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A Bayesian Approach to Measurement Error Problems in
Epidemiology Using Conditional Independence Models

Sylvia Richardson1 and Walter R. Gilks2

Risk factors used in epidemiology are often measured with error which can seriously
affect the assessment of the relation between nsk factors and disease outcome. In this
paper, a Bayesian perspective on measurement error problems in epidemiology is taken
and it is shown how the information available in this setting can be structured in terms
of conditional independence models. The modeling of common designs used in the
presence of measurement error (validation group, repeated measures, ancillary data)
is described The authors indicate how Bayesian estimation can be carried out in these
settings using Gibbs sampling, a sampling technique which is being increasingly referred
to in statistical and biomedical applications. The method is illustrated by analyzing a
design with two measunng instruments and no validation group. Am J Epidemiol
1993; 138430-42

biometry; Bayesian method; epidemiologic methods; Monte Carlo method

It is widely recognized that risk factors
(exposures or more generally covariates)
used in epidemiology are often measured
with error which can seriously affect the as-
sessment of the relation between risk factors
and disease outcome. In some instances, it is
possible to seek to improve the measuring
instrument and thus have a better record of
exposure for the whole population. There
are many situations, however, where it is not
feasible to obtain accurate measurements on
the entire study population, although this
might be attempted on a smaller subset (the
validation group). Examples of this type of
design abound in the field of nutritional or
occupational epidemiology. It is thus impor-
tant, at the analysis stage, to have statistical
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methods which can successfully estimate
the strength of the association between the
risk factor and the disease outcome by using
some (often very partial) information on the
measurement instrument.

It is clear that any method proposed for
correcting parameter estimates in the pres-
ence of measurement error is strongly de-
pendent on some knowledge of the measure-
ment error process. How best to integrate
this knowledge in the context of epidemio-
logic studies has been the subject of much
interest (1-6). In the frequentist (non-
Bayesian) inference framework, the meth-
ods proposed for correcting relative risk es-
timates meet with certain difficulties which
have been solved in a variety of ways. Spe-
cial features of the model can be exploited,
for example, considering nondifferential
symmetric misclassification errors in case-
control studies (2). Alternatively, conditions
allowing approximate inference might be
imposed either on the disease process (the
rare disease assumption (3)), or on the mea-
surement error process (small eiTor-variance
assumptions (7)).

In this paper, we aim to give a Bayesian
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Bayesian Approach to Measurement Error 431

perspective on measurement error problems
and to show how, with this new perspective,
many of the difficulties encountered by ex-
isting methods can be overcome. Bayesian
methods have not been widely used in epi-
demiology even though a large range of
problems can be formulated naturally in this
framework (8). Recent statistical and com-
putational advances have now made this ap-
proach possible in many applications, in par-
ticular in biomedical research (9, 10).
Recently, Thomas et al. (11) have used a
Bayesian approach to analyze a particular
case of measurement error in matched case-
control studies.

BAYESIAN APPROACH

General principles

Bayesians and frequentists differ through
their concept of probability. As a conse-
quence, they handle uncertainty in model
parameters differently. Bayesians think of
model parameters as random variables, and
they interpret the probability distribution of

a model parameter in terms of degrees of
belief about values of that parameter. Fre-
quentists think of probabilities as frequen-
cies observed in a long run of repeated ex-
periments, and they view model parameters
as fixed (non-random) quantities which
therefore cannot have probability distribu-
tions.

In the Bayesian approach, information
available at the start of the study leads to
specification of the prior distribution of the
parameters. Once data have been gathered,
inference is made on the basis of the pos-
terior distribution of the parameters given
the data, which, by Bayes theorem, are pro-
portional to the product of the likelihood and
the prior distribution. From this posterior
distribution, point and interval estimates of
the parameters might be computed.

