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This article examines the potential for misleading inferences from conventional analyses and sensitivity analyses of observational data, 
and describes some proposed solutions based on specifying prior distributions for uncontrolled sources of bias. The issues are illustrated 
in a sensitivity analysis of confounding in a study of residential wire code and childhood leukemia and in a pooled analysis of 12 
studies of magnetic-field measurements and childhood leukemia. Both analyses have been interpreted as evidence in favor of a causal 
effect of magnetic fields on leukemia risk. This interpretation is contrasted with results from analyses based on prior distributions for 
the unidentified bias parameters used in the original sensitivity-analysis model. These analyses indicate that accounting for uncontrolled 

confounding and response bias under a reasonable prior can substantially alter inferences about the existence of a magnetic-field effect. 
More generally, analyses with informative priors for unidentified bias parameters can help avoid misinterpretation of conventional results 
and ordinary sensitivity analyses. 

KEY WORDS: Bayesian statistics; Confounding; Epidemiologic methods; Leukemia; Magnetic fields; Risk assessment; Sensitivity 
analysis. 

1. INTRODUCTION 

Sensitivity analysis of bias was introduced to observational 
epidemiology more than 40 years ago (Cornfield et al. 1959), 
but since then has appeared only sporadically in analyses and 
textbooks in the health sciences. One reason for this may be 
that this analysis requires expansion of models to include bias 
parameters that are not identified from the analysis data (if 
these parameters were identified, they could simply be incor- 
porated into conventional estimation procedures); it then "cor- 
rects" results using hypothetical values for the bias parameters. 
Those values must be specified from background information, 
which may be fragmentary or controversial. Worse, scientific 
interpretations of the results can themselves be very sensitive 
to the range of values examined and to the bias parameteri- 
zation, and can be misled by too-narrow or too-broad choices 
for these inputs (Poole and Greenland 1997; Greenland 1998). 

These problems are familiar in Bayesian analysis as the 
problems of prior specification and of sensitivity of posterior 
inferences to that specification. A Bayesian perspective, how- 
ever, reveals a more subtle problem: Interpretations of sensitiv- 
ity analyses tend to ignore or dismiss parameter values judged 
"implausible" or "unlikely"; consequently, they may seriously 
misrepresent coherent posterior probabilities, which integrate 
such values into the analysis using the appropriate probabil- 
ity weighting. Following probabilistic risk-analysis methodol- 
ogy (e.g., Morgan and Henrion 1990, chap. 8; Crouch, Lester, 
Lash, Armstrong, and Green 1997), it has been suggested 
that this problem can be addressed with analyses based on 
informative priors for bias parameters (Greenland 1996). For 
example, one may repeatedly "correct" conventional statistics 

using bias parameters drawn from their priors, then summarize 
over the resulting distribution of corrected results (e.g., Lash 
and Silliman 2000; Lash and Fink 2003; Phillips and Mal- 
donado 2003). If the data provide negligible information on 
the bias parameters and if sampling error is properly incorpo- 
rated into the final distribution, such Monte Carlo sensitivity 
analyses (MCSAs) can approximate Bayesian results (Robins, 
Rotnitzky, and Scharfstein 1999; Greenland 2001a). 

The foregoing points are illustrated with a recent sensitivity 
analysis of possible confounding in the association of very- 
high-current configuration (VHCC) residential wire codes with 
childhood leukemia (Langholz 2001). The analysis problem is 
recast as one of Bayesian accounting for an unknown omitted 
covariate (Leamer 1974, sec. 2), and the results are contrasted 
with previous interpretations. The priors used for this analysis 
are then extended to an analysis of pooled data from 12 case- 
control studies of magnetic fields and childhood leukemia. 

2. AN ANALYSIS OF UNCONTROLLED 
CONFOUNDING IN A WIRE-CODE STUDY 

The Wertheimer-Leeper wire code, a four-category sum- 
mary of the configuration of electrical service connection to 
a residence, has been used as a surrogate for magnetic-field 
exposure. Only the highest category, VHCC, has shown even 
a modestly reproducible relation to both field strength and 
childhood leukemia, and hence simplification to "VHCC ver- 
sus other" is often used (Langholz 2001). Study results vary 
well beyond chance expectation (Greenland, Sheppard, Kaune, 
Poole, and Kelsh 2000, table 8), which renders controversial 
any summary or pooling across studies. Hence the present 
example uses data from one study (London et al. 1991) with 
results near average and with relatively large numbers of 

Sander Greenland is Professor, Department of Epidemiology, UCLA School 
of Public Health and Department of Statistics, UCLA College of Let- 
ters and Science, 22333 Swenson Drive, Topanga, CA 90290 (E-mail: 
lesdomes@ucla.edu). The author thanks Babette Brumback, Thomas Richard- 
son, James Robins, Jon Wakefield, the associate editor, and the referees 
for helpful comments. This research was supported by the Electric Power 
Research Institute and by grant 1R29-ES07986 from the National Institute of 
Environmental Health Sciences. 

h 2003 American Statistical Association 
Journal of the American Statistical Association 

March 2003, Vol. 98, No. 461, Applications and Case Studies 
DOI 10.1198/01621450338861905 

47 

This content downloaded by the authorized user from 192.168.72.224 on Mon, 19 Nov 2012 14:06:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


48 Journal of the American Statistical Association, March 2003 

Table 1. Marginal Case-Control Data From a Study of VHCC Wire 
Code and Childhood Leukemia (London et al. 1991) 

VHCC code Other codes 
(X = 1) (X = 0) 

Leukemia cases 42 169 
Controls 24 181 

NOTE: Marginal odds ratio, ORM = 1.87; 95% confidence limits, 1.09, 2.23, lower p 
value= .011. 

