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Measurement error

Sylvia Richardson

22.1 Introduction

Errors in the measurement of explanatory variables is a common problem in
statistical analysis. It is well known that ignoring these errors can seriously
mislead the quantification of the link between explanatory and response
variables, and many methods have been proposed for countering this. Mea-
surement error was initially investigated in linear regression models (see for
example Fuller, 1987), and recent research has led to its investigation in
other regression models, motivated in particular by applications in epidemi-
ology and other areas of biomedical research. Overviews of measurement
error in epidemiology can be found in Caroll (1989), Armstrong (1990),
Gail (1991), Liu and Liang (1991), Thomas et al. (1993) and Caroll et
al. (1995). We too shall focus much of our discussion in the epidemiological
context.

In epidemiological studies, it is rarely possible to measure all relevant
covariates accurately. Moreover, recent work has shown that measurement
error in one covariate can bias the association between other covariates and
the response variable, even if those other covariates are measured without
error (Greenland, 1980; Brenner, 1993). Apart from biasing the estimates,
misspecification of explanatory variables also leads to loss of efficiency in
tests of association between explanatory and response variables; this has
recently been characterized in logistic regression models by Begg and Lag-
akos (1993).

Any method proposed for correcting parameter estimates in the presence
of measurement error is dependent on some knowledge of the measurement-
error process. It is often possible to build into the design of a study some
assessment of the error process, either by the inclusion of a validation group,
i.e. a subgroup of individuals for whom it is possible to obtain accurate
measurements, or by performing repeated measurements on some of the
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subjects (Willet, 1989; Marshall, 1989). How best to integrate this know-
ledge has been the subject of much research. Existing methods for dealing
with measurement error differ according to:

— the type of covariate considered (continuous or categorical);

— the assumptions made on the measurement-error process (Berkson or
classical, fully parametric or not);

_ the estimation framework considered (maximum likelihood, quasi-likeli-
hood, pseudo-likelihood or Bayesian); and

— whether or not approximations are used.

For continuous covariates, methods substituting an estimate of the expecta-
tion of the unobserved covariate given the measured one (also called the
‘surrogate’) have been discussed by Caroll et al. (1984), Rosner et al.
(1989, 1990), Whittemore (1989) and Pierce et al. (1992). Some methods
‘make a specific assumption of small error variance (Stefanski and Car-
oll, 1985; Whittemore and Keller, 1988; Chesher, 1991; Caroll and Stefan-
ski, 1990). Semi-parametric methods have been considered by Pepe and
Fleming (1991), Caroll and Wand (1991), Pepe et al. (1994), Robins et
al. (1994, 1995) and Mallick and Gelfand (1995). While most of the re-
search quoted above has been concerned with models appropriate for co-
hort studies, the estimation of logistic regression models for case-control
studies with errors in covariates has recently been elaborated by Caroll et
al. (1993) using pseudo-likelihood with non-parametric estimation of the
marginal distribution of the unobserved covariates.

The formulation of measurement-error problems in the framework of a
Bayesian analysis using graphical models, and the associated estimation
methods using stochastic simulation techniques, have recently been de-
veloped (Thomas et al., 1991; Stephens and Dellaportas, 1992; Gilks and
Richardson, 1992; Richardson and Gilks, 1993a,b; Mallick and Gelfand,
1995). In this chapter, we recount this development, placing particular em-
phasis on two aspects: the flexibility of this approach, which can integrate
successfully different sources of information on various types of measure-
ment process; and the natural way in which all sources of uncertainty are
taken account of in the estimation of parameters of interest. Outside the
framework of graphical models, a Bayesian approach to logistic regression
with measurement error has recently been proposed by Schmid and Ros-
ner (1993).

The structure of the measurement-error problem in epidemiology can be
formulated as follows. Risk factors (covariates) are to be related to the dis-
ease status (response variable) Y for each individual. However, for many
or all individuals in the study, while some risk factors C are truly knowxn,
other risk factors X are unknown. It is sometimes possible to obtain infor-

mation on the unknown risk factors X by recording one or several surrogate
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measures Z of X for each individual. In other situations, ancillary risk fac-
tor information, gained by carrying out surveys on individuals outside the
study, but related to the study individuals by known group characteristics,
are used (Gilks and Richardson, 1992). To model this general situation, we
shall distinguish three submodels (following the terminology introduced by
Clayton, 1992):

o a disease model, which expresses the relationship between risk factors C
and X and disease status Y

¢ an exposure model which describes the distribution of the unknown risk
factors X in the general population, or which relates the distribution of
X to ancillary information; and

¢ 3 measurement model, which expresses the relationship between some
surrogate information Z and the true nisk factors X, or which links the
observed survey to the ancillary risk-factor information.