An illustration of prior to posterior up-
dating is given in figure 1. Let us consider,
say, a relative risk (denoted by RR). From its
prior distribution (top of figure 1), we can
see that before any data were gathered, it
was thought that the true value of the relative

FIGURE 1. Illustration of prior to postenor updating in Bayesian inference Top, pnor distnbution of RR, bottom,
posterior distribution of RR.
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432 Richardson and Gilks

risk lay between 0.07 and 3.12 with prob-
ability 0.95. The posterior distribution (bot-
tom of figure 1) is more concentrated than
the prior distribution, showing a probability
of 0.95 that the relative risk lies between
0.95 and 1.78. This is called a 95 percent
credibility interval. Note that a credibility
interval has a natural interpretation in terms
of probabilities. The frequentist analogue of
a credibility interval is a confidence interval,
which has a more difficult probabilistic in-
terpretation: 95 percent of 95 percent con-
fidence intervals for RR calculated in a
long run of repeated experiments would
contain the true value of RR. Not surpris-
ingly, confidence intervals are often errone-
ously interpreted.

Measurement error problems from a
Bayesian perspective

In the measurement error problem, some
risk factors X related to the disease status Y
are unknown, although surrogate measures
Z of X are recorded. Estimation of the epi-
demiologic parameters of interest, e.g., the
relative risks linking X and Y, must take into
account all the uncertainty on X.

At the start of the study, some informa-
tion (possibly limited) is available on the
distribution of the risk factors in the gen-
eral population, leading to the specifica-
tion of a prior distribution for X. If the
study is one in a series carried out on the
same population, this prior information
might be well focused, otherwise the prior
distribution will be assumed to be suitably
vague. During the study, surrogate mea-
sures are recorded which provide informa-
tion on X. Therefore, having the surrogate
measures reduces the uncertainty on the
unknown risk factors X. A similar process
operates for the epidemiologic parameters.
From a literature review, some information
might be gathered which allows a prior
distribution to be specified for these pa-
rameters. The prior distribution would, for
example, exclude unrealistically high or
low relative risks. In the study data, infor-
mation on the relative risks is contained in

the disease status Y, but this information is
strengthened by the surrogates Z through
their link with the unknown risk factors X.

In the following sections, we shall show
how we can structure the information
available in this general epidemiologic
setting of measurement error in terms of
conditional independence models, and out-
line a method of estimation called Gibbs
sampling.

CONDITIONAL INDEPENDENCE
MODELING AND ITS ASSOCIATED
GRAPHICAL REPRESENTATION

The construction of conditional indepen-
dence models is carried out in two stages.
The structural part of the model is set up
first. This is followed by the specification of
the functional part where all the distribu-
tions involved are precisely defined. In this
section, we concentrate on the formulation
of the structural part of measurement error
problems.

A key concept in building the structure of
a model is that of conditional independence.
To illustrate this concept in our context, let
us consider the three variables Z,, X,, and Y,
for an individual i. To state that Y, andZl are
conditionally independent given X, is
equivalent to making the classical assump-
tion that the surrogate measures Z, do not
provide any information on the disease sta-
tus Y, if true values of risk factors Xt are
known.

Using conditional independence, each
variable in the model will be related condi-
tionally to only a few other variables. Let us
stress, at this stage, that the conditional in-
dependence assumptions contribute infor-
mation on the structure of the model which
will strengthen inference, presuming of
course that these assumptions are correct.
Therefore, great care has to be given to the
consequences of each of the conditional in-
dependence assumptions. In this way, com-
plex problems are broken down into modu-
lar components which have a relatively
simple structure. In the measurement error
problem, following the terminology intro-
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Bayesian Approach to Measurement Error 433

duced by Clayton (12), two of the compo-
nents are: a disease model, which expresses
the relation between unknown risk factors X,
possibly also some known risk factors C and
the disease status Y; and a measurement
model, which expresses the relation be-
tween the surrogate measures Z and the true
unknown risk factors X.

Measurement error has traditionally been
modeled in two different ways. In the clas-
sical measurement error formulation, the
conditional distribution of the surrogates Z
given the true risk factors X is specified,
while in the Berkson formulation, it is the
conditional distribution of X given Z which
is specified.

Graphs

Conditional independence models are
naturally expressed by means of a graphical
representation (an influence diagram or
graph) in which nodes represent random
variables of interest and edges (arrows) re-
flect local dependencies.