VHCC-exposed children (Table 1). The odds ratio from these 
data is 1.87, with a 95% confidence limits of 1.09 and 3.23; 
the lower one-sided p value is .011. These results change little 
after adjustment for measured covariates. 

2.1 A Model for Uncontrolled Confounding 

Let X and Y be the indicators for VHCC wire code 
and childhood leukemia. Following Breslow and Day (1980, 
sec. 3.4), Yanagawa (1984), Rothman and Greenland (1998, 
chap. 19), and Langholz (2001), suppose that Table 1 is the 
X Y margin of an unobserved 2 x 2 x 2 table of UX Y counts 
where U is an unmeasured binary antecedent of X and Y and 
hence is a potential confounder of the XY association. This 
latent U may represent a specific unmeasured factor, such as 
a genotype, or may represent a dichotomization of a summary 
confounder score (such as the propensity score). Taking U as 
binary is not essential (see Sec. 3) but it greatly simplifies 
analyses by limiting the number of parameters that must be 
specified. Because a binary U can induce any degree of con- 
founding [see (2)] it does not limit the degree of bias that can 
be modeled or simulated. 

For convenience, most authors have assumed that the XY 
odds ratios are homogeneous across strata of U and that the 
disease (Y = 1) is uniformly rare across levels of U and X (so 
that one can ignore distinctions among odds ratios, risk ratios, 
and hazard rate ratios). Because U is by definition unmea- 
sured (and at best speculative) neither assumption is testable 
with the analysis data, but each limits the number of uniden- 
tified parameters that must be specified and each has some 
justification; moderate violations of homogeneity have little 
impact on the results (see Remark 2 in Sec. 2.3) and leukemia 
is extremely rare in all known settings. 

Let 
Exy 

be the expected cell count at U = u, X = x, 
and Y = y. The observed XY counts then have expectations 

E+xV -- E1V + EOxy 
and the observed XY odds ratio is an ana- 

log estimate, ORM, of the marginal XY odds ratio ORM = 
E+,,E+oo/E+loE+ol from the latent table of the 

Exy. 
Under 

homogeneity a log-linear model for this table is 

Euxv = 
exp(30 + uu + x + yf3 

+ UX3ux + uyPuy + 
-xypxy). 

(1) 

The following facts are important: 

1. expit(3u) = P(U = I|X = Y = 0), where expit(z) is the 
logistic transform, ez/(1 + ez). 

2. exp(oux) is the odds ratio relating U and X within Y 
strata, exp(3uy) is the odds ratio relating U and Y within X 

strata, and exp(3xy) is the odds ratio relating X and Y within 
U strata. 

3. The marginal XY odds ratio, ORM, will equal the U- 
conditional odds ratio, exp(3xy), if either lux or gu is 0 
(Whittemore 1978). Because the disease is rare the latter col- 
lapsibility condition implies no confounding by U (Greenland, 
Robins, and Pearl 1999). 

4. If there is no confounding within the U strata then 

exp(3xy) is the unconfounded relative effect of VHCC 
exposure (X = 1) on the odds of disease (Y = 1); otherwise it 
is only a partially adjusted odds ratio. In either case, any dis- 
crepancy between the expected marginal odds ratio, ORM, and 
the U-conditional odds ratio, exp(3xy), corresponds to con- 
founding of ORM by U; hence (absent further information) 
statistics on the less confounded parameter exp(3xy) rather 
than on ORM should be used to make inferences about the 
effect. 

5. By definition, there are no internal study data on U; 
consequently, no parameter in model 1 is identified by the 
observed (marginal) XY data and external constraints are 
needed to obtain inferential statistics, such as interval esti- 
mates or tail probabilities. 

2.2 Sensitivity Analyses Under the Model 

Sensitivity analyses attempt to address the identification 
problem (item 5) by repeating the analysis under numerous 
sharp identifying constraints, to show how fu, 3 ux, and gu 
determine the bias in the observed marginal odds ratio ORM 
as an estimate of exp(3xy). Let Ob - (fu, Iux, U3u)'. From 
Yanagawa (1984, eq. 2.2), the relative bias ORM/exp(/3x) is 

expit(13u + ux + 3ur)expit(p3u) 
expit(/3u + fux)expit((p, + u) (2) 

(see Flanders and Khoury 1990 for an extension to polytomous 
U and common diseases). Expression (2) may take on any 
positive value; hence a binary U can produce any degree of 
confounding. If 

fx- 
= 0 (no X effect on Y) then the expres- 

sion equals ORM; thus, by solving B(P3b)= ORM one can see 
which combinations of the bias parameters Ou, Oux, and 

3ru 
would completely explain the observed association as a result 
of confounding by a binary variable. 