We shall now detail the structure of two particular epidemiological de-
signs; the first is widely encountered in epidemiology, for example in nu-
tritional studies, whilst the second has arisen more prominently in occupa-
tional epidemiology.

22.2 Conditional-independence modelling
22.2.1 Designs with individual-level surrogates

The structure of the three submodels described above can be characterized
through the following conditional-independence assumptions:

disease model v; | Xi,Cs, 0 (22.1)
measurement model [Z: | Xi, Al (22.2)
exposure model [X; | Ci, 7] (22.3)

where subscript 7 denotes the individual, and 8, A and 7 are model para-
meters. Variables in (22.1-22.3) can be scalar or vector. Equations (22.1-
22.3) are called model conditional distributions (‘model conditionals’ for
short). Since we work in a Bayesian framework, we require prior distribu-
tions for 8, A and .

Conditional-independence assumptions

By asserting (22.1-22.3) as model conditionals, we imply far more than
the conditional dependencies made explicit in those equations: we also im-
ply conditional independence relationships which follow from the directed
Markov assumption (Lauritzen et al., 1990). This states that the joint dis-
tribution of all the variables can be written as the product of the model
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conditionals:

181 (A [] H (X | Ciym] 1Zi | Xa, A Y5 | X3, G, B, (22.4)

(3

where [a] generically denotes the distribution of a, and [a | b] generically

denotes the conditional distribution of a given b. Thus, in particular, the

following apply:

- (22.1) states that the disease status of individual 7, Y;, is only depen-
dent on its true exposure X;, on known covariates C; and on unknown
parameters 3. We are thus in the classical case where, conditionally on
the true exposure being known, the surrogate measures Z; do not add
any information on the disease status. Thisis a fundamental assumption
made in most of the work on measurement error in epidemiology.

- (22.2) states that by conditioning on appropriately defined parameters
) and the true exposure X;, the surrogate measures Z; are independent
among individuals. The construction of A will be detailed in an example.

— (22.3) models the population distribution of unknown risk factors among
individuals in terms of parameters 7. Dependence between the differ-
ent components of vector X; can be accommodated through parameters
contained in 7 but the risk factors X; are assumed independent between
individuals given C; and 7.

By specifying the conditional distribution of the surrogate Z given the
true exposure X as in (22.2), we are placing ourselves in the Bayesian
analog of what is traditionally referred to as the ‘classical error model’,
where measurement error is independent of X . Another type of error model
which has been considered in the literature is the Berkson error model,
where (22.2) is replaced by [X; | Z;, A]. With the Berkson error model,
usually no model need be specified for the marginal distribution of Z.

Conditional-independence graph

An influence diagram or conditional-independence graph corresponding
to (22.1-22.3), encompassing several epidemiological designs, is shown in
Figure 22.1. We use squares to denote observed quantities and circles to
denote unobserved quantities. See Spiegelhalter et al. (1995: this volume)
for further discussion of conditional independence graphs. Figure 22.1 iden-
tifies six groups of individuals, grouped according to which variables are
recorded. For example, for individuals in Part 1 of Figure 22.1, variables Xi,
Y;, C; and Z; are recorded, whilst for individuals in Part 2 only variables
Y;, C; and Z; are recorded. Designs which record X; on some individuals
presume the availability of a ‘gold standard’, i.e. an error-free method for
measuring X.

Parts 1 and 4 of Figure 22.1 are validation studies. In a validation study,
both X; and Z; are recorded on each individual, providing information
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Figure 22.1 A graph corresponding to equations (22.1-22.3).
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on the measurement-process parameters A. A validation study is either in-
ternal, if disease status Y; is also recorded (Part 1), or external, if there
1s no information on disease status (Part 4). Part 2 represents the com.
mon situation where only surrogates and disease status are known. Part 3
represents a subgroup in which only the true exposure and disease status
are known. Clearly if all the individuals were in this group, there would
be no measurement-error problem. In general, the number of individuals
included in Parts 1 and 3 will be small compared to Part 2. Finally, Parts 5
and 6 represent ‘survey’ situations in which information is obtained only
on surrogates or on the true exposure. This global influence diagram illus-
trates how information can flow from one part of the graph to another.
For example, Part 6 contributes information on 7 which in turn provides
information on X; in Part 5, so that Part 5 can yield some information on
A
When no gold standard is available, validation groups are ruled out
and the estimation of measurement model parameters must rely on other
sources of information. Designs might then include several measuring in-
struments with possible repeated determinations. Let Z;p, denote the rt?
repeated measurement of instrument A for individual . The model condi-
tional for the measurement process (22.2) now becomes:

[Zinr | Xi, M. (22.5)

This equation states that, conditionally on the true value of the covariate
X and on Ay, there is independence of the surrogates Z;p, between repeats
and between instruments.

22.2.2 Designs using ancillary risk-factor information

In occupational or environmental epidemiology, risk-factor information for
each individual is often not directly available and must be obtained from
ancillary, aggregate-level information, such as a job-exposure matrix in an
industrial-epidemiological application. Job-exposure matrices provide in-
formation on exposures to each of many industrial agents in each of many
finely subdivided categories of occupation. They are commonly constructed
by industrial experts from detailed job descriptions obtained in a specially
conducted survey. Thus the exposure to industrial agents of each individual
in the disease study can be assessed using only his job title, by referring
to a job-exposure matrix. The measurement-error model implied by this
design is different from those considered above, as imprecision in expos-
ure information provided by the job-exposure matrix must be taken into
account.
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Model conditionals

‘We consider the case of a dichotomous exposure. Let ;1 denote the under-
lying (unobserved) probability of being exposed to agent k, for individuals
in job j. We assume that 7, is the same in the disease study and in the job-
exposure survey. Let m; denote the number of people in the job-exposure
survey with job j who were considered by the experts to be exposed to
agent k. The model conditional for the aggregate-level survey data {m;}
is then:

[mjk ‘ Tiks nj] = Binomial (7r]-k, le), (22.6)
where n; is the number of people with job j included in the survey. Equa-
tion (22.6) represents the measurement model in our general formulation
in Section 22.1.

The unknown dichotomous exposure X;; of disease-study individual ¢ to
agent k is linked to the job-exposure matrix through his job title j = j().
Since individual 7 is exposed to agent k (X;x = 1) with probability m;(;,
the model conditional for exposure in the disease study is given by:

[Xik | mj¢iye] = Bernoulli (m5(:)k)- (22.7)

This represents the exposure model in our general formulation in Sec-
tion 22.1. The disease model is given as before by equation (22.1).

Note that the job-exposure survey does not provide information directly
on X, but rather on the prior distribution of X. We are thus in nei-
ther the classical nor the Berkson measurement-error situation. Gilks and
Richardson (1992) demonstrate good performance of Bayesian modelling
for analysing designs of this kind.

Suppose, in addition to the job-exposure matrix, that direct surrogate
dichotomous measures Z;; of X;; are available for some or all disease-study
individuals. These might be provided by expert assessment, as in the job-
exposure survey. The previous set-up can easily be generalized to include
both sources of risk-factor information. We need only specify one additional
model conditional:

[Zik | Xik, Ok], (22.8)

where 6, represents misclassification parameters corresponding to errors in
the coding of exposure to agent k. The measurement model now consists of
both (22.6) and (22.8). The graph associated with this model is represented
in Figure 22.2.

22.2.3 Estimation

Estimation of the models described above can be carried out straight-
forwardly by Gibbs sampling; see Gilks et al. (1995: this volume) for a
general description of this method, and Gilks and Richardson (1992) and

—
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Figure 22.2 A graph corresponding to equations (22.1) and (22.6-22.8).

Richardson and Gilks (1993a) for computational details including full con-
ditional distribtions for the above models. Sampling from full conditional
distributions was performed using adaptive rejection sampling (Gilks and
Wild, 1992; Gilks, 1995: this volume).

22.3 Tllustrative examples

In this section, we present a series of examples. Our aims are to illustrate
different types of measurement-error situation, to discuss the performance
of our approach and to outline areas for further research. We have used
simulated data sets throughout to evaluate the performance of our method
of analysis.