The basic features of the graph corre-
sponding to the classical measurement error
situation are represented in the top part of
figure 2. In this graph, square nodes denote
known quantities (data), and circular nodes
denote unknown quantities (unknown risk
factors). The arrows entering node Y show
that disease status depends on the risk fac-
tors X and C. The arrow entering Z reflects
the classical measurement error hypothesis,
i.e., that the distribution of Z is specified
conditionally on X. The absence of an edge
between Y and Z shows that they are con-

ditionally independent given X, a classical
assumption (see above).

The purpose of the top part of figure 2 is
to convey the essential relations between
the three groups of variables: the disease
status, the risk factors, and the surrogates.
Thus, each node stands generically for a
family of variables. For example, X repre-
sents one or several risk factors while Z
stands for all the surrogate measures of X,
including repeats.

The parameters linking the different
groups of variables need now to be speci-
fied. These parameters form three groups: 1)
the epidemiologic parameters /3 (e.g., rela-
tive risks) modeling the link between the
risk factors X and C and the disease status Y;
2) the measurement error parameters A (e.g.,
measurement error variance) modeling the
link betweenZand its surrogate Z; and 3) the
exposure parameters TT (e.g., population
mean and variance) modeling the population
distribution of X. Note that we are now dis-
tinguishing a third component, the exposure
model, which describes the distribution of
the unknown risk factors in the general
population, i.e., the population distribution
ofX.

The structure of the graph represented in
the top part of figure 2 can be enriched by
the inclusion of these parameters (middle
part of figure 2). Now two arrows, originat-
ing from X and A, are pointing toward Z. By
this, we indicate that the conditional distri-
bution of Z is entirely specified given A'and
A and similarly for the conditional distribu-
tion of Y given X, C, and /3 and that of X
given 77.

Model conditionals

The structure of the measurement error problem can thus be formalized by writing three
equations, each expressing local dependencies:

disease model [Yt \ X,,C,,fi\ (1)

measurement model [Z, I X,, A] (2)

exposure model \Xt I Ct, TT], (3)

where the index / denotes individual /, and [£/l V] generically denotes the conditional
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a)

c

Y

c)

FIGURE 2. Measurement error graphs, a) conditional relations in a classical measurement error situation between
the disease status V, the risks factors X (unknown) and C (known) and the surrogate measure Z of X; b) graph
corresponding to the classical measurement error situation modeled in equations 1, 2, and 3, and c) graph
corresponding to the Berkson error model defined by equations 1 and 2'.

distribution of U given V. Since we are in a Bayesian framework, prior distributions for fi,
A, and IT are also required (denoted respectively by [£], [A], and [TT]). The description of
the structure is completed by specifying that the joint distribution of all the variables can
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Bayesian Approach to Measurement Error 435

be written as the product of all the model conditionals:

] IT [X, I C,, IT] I I [Z, I X,, A] IT [Y, I X,, C,, ft. (4)

Equation 4 can be broadly translated by saying that there are no local dependencies other
than those stated by the model equations 1, 2, and 3; equivalently, equation 4 implies many
additional conditional independence assumptions. For example, we have not included in
equation 1 a dependence of Y, on the risk factors X,< for other individuals i'. Thus, we assert
that Y, is independent of all the X,-, i' ^ i, conditionally on X,, C,, and /3. Similarly, equation
2 states that by conditioning on appropriately defined parameters A and the true exposure
X,, the surrogate measures Z, are independent among individuals. The construction of A
requires careful attention and will be discussed later.

Model equation 2 corresponds to a classical error model formulation. For a Berkson type
of error model, equation 2 would be replaced by equation 2',

measurement model [X, I Z,, A*], (2')

and there would be no need to specify an exposure model equation 3 since the distribution
of X would be entirely specified by that of the known surrogates in this case (hence its
attraction in the frequentist approach). This is a very strong assumption which has been
debated at length (1, 13). In a Berkson error model, arrows would point from Z to X (bottom
part of figure 2). This underlines the essential distinction between the classical and the
Berkson error models and gives some intuition as to why the Berkson case is simpler to
analyze.