If U represents a known but uncontrolled factor, such as 
a housing descriptor, then one can specify likely values for 
the bias parameters from external information and use these 
values in (2) to estimate how much bias was produced by 
failure to control the factor. If one has information only on the 
factor prevalence and its relation to exposure (Pu and fux) 
then one can use (2) to see how large our would have to 
be for confounding by the factor to completely explain the 
marginal X Y association. Using survey data on the prevalence 
of various factors and their relation to VHCC (background 
data on /3 and /ux, for various U), Langholz (2001, table 6) 
showed that only three of those factors could alone completely 
explain a marginal VHCC odds ratio of 2 without requiring 
the factor effect exp(3ur) to exceed 10; the factor with the 
smallest required effect, "house built before 1920," still needed 
to have exp(3uy) = 6. 
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As Langholz (2001) and his discussants noted, these results 
do not address all possibilities because they do not exam- 
ine combinations of factors or take into account unmea- 
sured factors. Nonetheless, the results do make it implausible 
that confounding alone could account for an association as 
large as that shown in Table 1. Unfortunately, later discus- 
sants went further and interpreted these sensitivity results 
as evidence in favor of a causal effect of magnetic fields 
on childhood leukemia (e.g., table 8.2.3, in "An Evalu- 
ation of the Possible Risks From Electric and Magnetic 
Fields From Power Lines, Internal Wiring, Electrical Occu- 
pations and Appliances," Draft 3, April 2001, formerly avail- 
able at www.dhs.ca.gov/ps/deodc/ehib/emf/RiskEvaluation/ 
riskeval.html). Although this interpretation may seem natural, 
it will be shown to conflict with more refined analyses based 
on model 1. 

After checking whether U alone could plausibly explain 
the observed ORM one could allow a role for random error. 
For example, to check whether confounding and random 
error together could plausibly explain the observed ORM one 
might calculate the values of Puy that would have produced 
ORM = 1.09 (the lower confidence limit), assuming that /3x 
is as observed in the survey data and that Pxy = 0. For 
"house built before 1920," the data yield expit(3u) = .144 and 
exp(oux) = 5.36 (Langholz 2001, table 6). These are of course 
only estimates, and a rigorous analysis would propagate the 
survey error through the calculations; as in the Langholz arti- 
cle that error is omitted here. Putting these values in (2) and 
equating the result to 1.09 yields exp(3uy) = 1.28, a very 
modest housing effect that seems even more plausible if one 
views U as an unmeasured-confounder summary rather than 
as a single factor. Based on this result one might assert that a 
combination of bias and random error could easily explain the 
results (which is indeed so), and end the analysis with that. 
On the other hand, the result is derived by assuming that the 
random error is positive and substantial (1.96 standard errors) 
and hence it might be dismissed as just another extreme case. 

2.3 Bayesian and MCSA Analyses 
The foregoing sensitivity analysis begs a key substantive 

question: "If the net effect X on Y is not causal, then how 
likely is it that random error and bias combined to produce 
the observed margin?" Answering this question requires con- 
sideration of every remotely plausible combination of random 
error and bias that would have produced the observed data 
if /xy < 0. The number of such combinations is enormous 
and describing the plausibility of each might seem onerous. 
Nonetheless, this task is central to Bayesian analysis, in which 
random-error plausibility corresponds to data probability and 
parameter plausibility corresponds to prior probability. The 
likelihood function then restricts attention to combinations of 
parameters and random errors that produce the observed data. 

Because there are no internal study data on U a Bayesian 
analysis could start with an informative prior for the vector 
of bias parameters, pb. With this prior, computation can pro- 
ceed using a diffuse or even improper prior over the remain- 
ing parameters, f,- (P0, rx /3, PXY)'. Equation (1) then 
becomes a mixed model with fixed and random coefficient 
vectors Pa and pb, as in "partial-Bayes" or "semi-Bayes" 

analyses (Bedrick, Christensen, and Johnson 1996; Green- 
land 2000, 2001b). Under a degenerate prior that assigns 

P{Pb: B(P3b)= 1} = 1 and is uniform (improper) for P,, the 
marginal estimate and interval in Table 1 are an approximate 
posterior median and 95% posterior interval for exp(3xy), 
and the lower p value of .011 is the posterior probability that 

Px, < 0. Such a prior is unreasonable, however, because it 
asserts that confounding is certainly absent. 