22.3.1 Two measuring instruments with no validation group

In our first example, we present the analysis of a simulated data set re-
producing a design where information on the measurement parameters is
obtained through the combination of two measuring instruments.
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Design set-up

Two risk factors are involved in the disease model. The first one, X, is mea-
sured with error and the second one, C, is known accurately. We consider
the case of a logistic link between risk factors and disease status. Specifi-
cally, we suppose that Y; follows a Bernoulli distribution with parameter
«;, where logit a; = fo+ 1 X+ B2C;. We suppose that the exposure vector
(X, C) follows a bivariate normal distribution, with mean p and variance-
covariance matrix 3. Thus the vector 8 in (22.1) comprises parameters
Bo, B1, B2; and 7 in (22.3) comprises p and X.

Concerning the measurement process, we consider the case of two mea-
suring instruments. The first instrument has low precision but is unbiased.
In contrast, the second instrument has a higher precision but is known to
be biased. Since Instrument 2 has a higher precision, it is used in prefer-
ence to Instrument 1 on the entire study population. However, we aim to
correct the bias of Instrument 2 by including in the design a subgroup of
relatively small size in which both instruments are measured, Instrument 1
being administered twice.

We suppose that the model conditional for the 7" repeat of Instrument 1
is a normal distribution with mean X; and variance 87 1.

[Zi1r | Xi,61] = N(X;, 67,  r=1,2.

Here the only measurement parameter is 6, the precision (the inverse of
the variance) of Instrument 1. Parameter #; corresponds to Ay in (22.5).
For the biased Instrument 2, the model conditional is also normal:

[Zia | Xi, b2, %2, 02] = N(82 + 12X;,057).

Here the measurement parameters are the intercept ¢, and slope 15 (ex-
pressing the linear relationship between the true exposure and its surro-
gate), and the precision §;. These parameters correspond to Az in equa-
tion (22.5).

The study is thus designed to include two parts (i.e. two subgroups of
individuals) with 1000 individuals in Part 1 and n = 200 or 50 individuals
in Part 2. In Part 1, only Instrument 2 has been recorded. In Part 2,
Instrument 1 has been measured twice and Instrument 2 has been recorded
once on each individual.

A data set was generated using ‘true’ values of fq, 51, B2, 01, ¢2, ¥2 and
82 given in Table 22.1 (column: ‘true values’) and with

_ 0.5 5= 1.02 0.56
F=\ -05 )> =\ 055 096 )
Thus we have simulated a situation with two detrimental risk factors X and
C having relative risks 2.46 and 3.32 respectively, with a positive correlation

of 0.56 between X and C. Note that Instrument 2 is three times more
accurate than Instrument 1 (6, = 3 x 6;).
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Gibbs sampling analysis classical analysis
true - n=200 n=50 with Instrum. 2
parameter value mean £ s.d. mean =+ s.d. mean =+ s.e.
Bo -0.8 -0.81 0.32 -0.77  0.40 -0.17 0.11
e 0.9 1.03 0.36 0.98 0.42 0.14 0.07
B2 1.2 1.25 0.14 1.36 0.21 1.57 0.11
01 0.3 0.31 0.03 0.25 0.04 - -
@2 0.8 0.81 0.11 0.84 0.14 - -
P2 0.4 0.44 0.09 0.45 0.14 - -
9, 0.9 0.91 0.06 0.96 0.13 - -

Table 22.1 Gibbs sampling analysis of a design with 2 measuring instruments

Results

Table 22.1 presents the results from a Gibbs sampling analysis of the simu-
lated data set. Hyperparameters were chosen to.specify only vague prior
information (for details see Richardson and Gilks, 1993a). We have summa-
rized marginal posterior distributions of parameters of interest by reporting
posterior means and standard deviations. In the last two columns of Ta-
ble 22.1, we have given classical estimates of log relative risks and their
standard errors which would be obtained if the analysis relied solely on the
data of Part 1, i.e. if no correction for measurement error was performed. We
see that these estimates are quite hopeless and that the simulated situation
is one in which measurement error, if not taken into account, substantially
influences the results.

The results show that our estimation method has performed satisfactorily
with all the estimated values lying within one posterior standard deviation
of the values set in the simulation. As expected, the posterior standard de-
viation for 2 which corresponds to the covariate C measured without error
is smaller than that for 8; which corresponds to X. Note the influence of
the size n of Part 2 on all posterior standard deviations. The measurement
parameters for Instrument 2 have been well estimated, even though our de-
sign did not include a validation subgroup. This highlights how information
has been naturally propagated between the two measuring instruments and
between the two parts of the design.

