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Course Objectives and Topics Covered: To provide researchers with an introduc-
tion to practical Bayesian methods. Topics will include Bayesian philosophy, simple and
more complex models, linear and logistic regression, hierarchical models, diagnostic tests,
sample size methods, issues in clinical trials, measurement error and missing data prob-
lems. Numerical techniques including Monte Carlo integration, sampling importance
resampling (SIR), and the Gibbs sampler will be covered, including programming in R
and WinBUGS. While all examples will be to epidemiological research, most of the ideas
and material will be applicable to other areas of research.

Place and Time: January 9 to April 16, 2012. Mondays and Wednesdays, 11:00 AM
to 12:30 PM. Room 25, Purvis Hall, 1020 Pine Avenue West, corner Peel Street.

Assessment: Ten assignments of approximately 5 questions each, about one per week
throughout the term. Each assignment is worth 10%. There will be no exams.

Textbook: A. Gelman, J. Carlin, H. Stern and D. Rubin, Bayesian Data Analysis, 2nd
Edition, Chapman and Hall, 2003.

Prerequisites: At least two previous courses in statistics, including topics such as in-
ferences for means and proportions, and linear and logistic regression. Differential and
integral calculus. If you are unsure you have sufficient background, please speak to the
instructor.



Bayesian Analysis in the Health Sciences

Course Outline – EPIB–675, January – April 2012

Date Topic Covered
Mon Jan 9 Introduction/Motivation/Evaluation/Scope
Wed Jan 11 Multivariate Distributions, Conditionality
Mon Jan 16 Basic Elements of Bayesian Analysis
Wed Jan 18 Bayesian Philosophy I
Mon Jan 23 Bayesian Philosophy II
Wed Jan 25 Simple Models I - Univariate Models
Mon Jan 30 Simple Models II - Predictive Distributions
Wed Feb 1 Computation and Numerical Methods I - Introduction
Mon Feb 6 Computation and Numerical Methods II - Monte Carlo Integration
Wed Feb 8 Computation and Numerical Methods III - SIR Algorithm
Mon Feb 13 Computation and Numerical Methods IV - Gibbs sampler and WinBUGS
Wed Feb 15 Computation and Numerical Methods V - More on WinBUGS
Mon Feb 20 No Class – Spring Break
Wed Feb 22 No Class – Spring Break
Mon Feb 27 Bayesian Linear and Logistic Regression
Wed Feb 29 Hierarchical Linear and Logistic Regression
Mon Mar 5 Bayesian Analysis of Clinical Trials
Wed Mar 7 Hierarchical Models I - Simple Hierarchical Models
Mon Mar 12 Hierarchical Models II - Meta Analysis with Random Effects
Wed Mar 14 Hierarchical Models III - More Complex Hierarchical Models
Mon Mar 19 Adjusting for Measurement Error
Wed Mar 21 Prior Distributions - Prior Selection and Elicitation
Mon Mar 26 Model Selection in Regression - Bayes Factors
Wed Mar 28 Missing Data
Mon Apr 2 Bayesian bias adjustments
Wed Apr 4 Bayesian Sample Size Criteria
Mon Apr 9 No Class – Easter Monday
Wed Apr 11 Analysis of Diagnostic Test Data
Mon Apr 16 Discussion and Conclusions - The Future of Bayesian Analysis



Bayesian Probabilities - Discrete Case of Bayes Theorem

It is easy to get confused between Bayesian analysis as an inferential paradigm, and
Bayes Theorem as a basic way to manipulate discrete probabilities. Let us first consider
the discrete case:

Suppose we are considering a test for cancer:

Let A = the event that a test is positive.
Let B = the event of actually having cancer.

Suppose we know that:

• P (A|Bc) = 0.05, and so P (Ac|Bc) = 1− 0.05 = 0.95

• P (Ac|B) = 0.20, and so P (A|B) = 1− 0.20 = 0.80

• P (B) = 0.02, and so P (Bc) = 0.98

(a) What is the probability of cancer given that the test is positive?
(b) What is the probability of cancer given that the test is negative?