A question often raised in regulatory settings (in which the 
.05 criterion can be found in action guidelines) is whether 
some reasonable prior yields a lower 95% posterior limit of 
1 for exp(3xy) (or, equivalently, yields a posterior probability 
for /3x < 0 of .025). Given such a "borderline" prior, one need 
only modify it slightly to demonstrate that some reasonable 
priors produce lower limits below I and others produce lower 
limits above 1, so that the data force no agreement under the 
criterion. One reasonable prior, back-calculated to fall on the 
borderline and at the same time conform to the available prior 
information, is contained in the following specification: 

1. The UXY-specific counts are Poisson with means Exy; 
hence the observed marginal counts are Poisson with means 

E+xy. 
This model reflects the fact that no marginal total was 

fixed at the observed values; if a Y margin had been fixed, 
rendering counts multinomial, then this Poisson model would 
be still yield valid likelihood-based inferences for 0 provided 
that the Y main effect was included in the model (Lindsey 
1995, chap. 6). 

2. The parameters are a priori independent, because they 
are functionally independent and because U is unspecified. 
An analysis that included measured covariates or in which U 
represented a specific unmeasured covariate might use prior 
dependencies, as in Section 3. 

3. The /3 prior is normal with mean 0 and variance 4, 
chosen to make .01 and .99 the first and 99th percentiles of 
the prevalence expit(/3); the prior prevalence distribution then 
very roughly approximates a uniform distribution between 
.0025 and .9975. 

4. The /ux and 3uy priors are both normal with mean 
0 and standard deviation ln(6)/1.645. These induce lognor- 
mal priors on exp(oux) and exp(/uy) with 5th and 95th per- 
centiles of 1/6 and 6. This specification was suggested by 
Langholz's findings for single factors, with minor modifica- 
tion to yield a lower 95th posterior limit for exp(/3x) of about 
1.00. 

5. The priors for 
0, Pox, f3, and /x are independent nor- 

mals with mean 0 and variance 400 (extremely diffuse, but 
proper). 

Let P(Pb) denote the Pb prior from items 2-4. A Metropo- 
lis sampler (10 chains, each of length 500,000 after discard- 
ing 100,000 burn-in cycles) was used to simulate the posterior 
based on the above specification and the data in Table 1. The 
resulting 50th, 2.5th, and 97.5th percentiles of exp(Pxy) were 
1.89, 1.00, and 3.70. An analogous MCSA procedure gener- 
ates a distribution of corrected estimates 1.87/B(Pb)es, where 
B(Pb) is obtained by sampling Pb from P(Pb) and e is a nor- 
mal (0, v) variate included to account for sampling error, with 
v = 1/42 + 1/24 + 1/169+ 1/181 the estimated sampling vari- 
ance of In(ORM). To approximate the Bayesian analysis, one 
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should instead draw fb from its marginal posterior P(Pbla+), 
where a+ is the vector of observed X Y counts in Table 1; if fib 
is independent of a+, however, then the MCSA would approx- 
imate the Bayesian results (Robins et al. 1999, sec. 11). In the 
present example, the simulated P(Pb a+) differed from P(P3b) 
by less than simulation error, reflecting the lack of informa- 
tion on ib (apart from its prior), and the 50th, 2.5th, and 
97.5th percentiles for exp(/xy) from 500,000 MCSA draws 
were 1.88, .99, and 3.59. 

Items 3 and 4 yield P{B(/b) > 1.87}= .005, so the prior 
odds that confounding alone explains the association seen in 
Table 1 is miniscule, and P{B(13b) > 1.09} = .17, so the prior 
odds that confounding exceeds the lower confidence limit is 
only 1:5. Nonetheless, the prior is sufficient to expand the pos- 
terior 95% interval to include 1 and more than double the pos- 
terior probability that Oxi, <0. Furthermore, the prior is rea- 
sonable; two covariates in table 6 of Langholz (2001) appear 
to have exp(oux) > 5, so the pux component of the prior is 

quite credible. The fu, component is more controversial but 
is defensible; there have been some intriguing proposals for 
possible strong confounders, including body currents arising 
in poorly grounded houses (Kavet and Zaffanella 2002). Fur- 
thermore, as has been pointed out (Langholz 2001, app. B), 
one should not disregard the possibility of strong effects by 
combinations of weak risk factors, given that many correlates 
of wire code have been found. 

To summarize, the sensitivity analysis made it appear im- 

probable that confounding alone explains the observed ORM, 
yet analyses based on one reasonable prior shows that this 

improbability is no reason to dismiss confounding. Relative 
to the conventional results given in Table 1, which assume 
that B(Pb) = 1 when interpreted causally, allowance for uncer- 

tainty about the bias parameters in fb can considerably expand 
the interval estimate for the target parameter exp(fxy) and 
increase the posterior probability that there is no net causal 
effect of X on Y(fxi 

<-0). 
Remark 1. As mentioned earlier, the naive but com- 

mon Bayesian interpretations of the frequentist results fol- 
low from assuming B(Pb) = 1 (no bias) and a diffuse prior 
on fa (including gxy). Neither assumption is correct; no one 
believes that bias is absent or that fxi is far from 0. These two 
prior misspecifications have opposing effects on the posterior 
variance for fxi; assuming B(fib)= 1 leads to an understated 

posterior variance, whereas a diffuse prior for fxi leads to 
overstatement. The foregoing analyses address only the first 
problem. Nonetheless, because it exerts a pull toward 0, an 
informative prior for fix centered at 0 can increase the poste- 
rior probability of 

fxr < 0 even when it reduces the posterior 
variance (Greenland 2003). 