In this particular design, even though there is no gold standard, the data
still contain information on ¢3 and 1, because there is information on X;
from the repeats of the unbiased Instrument 1, information which repres-
ents in effect a ‘simulated gold standard’. The size n of Part 2 is clearly
crucial in this process: with a smaller validation subgroup, the results de-
teriorate.
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22.3.2 Influence of the exposure model

At each step of the approach we have outlined so far, conditional distri-
butions need to'be explicitely specified in a parametric way. Whilst some
of these parametric distributions arise naturally, such as the choice of a
logistic model for the disease risk, other assumed distributional forms are
more arbitrary. In particular, there are some cases where little is known
about the distribution of the exposure X and an appropriate model for it
(Thomas et al., 1991).

The exposure model (22.3) we have implemented in our recent work
is that of a simple Gaussian distribution. A natural generalization of the
exposure model would be a mixture of Gaussians or other distributions. As
a first step in that direction, we have assessed the effect of misspecifying a
simple Gaussian variable for exposure when the true exposure is a mlxture
of Gaussians or a x? distribution, as we now describe.

Stmulation set-up

We consider a study with one known risk factor C' and another risk factor
X measured with error by a surrogate Z on 1000 individuals. The study
also includes a validation group containing 200 individuals where both X
and Z are measured. As in the previous example, we assume a logistic
link between risk factor and disease status. Three datasets were simulated,
differing in the generating distribution for true exposures X:

1 1
(a) Xi~ §N(—1.0, 1.0)+ 5N(2.0, 1.0);
1 1
(b) X;~ §N(~3.0, 1.0) + —Q-N(4.0, 1.0);
(¢) Xi~ xi-
In each dataset the surrogate Z; was generated by:
1Z: | X;,0] = N(X,-,G‘l).

Each of the three simulated datasets was analysed by Gibbs sampling,
with the assumption that the exposure model for (X, C') was misspecified
as a bivariate normal distribution with mean g and variance-covariance
matrix X, with a vague prior distribution for x centred around (0.5, 0.5) and
a Wishart prior distribution for ¥ with 5 degrees of freedom and identity
scale matrix.

The results are shown in Table 22.2. With a bimodal, symmetric true
exposure distribution (Datasets (a) and (b)), the parameters are still ad-
equately estimated, although there is some deterioration when the modes
are well-separated (Dataset (b)). However in Dataset (c), where the true
exposure distribution is skewed, misspecification has led to attenuation of
the estimate of fy, and its 95% credible interval no longer contains the
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true value. Hence misspecification of the exposure model can influence the
regression results. Further studies of the influence of misspecification are

warranted.

true Dataset (a) Dataset (b) Dataset (c)

parameter value mean + s.d. mean =+ s.d. mean =+ s.d.
Bo -0.8 -0.82  0.11 -0.72  0.13 -0.68  0.12

B 0.9 0.91 0.08 0.77  0.07 0.56 0.08

) 1.2 1.20 0.08 1.03 0.08 1.34 0.13

6 0.9 0.87 0.08 0.87 0.09 0.86 0.08

Ix 0.5 0.50 0.06 0.50 0.11 1.35 0.07

pe 0.5 0.55 0.05 0.63 0.10 1.24  0.05

Table 22.2 Gibbs sampling analysis with misspecified exposure distribution

Mixture models provide great flexibility in modelling distributions with a
variety of shapes. The next stage in the development of our graphical mode]
will be to employ a mixture model for the exposure distribution (22.3).
Gibbs sampling analysis of mixtures is discussed by Robert (1995: this
volume). A difference between our set-up and the set-up usually considered
in mixture problems is that, in our case, we do not observe a fixed sample
from the mixture distribution; rather, this sample (corresponding to the
unknown risk factor X) is generated anew at each iteration of the Gibbs
sampler. It will be thus interesting to see how convergence of the Gibbs

sampler is modified by the additional level of randomness.

22.3.3 Ancillary risk-factor information and expert coding

In our last example, we illustrate how ancillary information can be com-
bined with expert coding to provide estimates of both regression coefficients
and probabilities of misclassification. This extends the work of Gilks and
Richardson (1992). We first describe how the job-exposure survey data and

Generating disease-study data

the disease-study data were generated.

