrative database items for research purposes
(e.g., Wilchesky et al., 2004), sensitivity and specificity will
rarely be exactly known in advance. Therefore, the three test
statistical model in which prior distributions do not play a
major role is useful, provided that the assumption of condi-
tional independence holds. Similar latent class models can
be developed for conditionally dependent tests (Yang and
Becker, 1997; Dendukuri and Joseph, 2001; Pepe, 2003), but
these models are nonidentifiable, so the prevalence estimate
will again strongly depend on the choice of prior distribution
for the correlation and other parameters. Therefore, one has
the choice of an identifiable model with stronger assumptions,
compared to a more complex and nonidentifiable model.
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It will often be difficult to know if prior distributions se-
lected are well calibrated. Our prior distributions for the sen-
sitivities and specificities did not always closely match the
posterior distributions for these parameters from the three
test analysis. Prior information for S2, C1, and C3 are rel-
atively close to their corresponding posterior estimates, but
priors for S1, S3, and C2 are quite different from their esti-
mates. This suggests that either physicians have only a very
rough idea of these properties, or that some assumptions in
our model, such as conditional independence, do not hold, or
both.

We elicited independent prior information on each test
property, as shown in Table 2. A more sophisticated design
might elicit prior distributions over observable quantities, al-
lowing for direct calibration of the prior distributions used.
For example, one might elicit prior opinion about the propor-
tions eventually observed in Table 4, asking physicians “What
proportion of all subjects do you think will test positive on
all three tests?” and so on. Not only could these prior quan-
tities be converted into prior distributions on the test prop-
erties themselves [see similar work by Kynn (2001) on pri-
ors for logistic regression parameters obtained via questions
about observable quantities], but comparing the prior predic-
tions to the actual observed data would help to calibrate the
priors obtained from the physicians. Physicians may be less
skilled in eliciting multivariate prior quantities compared to
single parameter elicitation. Eliciting the proportion who will
be positive on all three tests involves estimating not only the
prevalence of OA, but also the possibly correlated results from
all three tests simultaneously. On the other hand, this allows
physicians to account for a priori correlations among param-
eters. For example, a physician who expects high prevalence
may also tend to provide high values for the sensitivity of one
or more of the tests. Clearly, much important work remains
to be done in effective prior elicitation methods.

While patients with mild OA would be treated with
NSAIDs or acetaminophen, only more severe cases will have
surgery. Therefore, another issue is that our tests may focus
on slightly different subsets of subjects with OA. Prevalence
estimates dropped from 14.5% under the original “test” def-
initions to 8.5% under the more strict definitions we used
as part of our robustness study. In addition, the degree of
conditional dependence among our tests may change as test
definitions are modified, further compounding the problem of
choosing one set of estimates over another.

There are several ways to improve robustness of estimates
from such studies by considering designs that collect addi-
tional information on a subsample of subjects. For example,
suppose it is possible to obtain data (say Z) on all medical
tests, results of physical exams, x-rays, and so on that are
relevant to physician diagnosis. If these results are complete
(presumably a physician survey must be first done to derive a
complete list of items upon which diagnoses would be based),
then any actions taken by the physicians [e.g., X = (entering
an OA diagnosis in the database, prescriptions, medical acts)]
would be independent conditional on Z. This would allow a
three test model to assume between-test conditional indepen-
dence given Z, providing good estimates of the sensitivity and
specificity of each test to use in further prevalence estimates
derived from the entire database. Alternatively, one could ob-

tain a definitive diagnosis from a subset of patients through
an in-depth investigation, providing a gold standard against
which to compare the performance of the other “tests.”

While we illustrate the problem via estimating prevalence
of OA using databases, the problem carries over to other
prevalence estimation problems (Hadgu, 1997; Ferreccio et al.,
2003; Carabin et al., 2005), and potentially, to other research
uses of information in databases (Mamdani et al., 2002; Ray
et al., 2002; Solomon et al., 2004). More, generally, similar
problems may arise in any observational study using imper-
fect data (Greenland 2005). Future work must include valida-
tion studies that provide estimates of the reliability of uncer-
tain data items, such as those outlined above. For example,
Bernatsky et al. (2005) added a chart review component to
their database study, using this additional data to adjust their
main parameter estimates.
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