Remark 2. Addition of a three-way term, 
uxyfvxy, 

to the 
VHCC model (1) would allow heterogeneity of the X Y odds 
ratios across U strata but would also make the analysis much 
more difficult. If reversal of effects of X on Y across U is 

implausible, then P(lxil < 
ofiuxv) 

must be set low. This 
prior constraint would rule out a simple (e.g., bivariate normal) 
joint prior for fxi and ex, thus complicating prior spec- 
ification and posterior sampling. Including flxv also com- 
plicates inference by requiring consideration of two target 

parameters (the two U-specific XY odds ratios), or some 
defensible average of the two. A limited number of joint 
prior specifications for fxi and ouxy were examined, using 
as target parameters both stratum-specific and traditional stan- 
dardized odds ratios which do not assume homogeneity (see 
Rothman and Greenland 1998, pp. 264-265). As expected, the 
introduction of another unknown (fuxy, an uncertainty source 
assumed to be 0 earlier) widened posterior intervals, but to 
only a minor extent for standardized odds ratios. The latter 
result is unsurprising in light of the close relation of sum- 
mary odds ratios that assume homogeneity to those that do not 
(Greenland and Maldonado 1994). However, these results do 
not guarantee that uncertainty about heterogeneity can always 
be safely neglected, especially if (unlike here) effect reversal 
is a credible possibility. 

3. UNCONTROLLED BIAS 
IN A POOLING PROJECT 

Most studies have attempted to directly quantify magnetic- 
field exposure using either direct measurements or calcula- 
tions from records or site features. Tables 2 and 3 present 
summaries from a pooled analysis of 12 case-control stud- 
ies of quantitative magnetic-field measurements and childhood 
leukemia (Greenland et al. 2000). There seems to be no con- 
sistent association below .3 microteslas (/tT), but 11 of the 
studies show leukemia associated with fields above .3 /tT; the 
exception had no cases above .2 /tT. There was no evidence of 

publication bias. Differences among studies were well within 
random error (homogeneity p = .42) and showed no relation to 
measurement method, study location, or system type. Results 

changed little on altering categories, adjusting for age and 
sex, or using continuous rather than categorical field measure- 
ments (Greenland et al. 2000). Virtually identical results were 
obtained when fields were modeled using splines or with just 
one indicator for fields above .3 pT. These fields are associ- 
ated with VHCC code, however, and so share the same list of 

Table 2. Summary of Data From 12 Case-Control Studies of 
Magnetic Fields and Childhood Leukemia Used in Pooled Analysis 

(Greenland et al. 2000) 

No. of No. of 
cases controls 

First author Country >.3 ptT Total >.3 /_T Total 

Coghill (1996) England 1 56 0 56 
Dockerty (1999) New Zealand 3 87 0 82 
Feychting (1993) Swedena 6 38 22 554 
Linet (1997) United Statesb 42 638 28 620 
London (1991) United Statesb 17 162 10 143 
McBride (1999) Canadab 14 297 11 329 
Michaelis (1998) Germany 6 176 6 414 
Olsen (1993) Denmarka 3 833 3 1,666 
Savitz (1988) United Statesb 3 36 5 198 
Tomenius (1986) Sweden 3 153 9 698 
Tynes (1997) Norwaya 0 148 31 2,004 
Verkasalo (1993) Finlanda 1 32 5 320 
Totals 99 2,656 130 7,084 

aCalculated fields (others are direct measurement). 
b 120 v, 60-Hz systems (others are 220 v, 50-Hz). 
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Table 3. Study-Specific Odds-Ratio Estimates and Study-Adjusted Summary Estimates, With 95% 
Confidence Intervals From 12 Studies of Magnetic Fields and Childhood Leukemia 

(From Greenland et al. 2000); Reference Category, < .1 lAT 

Magnetic-field category (pT) 

First author >.1, <.2 >.2, <.3 >.3 

Coghill (1996) .54 00 o0 
(.17, 1.74) (no controls) (no controls) 

Dockerty (1999) .65 2.83 oo 
(.26, 1.63) (.29, 27.9) (no controls) 

Feychting (1993) .63 .90 4.44 
(.08, 4.77) (.12, 7.00) (1.67,11.7) 

Linet (1997) 1.07 1.01 1.51 
(.82, 1.39) (.64, 1.59) (.92, 2.49) 

London (1991) .96 .75 1.53 
(.54, 1.73) (.22, 2.53) (.67, 3.50) 

McBride (1999) .89 1.27 1.42 
(.62, 1.29) (.74, 2.20) (.63, 3.21) 

Michaelis (1998) 1.45 1.06 2.48 
(.78, 2.72) (.27, 4.16) (.79, 7.81) 

Olsen (1993) .67 0 2.00 
(.07, 6.42) (no cases) (.40, 9.93) 