INFERENCE

We now present some basic ideas concerning Bayesian inference in these models. Before
carrying out the estimation, the functional part of the model has to be set up, which entails
specifying explicitly the parametric form of all the conditional distributions. In some cases,
there is a natural choice of parametrization, such as specifying a logistic distribution for the
disease model. In other cases, the parametric distribution can be tailored to the particular
application using some external information like the measurement and exposure model for
atomic bomb survivors used by Pierce et al. (14). It will be important to undertake a sen-
sitivity analysis when there is little or conflicting information to motivate the choice of
parametrization.

Bayesian estimation of parameters is based on the posterior distribution of the parameters
given the data. We use the word "parameter" here and below to mean both model parameter,
/3, A, 77, and unobserved data {X,}. In our case, interest is ultimately in the epidemiologic
parameters /3. Nevertheless, there are many other unknown quantities: the other model
parameters, A and IT, as well as the unknown risk factors X, for each individual. Thus, our
interest is really in the marginal posterior distribution of (i given the data, i.e., the distribution
of /3 when we don't know the values of the other parameters. Computing this marginal
posterior distribution leads to a very high dimensional integral (since, for example, one would
have to integrate over all the X,) which is totally intractable. Estimation thus proceeds along
a different line and makes use of a unifying computational method, Gibbs sampling (9, 15),
which generates samples from the joint posterior distribution of all parameters (/3, A, rr, and
[X,]) given the data. (The joint posterior distribution is proportional to the expression 4).
From these samples, inference can be made straightforwardly on the parameters of interest,
singly, jointly, or for any functions of parameters.

It is beyond the scope of this paper to describe this algorithm in depth and details of its
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436 Richardson and Gilks

application for analyzing some measurement error problems can be found in Gilks and
Richardson (16) and Richardson and Gilks (17). We restrict ourselves to describing mainly
one essential component, the updating cycle. At first, arbitrary starting values for each
parameter are chosen. Then, in turn, one parameter at a time is updated by sampling a new
value for that parameter from its conditional distribution (or density) given the data and the
current values of all other parameters in the model, referred to as the current full conditional
distribution.

A cycle of the Gibbs sampler is completed when all the unknown variables in the model
have been updated once. The updating cycle is repeated a large number of times. It has been
shown that this process converges toward the distribution of interest, i.e., that the samples
generated can be considered after a while as samples from the joint posterior distribution
of all the parameters.

Clearly, a key step in the implementation of this algorithm is the derivation of the full
conditional distribution for each parameter. This is simply proportional to the product of all
terms which contain that parameter in the joint distribution given in equation 4. The full
conditional distribution for the measurement parameters in a particular design will be given
in the next section.

DEVELOPING A BAYESIAN GRAPHICAL MODELING APPROACH FOR
REPRESENTING EPIDEMIOLOGIC DESIGNS

To give relative risk estimates in the presence of measurement errors, different epide-
miologic designs have been proposed, e.g., the use of a validation group, the inclusion of
several measuring instruments, and/or the inclusion of repeated measures.

Design with a validation group

In this design, the existence of a gold standard (an error-free method for measuring risk-
factor X) is assumed. This gold standard is usually only available on a small subset of the
population, called the validation group. Both X and its surrogate measures Z are recorded
in the validation group, while in the main study only the surrogate measures Z will be
available for each individual. Nevertheless, information about A has somehow to be trans-
ferred from the validation group to the main study. In other words, from the comparison of
A'and Z in the validation group, information on the unknown risk factors A'for the main study
has to be gained. When knowledge of the disease status is also known for the individuals
in the validation group, this group in referred to as internal; otherwise, the validation group
is called external.

Figure 3 gives a graphical representation of a design with an internal validation group. The
structure of the two parts of the graph is similar except that X is drawn as a square box in
the validation group (top of the graph) since X is presumed known in this group. The graph
shows how the validation group contributes information on A, therefore providing infor-
mation on the relation between A" and Z in the main study, and thereby strengthening inference
about /3.