We can draw a diagram as below:

From the diagram, we see that

P (B|A) =
0.016

0.016 + 0.049
= .2462



and

P (B|Ac) =
0.004

0.004 + 0.931
= .0043

Alternatively, we can use Bayes Theorem, which states:

P (B|A) =
P (B)× P (A|B)

P (B)× P (A|B) + P (Bc)× P (A|Bc)

Plugging in the numbers, we can check that the solutions are the same. For example,

P (B|A) =
P (B)× P (A|B)

P (B)× P (A|B) + P (Bc)× P (A|Bc)
=

0.02× 0.80

0.02× 0.80 + 0.98× 0.05
= .2462.

Switching the roles of A and Ac in the above formula yields

P (B|Ac) =
P (B)× P (Ac|B)

P (B)× P (Ac|B) + P (Bc)× P (Ac|Bc)
= 0.0043

Note that before the test is performed, the probability that a person has cancer is 0.02,
but that these probabilities are “updated” in a natural way, once the test results become
available.

Bayes Theorem may be generalized to the case where the event B has more than two
possible outcomes, say B1, B2, . . . , Bn.



In this case, the Bayes Theorem is

P (Bk|A) =
P (Bk)× P (A|Bi)∑n
i=1 P (Bi)× P (A|Bi)

, k = 1, 2, . . . , n.

Here is an example for this case:

Suppose that Bob can decide to go to work by one of three modes of transportation, car,
bus, or commuter train. Because of high traffic, if he decides to go by car, there is a
50% chance he will be late. If he goes by bus, which has special reserved lanes but is
sometimes overcrowded, the probability of being late is only 20%. The commuter train is
almost never late, with a probability of only 1%, but is more expensive than the bus.

(a) Suppose that Bob is late one day, and his boss wishes to estimate the probability that
he drove to work that day by car. Since he does not know which mode of transportation
Bob usually uses, he gives a prior probability of 1

3
to each of the three possibilities. What

is the boss’ estimate of the probability that Bob drove to work?

(b) Suppose that a coworker of Bob’s knows that he almost always takes the commuter
train to work, never takes the bus, but sometimes, 10% of the time, takes the car. What
is the coworkers probability that Bob drove to work that day, given that he was late?

Solution: The Venn diagram would be:

(a) We have the following information given in the problem:

Pr{ bus } = Pr{ car } = Pr{ train } =
1

3
Pr{ late | car } = 0.5

Pr{ late | train } = 0.01

Pr{ late | bus } = 0.2



We want to calculate Pr{ car | late }.

By Bayes Theorem, this is

Pr{ car | late }

=
Pr{ late | car }Pr{ car }

Pr{ late | car }Pr{ car }+ Pr{ late | bus }Pr{ bus }+ Pr{ late | train }Pr{ train }

=
0.5× 1/3

0.5× 1/3 + 0.2× 1/3 + 0.01× 1/3
= 0.7042

(b) Repeat the identical calculations as the above, but instead of the prior probabilities
being 1

3
, we use Pr{ bus} = 0, Pr{car} = 0.1, and Pr{ train } = 0.9. Plugging in to the

same equation with these three changes, we get Pr{ car | late } = 0.8475

This is a simple theorem in probability, having nothing to do with drawing inferences
from a data set, that everybody uses. Bayes Theorem creates no controversy whatsoever
(not that Bayesian inference is so controversial nowadays).

Bayesian Inference - Continuous Case of Bayes Theorem

The above discrete version is different from the continuous version of Bayes Theorem,
in that it is typically used for drawing inferences, as an alternative to the freqeuntist
approach that leads to p-values and confidence intervals. The continuous version of Bayes
Theorem looks like this:

posterior distribution =
likelihood of the data × prior distribution

a normalizing constant
,

or

f(θ|x) =
f(x|θ)× f(θ)∫
f(x|θ)× f(θ)dθ,

or, forgetting about the normalizing constant,

f(θ|x) ∝ f(x|θ)× f(θ).

Thus we “update” the prior distribution to a posterior distribution after seeing the data
via Bayes Theorem.

We will see many examples of its use later in the course.
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Mathematical Background

A quick refresher of terms from calculus that will help in this course. Also, a review of some
statistical terminology and definitions.