Savitz (1988) 1.61 1.29 3.87 
(.64, 4.11) (.27, 6.26) (.87,17.3) 

Tomenius (1986) .57 .88 1.41 
(.33, .99) (.33, 2.36) (.38, 5.29) 

Tynes (1997) 1.06 0 0 
(.25, 4.53) (no cases) (no cases) 

Verkasalo (1993) 1.11 0 2.00 
(.14, 9.07) (no cases) (.23,17.7) 

Summaries 
MHa, .95 1.06 1.69 

study adjusted (.80, 1.12) (.79, 1.42) (1.25, 2.29) 
MHb, 1.01 1.06 1.68 

study-age-sex adjusted (.84, 1.21) (.78, 1.44) (1.23, 2.31) 
Splinebc, 1.00 1.13 1.65 

study-age-sex adjusted (.81, 1.22) (.92, 1.39) (1.15, 2.36) 

a Mantel-Haenszel, study adjusted; maximum likelihood summaries differed by less than 1% from MH. Based on 2,656 cases and 
7,084 controls; 3 df categorical MH summary, p = .01. 

b Study-age-sex adjusted based on 2,484 cases and 6,335 controls with age, sex data (excludes Tomenius); 3 df categorical MH, 
p = .01; 1 df Mantel trend, p = .04 from continuous data. 

c Estimates comparing odds at category means (.14, .24, .58 vs. .02 /T) from a quadratic logistic spline with one knot at .2 .T, 
plus study, age, and sex terms. 

potential confounders as that of Langholz (2001). The sum- 

mary odds ratio for > .3 /tT is slightly less than the marginal 
VHCC odds ratio in Table 1; hence slightly smaller covariate 
associations would be needed to explain it completely. 

3.1 Log-Linear Models With Bias Parameters 

To extend the foregoing development to general cross- 
classifications, let U, X, and Y be row vectors of possible 
combinations of unobserved covariates, observed covariates 
(including study indicators), and outcomes. Taking coefficients 
as column vectors and UX, UY, XY, and UXY as subvec- 
tors (chosen on subject matter grounds) of the tensor products 
U 0 X, U 0 Y, X 0 Y, and U 0 X 0 Y, suppose that the pop- 
ulation distribution for the latent U x X x Y table is 

Pxy oc exp(uu + Xfx +s yf + ux/ux 

+ uypy, +Xxy + uxyux) (3) 

U could include a separate component, Uk, for the maximally 
confounding dichotomy in study k, k =1, ... , 12. An equiv- 
alent approach, used here, allows the bias Bk in study k due 

to ignoring Uk to vary across studies by allowing all of the U 
parameters in Bk to vary across studies; U can then be treated 
as a single latent variable that has interactions with observed 
variables. The model may be expanded to include other latent 
dimensions, such as the true magnetic-field level T when the 
observed X contains only a measurement F subject to error 
or coarsening. 

Now suppose that the rates of response (selection) from the 
source populations of the studies are 

Rxy oc exp(uyu + xyx + YYy + uxYux 

+ uyyV + xyyxr + uxyyuxy). (4) 

Then the expected data classification is 

Euxy 
oc RxyP,,x oc exp(uau +xax + ya, + uxaux 

+ uyauy + xyaxy + uxyaoxy), (5) 

where for any subscript W, aw = f, + y,, and Yw is the 
response bias in a,. Note that yw is not separable from f, 
without information on nonresponse; separation is only needed 
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when ,w is a target parameter, so specification of the response 
model can be limited to target interactions. 

To specialize model (5) to the present example, define S to 
be the row vector of all 12 1,0 study indicators, and F = 1/2 
for fields >.3 [tT and -1/2 for <.3 AT; thus X = (S', F')'. 
Also, let Y = 1/2 for cases, -1/2 for controls, and U = 

1/2, -1/2. Then, using the full set of 12 study indicators 

(instead of 11), the model used here can be written as 

Ef, = exp(sas + usaus + fsaFs + 
syarsy 

+ ufsaUFs + usyausy +fsyaFSY), (6) 

with response model aFSY = -FY + YFsy. Model (6) constrains 
the population FY odds ratio, exp(F,,F), to be homogeneous 
across study (S) and across U. Including aus, alFS, and 

ausy allows confounding (Bk) to vary across studies, whereas 

including YFSY allows response bias to vary across studies. 
There are 85 parameters for the 96 latent cells. The 36 U 

parameters (12 each in aus, aUFs, and ausy) are derived solely 
from the joint prior described later rather than estimated from 
data, and the target parameter ,FY is inseparable from YFSY 
without a constraint or prior for YFSY- 

Model (6) can be rewritten as EUfSY = exp(Zaaa + Zbab), 
where za = (s, fs, sy, fy), aa = (a/, a/, 3 a/, y1)0, Zb 
(us, ufs, usy, fsy), and ab 

aS' 
Us F a U, ' FS y)'. A 

con-) ventional analysis fits the model 
E+fSy 

= exp(Zaaa) to the 
FS Y margin of the UFS Y table; letting ORM be the limit of 
the estimator from this marginal analysis, the net bias of this 

marginal estimator is then B(ab) -- ORM/ exp(P3F). The con- 
ventional maximum likelihood estimate (MLE) and 95% con- 
fidence limits for exp(P,3) from this marginal analysis are 
1.70, 1.25, and 2.30, with a lower p value of .0003. However, 
a causal interpretation of this result makes the highly implau- 
sible assumption that B(ab) = 1; that is, there is no net bias. 