To detail more fully one step in the implementation of the Gibbs sampling algorithm, let
us write the full conditional distribution for the measurement error parameters in this design.
It is proportional to

[A] • I I [Z, I X,, A] • I ! [2, I X,, A],
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Bayesian Approach to Measurement Error 437

FIGURE 3. Graph corresponding to a design with an internal validation group and a mam study.

where P] denotes the individuals included in the validation group, P2 those in the main study
and the symbol ie P, indicates that the product is taken over all the individuals in Pn t =
1,2. Thus, the parameters A are updated using the information in the validation group (which
will not vary) and simulated risk factors X, (which will change at each iteration) for the main
study individuals.

In the algorithm we are sampling from the joint posterior distribution of the parameters
(models parameters and unobserved risk factors), the transfer of information between dif-
ferent parts of the design is effected appropriately. Hence, the full uncertainty in the true risk
factors X, is taken into account in the estimation of the epidemiologic parameters /3.

Design with several measuring Instruments and repeated measures

In some situations, it is unrealistic to assume the existence of a gold standard. Nevertheless,
some information on the measuring process can sometimes be gained by using repeated
measures and/or by combining several instruments. Let us first outline the general structure
of such designs, a structure which is discussed in detail in Richardson and Gilks (17).

Denote by Zimr the result of the rth repeated measure by measuring instrument m of the
true risk factor X,. We now consider situations where, conditionally on X, and on measure-
ment parameters Am, it is reasonable to suppose that the Zimr are independent between repeats
and also between instruments.

The measurement model equation 2 is thus replaced by

I X,, AJ. (5)
The assumed conditional independence relation between repeats and instruments imply that
in expression 4 of the joint distribution and hence that of the posterior distribution:

I I [Z, I X,, A] is replaced by IT [ Z ^ I Xt, AJ .
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438 Richardson and Gilks

Note that the measurement model formulated in equation 5 is fairly general but would not
fit all measurement processes, for example, designs where the same measuring instrument
is used for several covariates. An appropriate modification of the structure of the measure-
ment model equation could easily be defined to accommodate this situation, but, for the sake
of clarity, we will stay with the setting defined by equation 5. Let us now detail the functional
part of the measurement model 5 for a particular design. The functional part of the exposure
and disease models will be detailed in the next section.

An example. We suppose that there are two measuring instruments, the first one having
low precision but being unbiased and relatively cheap to administer, while, by contrast,
the second measuring instrument has a higher precision but is costly and known to be bi-
ased. To be precise, we suppose that the conditional distribution of the first unbiased in-
strument is given by a Normal distribution with mean X, and variance 6^ denoted by

[zllr i x,, 0j ~ N(*,, er1), (6)
and so the only measurement parameter in k1 is 61} the precision (inverse of the variance)
of Instrument 1. For the second biased instrument, the conditional distribution is also a
Normal distribution:

[Z(7r I X,, d>2, i|/2, 02] ~ N(d>2 + i^Y,, 6^), (7)

and the measurement error parameters \ 2 are the intercept and slope parameters d>2
and tp2, expressing the linear relation between the true exposure and its surrogate, and the
precision 62.

Repeats of an instrument only provide information on its precision. Thus, in general, the
parameters d>2 and ip2 cannot be sensibly estimated without the knowledge of a gold standard
measured in a validation subgroup. We now suppose that we have set up a design where,
for a subgroup of individuals, Instrument 1 has been repeated twice and Instrument 2 has
also been recorded. In this particular design, even though there is no gold standard, the data

FIGURE 4. Graph corresponding to a design with two measuring instruments and no validation group as defined
in equations 6 and 7
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Bayesian Approach to Measurement Error 439

still contain information on </>2 ife because there is information on X, from the repeats of the
unbiased Instrument 1 (see figure 4), information which is used as a "simulated gold stan-
dard" in order to estimate <f>2 and i//2.

The corrections of relative risk estimates offered by designs of this kind will be illustrated
in the Results section.