Note: The following are very non-rigorous definitions designed to suit the purpose of
our course. Refer to any calculus and/or statistics textbook for the exact definitions
and/or more information.

Functions: For our purposes, a function assigns a unique numerical value to each number in
a specified set. For example, the function

f(x) = x2, −∞ < x < +∞

assigns the value x2 to each x, −∞ < x < +∞. Thus x = 1 is assigned the value 1, x = 2 is
assigned the value 4, and x = −2.1 is assigned the value +4.41, etc. A function is defined over
a set of values, which here is the set of all real numbers.

Functions are often easily understood by looking at the graph of the function.
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Functions are used in statistics to describe probability (density) functions (among many
other things). Some examples:

(i) The Uniform probability (density) function describes the experiment of choosing a
random number between 0 and 1. The function is

f(x) =

{

1, 0 ≤ x ≤ 1
0, otherwise,

and the graph is shown below:
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(ii) The standard Normal probability (density) function is used extensively in virtually
every discipline where statistics are used, including medicine. The function is

f(x) =
1√
2π

exp

{

−x2

2

}

, −∞ < x < +∞

and the graph is shown below:
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(iii) Another very common density used in Bayesian analysis is the beta. As we will see
later in the course, it is typically used in problems involving proportions. Note that its range
is between 0 and 1, very convenient for proportions. The function for the beta density is

f(x) =

{

1
B(α,β)

θα−1(1 − θ)β−1, 0 ≤ θ ≤ 1, α, β > 0, and

0, otherwise,
.

[ B(α, β) represents the Beta function evaluated at (α, β). It is simply the normalizing constant
that is necessary to make the density integrate to one, that is, B(α, β) =

∫ 1
0 xα−1(1− x)β−1dx.]

Some graphs of beta densities are shown below.



Note the flexibility of this family of distributions.
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(iv) Yet another useful distribution is the gamma, which is sometimes used to model
normal variances (or, more accurately, as we will see, the inverse of normal variances, known
as the precision, i.e., precision = 1/variance). The gamma density is given by

f(x) =
βα

Γ(α)
e−βxxα−1, for x > 0 .

A typical gamma graph is:
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Derivatives: The derivative of a function measures the slope of the tangent line to the graph
of the function at a given point. For example, if

f(x) = x2,

then the derivative is given by
f ′(x) = 2 × x.

For example, this means that the slope of the tangent line at the point x = 2 (with f(x) = y = 4)
is 2 × 2 = 4.
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You may recall the following useful facts relating to derivatives:

1. The slope of a line is a measure of how quickly the function is rising or falling
as x increases in value.

2. If a function has a maximum or minimum value, the the derivative is usually
equal to 0 at that point. In the above, the function has a minimum at x = 0,
where the value of the derivative is zero.

Derivatives are used in statistics for deriving maximum likelihood estimators, not used much
in Bayesian analysis (at least not in this course). But the next topic is very important.

Integrals: The indefinite integral is a synonym for “anti-differentiation”. In other words,
when we calculate the indefinite integral of a function, we look for a function that when differ-
entiated, returns the function under the integral sign. For example, the indefinite integral of
the function f(x) = x2 is given by the

∫

x2 dx =
1

3
× x3

because the derivative of 1
3
× x3 is x2.

Indefinite integrals are used in many places in statistics, but as we will soon see, we use
indefinite integrals to go from a joint density (many variables at once) to a marginal density

(of a single variable, or some proper subset of the full set of variables).

Definite Integrals: The definite integral of a function is the area under the graph of that
function. This area can be approximated directly from the graph, but exact mathematical



formulae are also available from calculus. For example, the area under the the curve ranging
from -1 to +2 of the function f(x) = x2 is given by the following definite integral formula:

∫ +2

−1
x2 dx =

1

3
× x3

∣

∣

∣

∣

∣

+2

–1
=

23

3
− (−1)3

3
=

8

3
+

1

3
= 3.