Model (6) can also be rewritten as a marginal-data model, 
E+fSY = exp(zaa + gb), where gb = In(, exp(zbab) is a spe- 
cially structured random effect. In essence, a sensitivity anal- 

ysis specifies various ab values, then for each value refits 
the model treating gb as an offset (a known fixed term) 
to obtain a bias-corrected F,, estimate, YF,(ab). Nonethe- 
less, cab has 48 components, making an ordinary sensitivity 
analysis unmanageable without drastic simplification. Unfor- 
tunately, most simplifications would be implausible; for exam- 

ple, assuming homogeneity across studies would not be credi- 
ble for any parameter other than ,FY. One can, however, retain 
the full complexity of model (6) by using a prior distribution 
for ab. 

3.2 A Prior Distribution for the Bias Parameters 

One may again ask whether some reasonable prior for the 
bias parameters in ab would make the hypothesis of no net 
causal effect (,,FY < 0) seem reasonable in light of the data 

given a diffuse prior for a,. To adapt the prior from the 
VHCC example to the present setting let D = 1 for stud- 
ies with direct field measurement, 0 for calculated fields, and 
V = (Vl, 1 - V,) where V, = 1 for studies of 120-volt, 60-Hz 
systems and 0 for 220-volt, 50-Hz systems. D and V are 
functions of S, and V, = 1 also indicates North America. A 

realistic bias prior would include large bias-parameter correla- 
tions among studies with similar characteristics. To create the 
desired prior correlations, ab was modeled as a linear function 
of a vector 5b with independent mean-0 normal components, 
as follows: 

1. Discovering a factor associated with fields in one study 
would usually increase the probability of finding a similar 
association in another study, especially of the same system. 
Modeling the study-specific UF log odds ratios saUFs as 

5UF + V6UFV + SUFS, 6UF is the portion of the UF association 
shared across all studies, 8UFV contains the portions shared 

by studies of the same system, and prior correlations are sim- 

ple functions of the relative prior variances of F, 8UF,,,, and 

8UFs components. These 8 were assigned variances to produce 
saUFs standard deviations of ln(6)/1.645, with cross-study cor- 
relations of .8 within systems and .6 between systems. 

2. Discovering a factor associated with leukemia in one 

study would greatly increase the prior probability of finding 
a similar association in another study, especially a study of 
the same system type. Modeling the study-specific UY log 
odds ratios, sausy, as 8uy + t uv + sSusy, prior correlations 
are functions of the relative prior variances of 6uy, SuvY, and 

5usY components. These 8 were assigned variances to produce 
sausy standard deviations of ln(6)/1.645, with cross-study cor- 
relations of .9 within systems and .8 between systems. 

3. The study-specific U logits saus + fsaUFs + syausy are 
correlated through alFS and ausy. Modeling saus as 6, + 

v6uV + sus, the logit correlations are also functions of the rel- 
ative prior variances of us, 6u,, and 6us components. These 
8 were assigned variances to produce logit standard deviations 
of 2, with cross-study correlations for aus of .6 within and 
.4 between systems. With this specification, aus accounts for 
most of the variance of the U logits. 

4. There is evidence of upward response bias in stud- 
ies with direct measurements, which require entry of private 
property (Hatch et al. 2000), whereas such bias is not sus- 

pected in other studies. Modeling sYFSY as (8FY + vFVy + 

S8FSY){ln(1.1)/In(1.5)}'-d, these 6 were assigned variances 
that produced P{exp(syFsv) > 1.5 I D = 

1} 
= P{exp(sYFSY) > 

1.1 D = 01 = .05, with cross-study correlations of .9 within 

systems and .7 between systems when D = 1. 

Denote the resulting bias prior by P(ab). A Monte Carlo 

sensitivity analysis may repeatedly draw ab from P(ab), com- 
pute the offset gb, and fit Efsy 

= exp(zaaa, + gb) to obtain 
a corrected effect estimate F,,(ab). To incorporate random 
error into the results, one may also resample the data at each 
draw; a more simple approximation uses 

PY, 
= FpY(cb)- E 

where C is mean-0 normal with variance equal to the esti- 
mated sampling variance of the MLE of fFY. The 50th, 2.5th, 
and 97.5th percentiles of 500,000 such /3P were 1.69, 1.00, 
and 2.86. These percentiles are much more spread out than the 
conventional ML limits, even though P{B(awb) > 1.70} = .01, 
so the prior odds that bias completely explains the MLE is 
very small. Also, P(B(ab) > 1.25} = .14, so the prior odds 
that the bias is as large as the lower ML confidence limit is 
only 1:6. 