Design with ancillary risk factor Information

In occupational or environmental epidemiology, risk factor information for each individual
is often not directly available but has to be constructed using external information and a
group-level characteristic of the individual. A typical example is that of the use of job-
exposure matrices in industrial epidemiology. Job-exposure matrices provide information on
exposures to each of many industrial agents in each of many finely subdivided categories
of occupation. They are commonly constructed by industrial experts from detailed job de-
scriptions obtained in a specially conducted survey. In some study designs, the exposure of
an individual to industrial agents is then characterized using only his job title and ancillary
risk factor information contained in a job-exposure matrix. The measurement error model
implied by this design is different from those considered previously as imprecisions in
exposure information provided by the survey need to be taken into account in a survey model
which is then linked to the exposure model.

Denoting by irJk the underlying (unobserved) probability of being exposed to agent k
(dichotomous exposure) in job ;, we can model the conditional distribution of m]k the ob-
served number of people in the survey with job j found exposed to agent k, as a binomial
distribution:

[mjk I irjt, rij] = Binomial (TTJIC, n,) ,

where n} is the number of people with job j included in the survey.
This survey model is then linked to the exposure X& of individual i to agent k through the

job title; = _/(/) of individual i by assuming that X& is exposed with probability

IX* = Bernoulli

The disease model is unchanged (see figure 5 for the graph associated with this model). Note
that the survey does not provide direct information on X but rather on the prior distribution

disease study data

RGURE 5. Graph corresponding to a design with ancillary risk factor information coming from a survey

 at M
cG

ill U
niversity L

ibraries on D
ecem

ber 3, 2011
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://aje.oxfordjournals.org/


440 Richardson and Gilks

TABLE 1. Glbbs

Parameter

Baseline risk*
RRxt
RRc±

01

sampling analysis

True value

0 45
2 45
3.32

09

08
0.4
50

of the simulated data set: means ± standard

Glbbs

Mean i SD

0.36 ± 0 08
3 62 ± 1 21
3 52 ± 0.46

0 93 ± 0.09

0.80 ±0 04
0 37 ± 0.05
4.39 ±0 53

sampling analysis
Posterior

2 5%

0.22
2 27
268

0 78

0 71
029
343

deviation (SD)

Analysis on true covariates
Posterior

97 5%

050
6.41
4.47

1.12

0.88
0 47
5.52

Mean ± SD

0 36 ± 0.04
3 17±034
3 38 ± 0.37

• The baseline risk corresponds to e *
tRRx = e "
± RRc = e "

of X. We are thus neither in a classical measurement error situation nor in a Berksonian one.
(See Gilks and Richardson (16) for details showing the good performance of Bayesian
modeling for analyzing designs of this kind.)

ANALYSIS OF A SIMULATED DATA SET

To illustrate the performance of our Bayesian estimation approach, we present here the
analysis of a simulated data set reproducing a design where the measurement parameters are
apprehended through the combination of two measuring instruments, as in the second ex-
ample of the previous section.

Design set-up

Two risk factors are involved in the disease model. The first risk factor, X, is measured
with error and the second risk factor, C, is known accurately. We consider the case of a logistic
link between risk factors and disease status. To be precise, we suppose that Yt follows a
Bernoulli distribution with parameter a,, where logit a, = /30 + ft\Xt + $iC,. We suppose
that the exposure vector (X, C) follows a bivariate normal distribution, with mean /x and
variance-covariance matrix S.

The study is designed to include two parts (i.e., two subgroups of individuals) which differ
only with respect to their measurement process. There are 200 individuals in Part 1 and 1,000
individuals in Part 2. In Part 1, the measurement model follows exactly that described in the
example given previously, that is Instrument 1 has been measured twice (equation 6) and
Instrument 2 has been recorded once (equation 7) for all 200 individuals. In Part 2, only
Instrument 1 has been recorded for the 1,000 individuals (equation 6).