The area under a curve of a probability density function gives the probability of getting
values in the region of the definite integral. For example, supposed we wished to calculate the
probability that in choosing a random number between 0 and 1 (Uniform density function)
the particular number we choose falls between 0.2 and 0.4. This is calculated by the definite
integral

∫ 0.4

0.2
1 dx = x

∣

∣

∣

∣

∣

0.4

0.2
= 0.4 − 0.2 = 0.2.

Definite integrals are also used in the context of calculating means and variances of random
variables.

Joint and Marginal Distributions When we have only one parameter, we speak of its
density. For example, if x ∼ N(0, 1), then the graph of the probability density is:
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When we have two or more parameters, we speak of a joint probability density. For example,
let x and y be jointly multivariately normally distributed, which is notated by:

(

x

y

)

∼ N

([

µx

µy

]

, Σ

)

where



Σ =

(

σ2
x ρxy

ρxy σ2
y

)

Example: Suppose
(

x

y

)

∼ N

([

0
0

]

,

(

1 0
0 1

))

which is equivalent to two independently normally distributed variables, with no correlation
between them. Then the picture is:

Note how the “slices” resemble univariate normal densities in all directions. These “slices”
are marginal densities, which we will define later. In the presence of correlations, for example
a correlation of 0.5, we have

(

x

y

)

∼ N

([

0
0

]

,

(

1 0.5
0.5 1

))

and the picture is:



Similarly, with very high correlation of 0.9, we have
(

x

y

)

∼ N

([

0
0

]

,

(

1 0.9
0.9 1

))

and the picture is:

The bivariate normal density formula is:

f(x, y) =
exp

{

− 1
2(1−ρ2

xy
)

[

(

x−µx

σx

)2 − 2ρxy

(

x−µx

σx

) (

y−µy

σy

)

+
(

y−µy

σy

)2
]}

2πσxσy

√

1 − ρ2
xy

This is a joint density between two variables, since we look at the distribution of x and y at
the same time, i.e., jointly. An example where such a distribution might be useful would be
looking at both age and height together.

When one starts with a joint density, it is often of interest to calculate marginal densities from



the joint densities. Marginal densities look at each variable one at a time, and can be directly
calculated from joint densities through integration:

f(x) =
∫

f(x, y)dy, and

f(y) =
∫

f(x, y)dx.

In higher dimensions,

f(x) =
∫

f(x, y, z)dydz,

and so on.

Normal marginals are normal If f(x, y) is a bivariate normal density, for example, it can
be proven that both the marginal densities for x and y are also normally distributed. For
example, if

(

x

y

)

∼ N

([

µx

µy

]

,

(

σ2
x ρxy

ρxy σ2
y

))

then
x ∼ N(µx, σ

2
x)

So, marginals from a multivariate normal distribution are always also normal.

Conditional Distributions Many of you have probably seen conditional densities defined
for discrete variables, using definitions such as:

The conditional probability of event E given that event F has happened, is defined to be

P (E|F ) =
P (E and F )

P (F )
.

This is interpreted as “Given that F has occurred, calculate the probability E will also occur.”
Note that we can also write

P (E and F ) = P (F ) × P (E|F ),

even if E and F are not independent.

There is a similar rule for continuous densities, which can be stated as:

The conditional density of random variable x given the value of a second random variable
y is defined to be:



f(x|y) =
f(x, y)

f(y)

Note the similarities between the discrete and continuous cases. If you have three or more
variables, similar definitions apply, such as:

f(x|y, z) =
f(x, y, z)

f(y, z)

f(x, y|z) =
f(x, y|z)

f(z)

and so on. The concept of conditional distributions is very important to modern Bayesian
analysis since they are key in algorithms such as the Gibbs sampler.

Summary:

• Joint densities describe multi-dimensional probability distributions for two or more vari-
ables.

• If one has a joint density, then if it is of interest to look at each variable separately, one
can find marginal probability distributions by integrating the joint densities. If one wants
the marginal distribution of x, for example, then one would “integrate out” all of the
parameters except x, and so on.

• For multivariate normal distributions, all marginal densities are again normal distribu-
tions, with the same means and variances as the variables have in the joint density.

• The concept of conditionality applies to continuous variables.