Remark 3. As expected with unidentified models, results 
are very sensitive to modest changes in the prior (Rubin 1983). 
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For example, changing P{exp(sYFSY) > 1.5 D = 1} in item 
4 to P{exp(SYFsY) > 1.2 D = 1} decreases the percent- 
age of y, 

_< 
0 from 2.5% to 1%, whereas changing to 

P{exp(syFsY) > 1.8 1 D = 1} increases that percentage to 5%. 
By changing multiple features of the prior one can move 
results over a much wider range. Nonetheless, even one anal- 
ysis with a reasonable prior for 

awb 
can show that the con- 

ventional results are a poor guide to the uncertainty that one 
should have in light of the data. 

Remark 4. The foregoing example does not account for 
errors in field measurement (which must be considerable) and 
so omits a major source of uncertainty. Incorporating this 
source would require a latent dimension for the true field T 
and an informative prior for its relation to F and the other vari- 
ables (Gustafson, Le, and Saskin 2001). Unfortunately, there 
are no data for estimating this prior, nor is there even agree- 
ment as to what sort of true measure should serve as the 
causally relevant T. It is well known that assuming a spe- 
cial "random" error structure (i.e., independent nondifferen- 
tial error) will usually lead to enlargement of the point esti- 
mate; this fact is often taken as evidence that the association is 
larger than that observed (see, e.g., the California DHS report 
cited earlier). Nonetheless, allowance for uncertainties about 
the measurement-error structure can result in an enlargement 
of the posterior standard deviation of 3F, greater than the 
enlargement of the posterior mean, and can decrease the pos- 
terior probability that F,, > 0. Thus an analysis that ignores 
measurement error may overstate posterior certainty about the 
existence of an effect even when it understates the posterior 
mean of the effect. 

4. DISCUSSION 

One purpose for introducing unidentified bias parameters 
is to refine subjective uncertainty assessments, or at least 
to avoid misinterpretation of conventional confidence lim- 
its. Given informative priors, some authors would go fur- 
ther and reject the conventional limits as wholly irrelevant 
on philosophical grounds (DeFinetti 1975; Lindley 2000). A 
less abstract reason for questioning conventional statistics in 
observational epidemiology is the absence of any agreed-on 
(let alone objective) mechanism for the data-generation pro- 
cess, which is complex and largely unknown (e.g., the deter- 
minants of control participation are poorly understood). Oth- 
ers have argued that frequentist evaluations remain relevant to 
Bayesian applications for the purpose of model checking (e.g., 
Box 1980). Nonetheless, such checks can address only data 
constraints implied by the analysis model. Model expansion 
to include unidentified bias parameters is an attempt to intro- 
duce some realism into conventional sampling models. The 
expanded model may place no constraint on the data and hence 
have no associated diagnostic, in which case it can be evalu- 
ated only with subject matter arguments and external data. 

In general, bias modeling may depend more on background 
information than on the data under analysis. Because of time 
and resource limitations it may also depend heavily on dic- 
tates of convenience and simplicity, although in recognizing 
these limitations one ought not to sanctify simplicity with a 
"parsimony principle" (Greenland 2000). Even when uniden- 
tifiable, the consequences of simplifications need elucidation. 

For example, the assumption of odds-ratio homogeneity is 
usually based more on convenience rather than on subject mat- 
ter; however, it was argued that it should be of little conse- 
quence in the examples. It was also argued that the simplifying 
assumptions of binary U and disease rarity are of no practi- 
cal consequence, and that ignoring measurement error has less 
predictable consequences than is ordinarily thought. 

Although informal narrative elements are unavoidable in 
inference, examples like the foregoing argue that quantita- 
tive reasoning requires expansion beyond current levels. Most 
causal inferences from observational data seem to arise from a 
crude intuitive blending of conventional results (which account 
for only random error and measured bias sources) with feel- 
ings about uncontrolled biases. Both conventional and sensi- 
tivity analyses are prone to misinterpretation because they tend 
to ignore bias interactions and because narrative integration of 
these analyses with opinions about bias sources tends to be 
very incoherent. Using a credible prior for the bias parame- 
ters can show how allowance for possible uncontrolled bias 
can substantially increase uncertainty about the causal nature 
of an association, despite a very low prior probability that bias 
explains the association. 

Of course, no analysis should be interpreted as "the" correct 
analysis, and most analyses of health effects based on obser- 
vational data merit healthy skepticism. This is so whether or 
not bias parameters have been included, for elements missing 
from the bias model specification can reverse inferences on 
inclusion (Poole and Greenland 1997). But an analysis with an 
explicit and informative bias prior can be treated as an exer- 
cise in quantified rational skepticism rather than a definitive 
risk assessment. Even when it does not incorporate every sub- 
ject matter detail or methodologic refinement, such an analysis 
can be an effective antidote to the overly precise conclusions 
that often flow from conventional results and traditional sen- 
sitivity analyses. 

[Received November 2001. Revised June 2002.] 
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