
Course EPIB-675 - Bayesian Analysis in Medicine

Assignment 7

In the first three questions we will analyse data for a meta-analysis. In ques-
tion 1, we will use a very simple meta-analysis model that assumes that the
effects are identical across all trials. In the second we will use a hierarchical
(random effects) model, that assumes that the effects across studies are not
identical, but follow a common distribution. Finally, in question 3, we will
continue to use a random effects model, but we will try to see if some of
the variations in effects between studies can be explained by study-level co-
variates, by adding a regression component to the meta-analytic hierarchical
model.

The basic setup for all three questions is as follows: Eleven trials have been
carried out to see if inserting stents are useful following heart attacks. Each
of the 11 trials has a treatment (stent) group, and a control (placebo) group.
In addition, each trial either used a plastic or a metal stent. The primary
objective is to see whether subjects who receive stents have fewer future
events (i.e., further heart attacks).

1. Download the data set meta.txt from the course web page. It is already in
WinBUGS format. WinBUGS comes with an example called Blocker, which
we have discussed in class. We will use the Blocker example in question 2
below, but here we want to use a simpler meta-analysis model, without ran-
dom effects. Starting from the Blocker model, therefore, we wish to change
delta[i] to a single effect delta, which also means that the line giving a normal
distribution to delta should move outside of the “loop” over i, and “d” and
“tau” should be constants (such as 0, and 0.001) rather than variables. The
rest of the program can remain as it is, but add a line that provides an odds
ratio for the overall effect, i.e., add a line like:

or <- exp(delta)

Run this meta-analytic model using the meta.txt data set, monitor all un-
known parameters (including pc and pt), and report the results. Does there



seem to be an effect of the stents?

2. Now, using the same data set, run the blocker model, but as it was
originally. Again, add a line that gets the overall odds ratio, now using
delta.new rather than delta. That is, add a line like:

or <- exp(delta.new)

Compare the odds ratio for stents in the two models. Are their means similar?
What about their variances? Looking at the parameter for the SD of the
effect of delta (i.e., looking at sigma), does a random effects model seem
warranted (i.e., does there seem to be variations in effects across the 11
studies)?

3. Finally, again use the blocker model, but now switch to the meta.reg.txt
data set. This data set is identical to the one used in the first two questions,
except that is adds a variable to indicate whether the coating was plastic
or metal. We will see if some of the variability in study-to-study effect can
be explained by the stent type by adding a regression term to the prior
distribution of delta[i]. To do this, remove the three lines in blocker (note
that they are not consecutive lines in the program)

delta[i] ~ dnorm(d, tau)

d ~ dnorm(0.0,1.0E-6)

delta.new ~ dnorm(d, tau)

and replace them with:

delta.mean[i] <- alpha + beta*coating[i]

delta[i] ~ dnorm(delta.mean[i], tau)

alpha ~ dnorm(0.0,0.001)

beta ~ dnorm(0.0,0.001)

mean.plastic <- alpha

mean.metal <- alpha + beta

delta.plastic ~ dnorm(mean.plastic, tau)

delta.metal ~ dnorm(mean.metal, tau)

or.plastic <- exp(delta.plastic)



or.metal <- exp(delta.metal)

or.diff <- or.plastic - or.metal

Lines with [i]’s in them (first two lines above) go inside the loop, other lines
(all the rest) go outside the loop. The last line calculates the difference in
odds ratios between the two stent types.

Run this model, and report results from all parameters. Does it appear that
stent type explains some of the variability in the effectiveness of stents across
studies?

In the next two questions we will investigate measurement error. In question
4, we will generate a data set in R, and then deliberately add measurement
error to the x variable. By comparing the estimated slope in each case (i.e.,
with and without measurement error), we will see the effect that measure-
ment error has on an estimated regression line. In question 5, we will use
WinBUGS to see if a model specially constructed to adjust for measurement
error can reconstruct the original (correct) estimates.

4. Generate a simulated linear regression data set in R that follows the
following model (sample size = 100):

y = 2 + 5 ∗ x, σ = 1, x ∼ normal(0, 1)

To do this, use lines such as:

x <- round(rnorm(100, mean=0, sd=1),2)

y <- round(rnorm(100, mean = 2 + 5*x, sd=1),2)

Note that since we are using random numbers, everyone in the class will be
using a slightly different data set. I rounded everything to 2 decimal places,
which makes for cleaner data sets without losing too much precision.

(a) Plot x versus y.

(b) Use R to run a standard linear regression of x versus y. Provide the
estimates and 95% confidence intervals for the intercept and slope (see R



class notes if you forget how to do this, and recall that approximate 95%
intervals can be derived from the point estimates ±1.96 times the standard
error for each parameter). Are they close to their theoretical values (of 2 and
5, respectively)?

(c) Now we will add some measurement error to the x values. In particular,
we will create a measurement error version of x using the R command

x.error <- round(rnorm(100, mean=x, sd=2),2 )

Note that the measurement error version of x is centered at the true value
of x, but has random noise about the observation. This is typical of mea-
surement error seen when data are generated by an unbiased but imprecise
measuring tool. Plot x.error versus y, and note any differences from your
plot in part (a).

(d) Rerun the linear regression again, but this time using x.error rather than
x. Compare the results (point estimates and confidence intervals) you obtain
here with those obtained in part (b), and note any differences.

(e) Before leaving R, save your data sets for use in WinBUGS in problem 5.
To do this, use commands such as:

x.list <- list(x=x, yy)

xerror.list <- list(x.error = x.error, y=y)

dput(x.list, file = "c://temp//x.txt")

dput(xerror.list, file= "c://temp//xerror.txt")

You will use the first data set in the (a) of question 5, and the second data
set in parts (b) and (c) of question 5.

5. In this question we will analyse the same two data sets as were used
in question 4, but now using WinBUGS, with and without correcting for
possible measurement error.

(a) Run a straightforward WinBUGS program for the linear regression of x
versus y (see class notes of simple WinBUGS programs if you do not recall
how to do this). Provide the point estimates and 95% credible intervals for



the intercept and slope. Compare these to your estimates in part (b) of
question 4 (they should be quite similar).

(b) repeat part (a), but now using x.error versus y. Provide the point
estimates and 95% credible intervals for the intercept and slope. Compare
these to your estimates in part (d) of question 4 (again, they should be quite
similar).

(c) Now, we will modify the simple linear regression model to account for
any measurement error. To the basic linear regression model (from part (a),
NOT part (b), because we want to estimate the true relationship with x, not
the one with measurement error variable x.error!), add a line such as:

x[i] ~ dnorm(x.error[i], tau.error)

You will also need to add a line for the prior for tau.error. As usual, we will
define tau.error in terms of sigma.error, and put a uniform prior on sigma.
Use the following lines:

tau.error <- 1/(sigma.error*sigma.error)

sigma.error ~ dunif(1,5)

to indicate that it is known that the measurement error variance is between
1 and 5 (real value, recall, was 2).

Run this model, and report the point estimates and 95% credible intervals
for the intercept and slope. Compare these to your estimates in part (b) of
question 5 . . . has the model correctly adjusted for the measurement error?


