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Intro to Bayesian Analysis for the Health Sciences – EPIB-682 – 2 credits

Instructor: Lawrence Joseph
Email address: Lawrence.Joseph@mcgill.ca (best way to reach me)

Home page: http://www.medicine.mcgill.ca/epidemiology/Joseph/
Telephone: 934-1934 X 44713

Address: Division of Clinical Epidemiology
Royal Victoria Hospital
V Building
Room V2.10

Course Objectives and Topics Covered: To provide researchers with an introduc-
tion to practical Bayesian methods. Topics will include Bayesian philosophy, simple uni-
variate models, linear and logistic regression and hierarchical models. Numerical tech-
niques including Monte Carlo integration, sampling importance resampling (SIR), and
the Gibbs sampler will be covered, including programming in R and WinBUGS.

Place and Time: September 7 to November 30, 2017. Thursdays, 12:30 PM to 2:30
PM. Room 25, Purvis Hall, 1020 Pine Avenue West, corner Peel Street.

Assessment: Five assignments of approximately 5 questions each. Each assignment is
worth 20%. There will be no exams.

Textbook (reference only): A. Gelman, J. Carlin, H. Stern and D. Rubin, Bayesian
Data Analysis, 2nd Edition, Chapman and Hall, 2003.

Prerequisites: At least two previous courses in statistics, including topics such as in-
ferences for means and proportions, and linear and logistic regression. Differential and
integral calculus. If you are unsure you have sufficient background, please speak to the
instructor.



Bayesian Analysis in the Health Sciences

Course Outline – EPIB–682

Date Topic Covered
Thurs Sept 7 Introduction/Evaluation/Motivation/Background
Thurs Sept 14 Basic Elements of Bayesian Analysis
Thurs Sept 21 Bayesian Philosophy
Thurs Sept 28 Simple Univariate Models
Thurs Oct 5 Computation and Numerical Methods I - Introduction
Thurs Oct 12 Computation and Numerical Methods II - Monte Carlo Integration
Thurs Oct 19 Computation and Numerical Methods III - SIR Algorithm
Thurs Oct 26 Computation and Numerical Methods IV - Gibbs sampler and WinBUGS
Thurs Nov 2 Computation and Numerical Methods V - More on WinBUGS
Thurs Nov 9 Bayesian Linear and Logistic Regression
Thurs Nov 16 Hierarchical Linear and Logistic Regression
Thurs Nov 23 Prior Distributions - Prior Selection and Elicitation
Thurs Nov 30 Model Selection in Regression - Bayes Factors



Bayesian Probabilities - Discrete Case of Bayes Theorem

It is easy to get confused between Bayesian analysis as an inferential paradigm, and
Bayes Theorem as a basic way to manipulate discrete probabilities. Let us first consider
the discrete case:

Suppose we are considering a test for cancer:

Let A = the event that a test is positive.
Let B = the event of actually having cancer.

Suppose we know that:

• P (A|Bc) = 0.05, and so P (Ac|Bc) = 1− 0.05 = 0.95

• P (Ac|B) = 0.20, and so P (A|B) = 1− 0.20 = 0.80

• P (B) = 0.02, and so P (Bc) = 0.98

(a) What is the probability of cancer given that the test is positive?
(b) What is the probability of cancer given that the test is negative?

We can draw a diagram as below:



From the diagram, we see that

P (B|A) =
0.016

0.016 + 0.049
= .2462

and

P (B|Ac) =
0.004

0.004 + 0.931
= .0043

Alternatively, we can use Bayes Theorem, which states:

P (B|A) =
P (B)× P (A|B)

P (B)× P (A|B) + P (Bc)× P (A|Bc)

Plugging in the numbers, we can check that the solutions are the same. For example,

P (B|A) =
P (B)× P (A|B)

P (B)× P (A|B) + P (Bc)× P (A|Bc)
=

0.02× 0.80

0.02× 0.80 + 0.98× 0.05
= .2462.

Switching the roles of A and Ac in the above formula yields

P (B|Ac) =
P (B)× P (Ac|B)

P (B)× P (Ac|B) + P (Bc)× P (Ac|Bc)
= 0.0043

Note that before the test is performed, the probability that a person has cancer is 0.02,
but that these probabilities are “updated” in a natural way, once the test results become
available.

Bayes Theorem may be generalized to the case where the event B has more than two
possible outcomes, say B1, B2, . . . , Bn.



In this case, the Bayes Theorem is

P (Bk|A) =
P (Bk)× P (A|Bk)∑n
i=1 P (Bi)× P (A|Bi)

, k = 1, 2, . . . , n.

Here is an example for this case:

Suppose that Bob can decide to go to work by one of three modes of transportation, car,
bus, or commuter train. Because of high traffic, if he decides to go by car, there is a
50% chance he will be late. If he goes by bus, which has special reserved lanes but is
sometimes overcrowded, the probability of being late is only 20%. The commuter train is
almost never late, with a probability of only 1%, but is more expensive than the bus.

(a) Suppose that Bob is late one day, and his boss wishes to estimate the probability that
he drove to work that day by car. Since he does not know which mode of transportation
Bob usually uses, he gives a prior probability of 1

3
to each of the three possibilities. What

is the boss’ estimate of the probability that Bob drove to work?

(b) Suppose that a coworker of Bob’s knows that he almost always takes the commuter
train to work, never takes the bus, but sometimes, 10% of the time, takes the car. What
is the coworkers probability that Bob drove to work that day, given that he was late?

Solution: The Venn diagram would be:



(a) We have the following information given in the problem:

Pr{ bus } = Pr{ car } = Pr{ train } =
1

3
Pr{ late | car } = 0.5

Pr{ late | train } = 0.01

Pr{ late | bus } = 0.2

We want to calculate Pr{ car | late }.

By Bayes Theorem, this is

Pr{ car | late }

=
Pr{ late | car }Pr{ car }

Pr{ late | car }Pr{ car }+ Pr{ late | bus }Pr{ bus }+ Pr{ late | train }Pr{ train }

=
0.5× 1/3

0.5× 1/3 + 0.2× 1/3 + 0.01× 1/3
= 0.7042

(b) Repeat the identical calculations as the above, but instead of the prior probabilities
being 1

3
, we use Pr{ bus} = 0, Pr{car} = 0.1, and Pr{ train } = 0.9. Plugging in to the

same equation with these three changes, we get Pr{ car | late } = 0.8475

This is a simple theorem in probability, having nothing to do with drawing inferences
from a data set, that everybody uses. Bayes Theorem creates no controversy whatsoever
(not that Bayesian inference is so controversial nowadays).



Bayesian Inference - Continuous Case of Bayes Theorem

The above discrete version is different from the continuous version of Bayes Theorem,
in that it is typically used for drawing inferences, as an alternative to the freqeuntist
approach that leads to p-values and confidence intervals. The continuous version of Bayes
Theorem looks like this:

posterior distribution =
likelihood of the data × prior distribution

a normalizing constant
,

or

f(θ|x) =
f(x|θ)× f(θ)∫
f(x|θ)× f(θ)dθ,

or, forgetting about the normalizing constant,

f(θ|x) ∝ f(x|θ)× f(θ).

Thus we “update” the prior distribution to a posterior distribution after seeing the data
via Bayes Theorem.

We will see many examples of its use later in the course.
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