A data set was generated using "true" values of 0 = Oo, /3X, £2). 0i> </>2> $2, ar |d O2 given
in table 1 (column: "true values") and with

0.5 \ /1.02 0.56

J d 2 ^md 2 = ^ 0 5 5 0.96

Thus, we have simulated a situation with two detrimental risk factors A'and C corresponding
to relative risks: RRA- = 2.46 and RRc = 3.32, respectively, with a positive correlation
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Bayesian Approach to Measurement Error 441

between X and C (r = 0.56). Note that Instrument 2 is substantially more accurate than
Instrument 1 (02 > 50j).

RESULTS

Table 1 presents the results from the Gibbs
sampling analysis of the simulated data set.
We have summarized the marginal posterior
distribution of the parameters of interest by
reporting their means and standard devia-
tions, and 2.5 and 97.5 percentiles. In the last
column of table 1, we have given, as bench-
marks, the estimates of the relative risks ob-
tained by a Bayesian logistic regression
analysis based on the knowledge of the true
values of X, for the 1,200 individuals in the
study. Note that the estimate of RRy (3.17),
which would be obtained in the absence of
measurement error in our data set, is a little
higher than its "true value" (2.45) used to
produce the simulated data set.

The results show that our estimation
method has performed very satisfactorily
with all the estimated values lying well
within one posterior standard deviation of
the values given by the analysis on "true
covariates" (last column). As expected, the
posterior standard deviation for RRc which
corresponds to the relative risk for the co-
variate C measured without error is smaller
than that for RR*-. We note some degree of
skewedness in the distribution of the esti-
mate of the relative risk RR -̂. It is further
interesting to check that the measurement
parameters for Instrument 2 have been well
estimated, even though our design did not
include a validation subgroup. This high-
lights how information has been naturally
propagated between the two measuring in-
struments and between the two parts of the
design. This is a key feature of our estima-
tion method not shared by other methods.

DISCUSSION

There is a large literature on methods for
analyzing epidemiologic data with measure-
ment errors. In this paper, we have presented
a Bayesian approach, based on conditional

independence modeling, where estimation
is carried out by simulations (Gibbs sam-
pling). A Gibbs sampling approach has also
been used by Thomas et al. (11) in their
analysis of the leukemia risk in Utah fol-
lowing radioactive fallout.

Some key features of this approach make
it particularly fruitful in the epidemiologic
context. First, the method is flexible and
adapts to the structure of the error problem
without making artificial assumptions. We
have illustrated this point by discussing a
few specific designs, but we must stress that
many complex measurement error problems
can be tackled in this way. Second, this ap-
proach gives a framework in which different
sources of information can be integrated.
Our example was concerned with combin-
ing two different measuring instruments; an-
other example which could be modeled
straightforwardly is that of combining an-
cillary information from a job-exposure ma-
trix and individual exposure assessment by
experts in industrial epidemiology. It is also
easy to see that missing data are simple to
handle as they can be treated as additional
unknown parameters.

The approach that we have developed is
fully parametric. As for other methods deal-
ing with measurement errors, misspecifica-
tion of the conditional distributions involved
in the measurement or the exposure models
will perturb the inference on the epidemio-
logic parameters of interest. Interesting lines
for further research are related to how one
can detect misspecification and what is the
sensitivity of our method to a wrong choice.
Some authors have investigated nonpara-
metric approaches (18, 19) for estimating
the measurement model, and Thomas et al.
(11) have combined a nonparametric speci-
fication of the exposure model with Gibbs
sampling. There is scope for further work in
this direction.
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Another important advantage of our ap-
proach is that all sources of errors are con-
sidered and the resulting uncertainty is taken
fully into account in the estimation of the
parameters of interest. In particular, impre-
cision in the parameters A of the measure-
ment model are fully allowed for in calcu-
lating the variability of the regression
parameters £5. In contrast, substitution meth-
ods (say from a validation subgroup to a
main study (3)) only make approximate al-
lowance for uncertainty of estimation in the
validation subgroup.

The method that we have outlined will al-
low designs of substantial complexity to be
analyzed. A challenging issue is now to use
this powerful tool for the planning and de-
sign of epidemiologic studies.
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