
Course EPIB-682 - Bayesian Analysis for the Health Sciences

Assignment 5

1. The FIM is a measure of functional independence, often used in the
emergency room following an accident or trauma. Higher values of the FIM
indicate better functioning, with 126 being considered as “normal”. In this
question we will consider the effect of alcohol on the FIM. This is an inter-
esting question, since it is not clear whether alcohol will have a positive (e.g.,
more relaxed during an accident may lead to less injuries) or negative (e.g.,
worse accidents if under the influence) effect on the FIM, on average.

(a) The course web site has a data set called fimdata.txt. Download this
file somewhere to your hard disk. Open R and read in the data set (using a
command such as

fim.dat <-read.table(file, header=T),

where file points to where you stored the data set, such as “c://temp//fimdata.txt”).
The variables include age in years, sex (1=male, 0=female), fim, and alcohol
level on arrival at the emergency room. Print out some descriptive statistics
for these variables, for example using the R command summary(fim.dat).
Print out plots of age versus fim and alcohol versus fim. Do you see any
trends?

(b) To use the data set in WinBUGS, you will need to add []’s after each
variable name. Open WinBUGS, and cut and paste in the data set you saved.
Change the first line to

sex[] age[] fim[] alcohol[]

Run a simple linear regression in WinBUGS, with fim as the dependent
variable, and age, sex, and alcohol level. Report your results, and provide
an interpretation for each beta coefficient.



(c) It is easy to make predictions for any variable combination using Win-
BUGS, simply by adding a single line to the program for each prediction you
want to make. For example, if you want to make a fim prediction for a male
aged 50 with an alcohol level of 80, add a line like:

pred.fim.male.50.80 <- alpha + beta.sex*1 + beta.age*50 + beta.alc*80

and then monitor the new parameter you created, pred.fim.male.50.80. Cre-
ate predictions for males aged 30 and alcohol level of 85 and for females
aged 50 with alcohol level of zero. Create another variable that monitors the
difference between these two groups, with a command such as

diff <- pred.fim.male.30.85 - pred.fim.female.50.0

Run a program with these additional lines, report the outcomes, and com-
ment of the difference between the two sets of predictions you made.

2. One concern one should always have after running a model is whether or
not it fits the data well.

(a) We can calculate Bayesian residuals by making a prediction for each
individual in the data set, and taking the differences between observed and
predicted results. For example, if your model is

fim[i] <- alpha + beta.sex*sex[i] + beta.age*age[i]

+ beta.alc*alcohol[i]

then residuals can be formed by adding the lines

fim.pred[i] <- alpha + beta.sex*sex[i] + beta.age*age[i]

+ beta.alc*alcohol[i]

residual[i] <- fim[i] - fim.pred[i]

Run this model, monitoring the residual variable. In the WinBUGS output,
the column for the mean of the residuals roughly corresponds to the usual



frequentist residuals. Looking down this column, can you tell if the model
fits well?

(b) Because each residual is looked at separately, it is difficult to get an
overall picture of fit. This problem can be remedied by taking a random
selection of residuals, and mixing them all together. This can be done by
adding lines such as:

for(i in 1:60)

{

p[i] <- 1/60

}

choose ~ dcat(p[])

residual.mixture <- residual[choose]

Now monitoring this residual.mixture gives you a good idea of the residuals
from all subjects mixed together. You can look at the residual plot using
the density option, or just look at the usual WinBUGS statistics on resid-
ual.mixture. Does the model seem to fit well?

Note: Bayesian residuals account for imperfections in the model, unlike fre-
quentist residuals, which simply compare observed values with values pre-
dicted from the mean model.

3. CRP is a measure of inflammation, of interest to cardiologists for predict-
ing future heart attacks. From the course web site, download the CRP data
set (crpdata.txt), which is already in a format useable in WinBUGS. The
data represent six CRP values from each of 15 subjects, followed over three
years, with measurements taken every six months.

(a) Plot these data in R. You can use read.table to get the data into R, but
you will need to erase the []’s that follow each variable name (but leave the
number inside the []’s), and take the word “END” away. To plot the data,
we would like a single line to represent the data from each subject, so want
a graph with 15 lines across it, one for each subject. R code such as the
following could be used.

> plot(1:6,crp.dat[1,], type="l", ylim=c(0,15), xlab="time", ylab="crp")

> for (i in 2:15){ points(1:6,crp.dat[i,], type="l", lty=i)}



Comment on the results. Is there much variability of CRP values over time
within each subject? Is there much between-subject variability?

(b) Assume the following two-level hierarchical structure for the data: Within
each subject, assume that the six CRP values are independent over time,
and follow a normal distribution with mean specific to that individual, but
with a variance (precision in WinBUGS) parameter common to all subjects.
Further, assume that the subject-specific means over time follow a common
normal distribution across subjects. Using non-informative priors for all
unknown parameters (15 means for each subject, one overall mean across
all subjects, and two variance/precision parameters, one for the variability
within each subject over the time, and the other for the between subject
means), write and run a WinBUGS program, monitoring all unknown pa-
rameters. Print out your program and basic statistics. Comment on whether
the results coincide with your expectations from part (a).

4. The data set infant.dat.txt contains two variables: X is the gestational
age of infants (in weeks) at the time of birth and Y is a yes/no (1/0) variable
indicating whether the infant was breast feeding at the time of release from
hospital or not. The data are already in WinBUGS format. Analyse these
data in WinBUGS using a standard logistic regression model. Use non-
informative priors (exact form is your choice) and provide statistics for all
model parameters. Your program should also provide the marginal posterior
density for the odds ratio of the effect of gestational age on the probability
of being breastfed, as well as the predicted probability of being breastfed for
an infant with gestational age of 32 weeks.

5. While so far we have seen standard and hierarchical linear and logistic
regression models, there is absolutely nothing special about these models as
far as WinBUGS is concerned. In fact, it is just as easy to fit a nonlinear
model as it is to fit a linear model, as we are about to see, using the data set
in the file nonlinear.dat.txt on the course web site.

(a) Read the file into R, and plot x versus y and z versus y. Note the highly
non-linear character of the relationship between the independent variables (x
and z) and the dependent variable y.

(b) Fit the following non-linear equation to the data (suppose the specific
form came from the theory associated with the experiment that gave rise to
the data):



y = sin(a ∗ (x2)) ∗ zb + sqrt(zc)

The parameters of the model are a, b, and c, which are assumed unknown.
Assume non-informative prior distributions for these parameters, and assume
an error model for the model which is normal, with zero mean and unknown
variance, which is also given a non-informative prior. Thus, model of the
WinBUGS program should look something like:

model

{

for (i in 1:100)

{

y.mean[i] <- sin(a*(x[i]*x[i]))*pow(z[i],b) + sqrt(pow(z[i],c))

y[i] ~ dnorm(y.mean[i], tau)

}

a ~ dnorm(0, 0.01)

b ~ dnorm(0, 0.01)

c ~ dnorm(0, 0.01)

tau <- 1/(sigma*sigma)

sigma ~ dunif(0.001, 10)

# inits

list(a=.2, b=3, c=4, sigma=1)

}

Run a WinBUGS program that includes code like the above as its main
model, and estimate a, b, and c. Use the starting values as given. Because
the surface is highly multi-model, WinBUGS needs to be started near the true
maximum. [There are methods beyond the scope of this course for dealing
with such problems in real practice, here I just wanted to demonstrate the
range of models that can be fit with WinBUGS, as a crude example.] Note in
particular that this model was as easy to run as any standard linear model!