Each of 1000 individuals were randomly and equiprobably assigned to one

of four occupations (j = 1,...,4). For each individual, exposure status
(Xi = 1: exposed; X; = 0: not exposed) to a single industrial agent was

randomly assigned according to true job-exposure probabilities {=;}:
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Disease status (Y; = 1: diseased; ¥; = 0: not diseased) was assigned with
probability of disease «;, where logit o; = G + 51 X;.

We also supposed that, for each of the 1000 individuals, an expert was
able to code their exposure with a variable Z;. This was generated from X;
with the following misclassification probabilities:

P(Z; =1 X; =0)=; P(Z;=0]|X;=1) =7,

Exposures X; were thenceforth assumed unknown for each individual, so
the analysis was based only on Y;, Z; and the job-exposure survey data,
described next. Three datasets were generated:

(a) Z; not available;
(b) Y1 = 02, Y2 = 05,
(¢) 1=0.1,72=0.3.

Generating the job-ezposure survey data

L Each of 150 individuals were assigned an occupation and an exposure sta- ‘
tus, as for the disease study individuals. The observed job-exposure matrix -
{nj, m;} (where n; is the number of surveyed individuals in job j and m; .
is the number ‘coded by the expert’ as ‘exposed’) was compiled from these
150 individuals, and the job-exposure probabilities ; were thenceforth as-
sumed unknown, The job-exposure matrix was assumed to be available for
each of the three datasets described above.

Analysing the simulated data

For the graphical model, we assumed a normal N(0,9) prior distribution
for the regression parameter 3, and almost flat priors for logit 7;, logit 71
and logit v5. We ran the Gibbs sampler for 7000 iterations, discarding the
first 100 iterations before analysis. The results are presented in Table 22.3.

By comparing the results for Datasets (b) and (c) with Dataset (a), one
can clearly see that the information given by the coding of the expert leads
to improved estimates of the regression coefficients, with smaller posterior
standard deviations. The improvement is more marked in (c) as the misclas-
sification probabilities are smaller than in (b). Morevover good estimates
of the misclassification probabilities are also obtained.
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Dataset parameters Bo B 71 72

(a) true values -1.00 1.50 - -
posterior mean -0.99 1.70 - -
posterior s.d. 0.30 0.43 - -

(b) true values -1.00 1.50 0.20 0.50
posterior mean -1.20 1.63 0.16 0.51
posterior s.d. 0.27 0.34 0.04 0.03

(c) true values -1.00 1.50 0.10 0.30
posterior mean -1.11 156 0.08 0.32
posterior s.d. 0.18 0.24 0.04 0.03

Table 22.3 Gibbs sampling analysis of designs with ancillary risk-factor informa-
tion and ezpert coding

22.4 Discussion

In this chapter, we have presented a unifying representation through con-
ditional independence models of measurement-error problems with spe-
cial reference to epidemiological applications. There are several advan-
tages of this approach over methods previously proposed which are ex-
tensively discussed in Richardson and Gilks (1993a). Of paramount impor-
tance is its flexibility, which enables the modelling of an extensive range
of measurement-error situations without resorting to artificial simplifying
assumptions. This has important design implications for future studies.
Now that analyses of complex measurement-error designs can be carried
out successfully, there is more freedom at the design stage. An important
area for future research is thus to give guidelines for complex designs.

The key to the construction of such models is the stipulation of suitable
conditional independence assumptions. Careful thought has to be given to
the implications of each of these assumptions in any particular context.
For example, in (22.1-22.4) ‘we have assumed independence between the
Y conditional on the X, C and f. This is an appropriate assumption in
chronic disease epidemiology but is likely to be violated when considering
infectious diseases. Indeed, the disease status of an individual is influenced,
through contagious contacts, by the disease status of other individuals. As
another example, the conditional independence between repeated measures
of surrogates given the true risk factor, assumed by (22.5), would not hold
if there is a systematic bias in the measurement.

The approach we have developed is fully parametric. The influence on
regression parameter estimates of misspecification of the measurement error
or exposure distributions gives cause for concern. The use of flexible mixture
distributions is a natural way to relax the fully parametric set-up. This
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approach has been taken by Mallick and Gelfand (1995). By using a mixture
of cumulative beta distribution functions to model unknown cumulative
distribution functions, they formulate a semi-parametric Bayesian approach
to a measurement-error problem, implemented through a single-component
Metropolis—Hastings algorithm.
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