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SUMMARY

We consider a two- and a three-stage hierarchical design containing the e7ects of k clusters with n units
per cluster. In the two-stage model, the conditional distribution of the discrete response Yi is assumed
to be independent binomial with mean n�i (i=1; : : : ; k). The success probabilities, �i’s, are assumed
exchangeable across the k clusters, each arising from a beta distribution. In the three-stage model, the
parameters in the beta distribution are assumed to have independent gamma distributions. The size of
each cluster, n, is determined for functions of �i. Lengths of central posterior intervals are computed
for various functions of the �i’s using Markov chain Monte Carlo and Monte Carlo simulations. Several
prior distributions are characterized and tables are provided for n with given k. Methods for sample
size calculations under the two- and three-stage models are illustrated and compared for the design of
a multi-institutional study to evaluate the appropriateness of discharge planning rates for a cohort of
patients with congestive heart failure. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

Over the past decade, multi-centre clinical trials have become increasingly utilized in the
experimental setting. The National Institutes of Health in the United States, for example, have
sponsored the formation of several multi-institutional collaborative groups to study treatments
of cancer, AIDS and cardiovascular disease. In the non-experimental setting, similar trends in
studies of the delivery and quality of medical care have been observed. Our work, in particular,
is motivated by a study that involves the comparison of multiple health care providers on the
basis of the quality of treatment rendered to patients having congestive heart failure (CHF).
Complex studies such as these require the development of eBcient study designs and data
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analyses. Although methodology for the analyses of multi-centre trials has grown substantially
with the advent of inexpensive computing and convenient simulation algorithms that permit
basic [1], multi-level [2; 3], empirical [4], hierarchical [5] and fully Bayes analyses [6], as well
as stratiLcation methods [7], methodology for the design of such trials is relatively limited.

In many multi-centre studies, in addition to the performance of any individual centre, in-
terest is often focused on a particular aspect of the participating centres, such as the average
treatment beneLt or the range in treatment beneLt. Thus the study objective can often be di-
rected at estimation of a particular function of the centre-speciLc parameters across all centres.
The goal of this article is to characterize the sample size necessary to make inference about
a real-valued function of a rate parameter vector � of length k, denoted by �∗ = tk(�), over
a range of constraints. SpeciLcally, we consider the following hierarchical design containing
the e7ects of k clusters and n cluster-speciLc units (i=1; : : : ; k):

Stage I (individual level, within-cluster model). The conditional distribution of the discrete
response Yi is independent binomial with mean n�i

(Yi|n; �i) independent∼ binomial(n; �i) (1)

for i=1; : : : ; k clusters.
Stage II (between clusters). The success probability �i is assumed exchangeable across the
k clusters, arising from a beta distribution with hyperparameters (
; �)

(�i|
; �) iid∼ beta(
; �) (2)

for i=1; : : : ; k, where 
¿0 and �¿0 are prespeciLed by the investigator. In the case of
a single cluster, integration of � from the joint distribution f(Yi; �i | n; 
; �) leads to the
beta-binomial (or PNolya) distribution.

A limitation of the model speciLed in equations (1) and (2) is the inability to learn about 

and � by ‘borrowing strength’ from cluster to cluster, as in most hierarchical models. In order
to learn about 
 and �, we also consider the addition of prior distributions for the parameters
in the beta distribution:

Stage III (common across all clusters). The common hyperparameters 
 and � across
all clusters have independent gamma distributions with parameters (p
; q
) and (p�; q�),
respectively

(
|p
; q
)∼ gamma(p
; q
)⊥ (�|p�; q�)∼ gamma(p�; q�) (3)

where all of the p’s and q’s take on positive values, with p
¿1 and p�¿1 in order for the
posterior to be log-concave. The main di7erence between the two- and three-stage models
is that the third stage provides a hyperprior over the �i parameters that should provide for
improved estimation when the �’s are distributed as assumed.

Sample size determination for a given study may be undertaken using a hypothesis-testing
or an estimation approach, from either a frequentist or Bayesian framework. Frequentist ap-
proaches to designs involving a single rate parameter, �, or a comparison of two rates, �1−�2,
are common. In the one-sample problem for �, for example, sample size may be determined
using the approximate mean and variance of the maximum likelihood estimate in a large-
sample test (see Chapter 1.4 of Fleiss, reference [8], and references therein). In the case of
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k clusters, Donner and colleagues [9; 10] derived and inverted a �2-test to obtain optimal
cluster sample sizes when testing for di7erences among the k underlying rates. The authors
developed solutions in the context of a two-group randomization design within each of the
k clusters. In an unpublished manuscript by Chen, Weissfeld, and Ahnn of the University
of Pittsburgh, the authors extended Donner’s method to k-clusters for which units within a
cluster are assigned to one of three treatment groups.

From the Bayesian perspective, several solutions have also been proposed. Joseph and col-
leagues [11; 12] proposed solutions for both the one-sample and two-sample problems. For
a single �, they considered the beta-binomial model speciLed in equations (1) and (2) and
similar models were extended to compare two independent and dependent rates arising from
possibly correlated beta prior distributions. In both cases, the researchers employed interval-
based criteria using coverage of highest posterior density (HPD) regions. In contrast, Spiegel-
halter and Freedman [13] and Spiegelhalter et al. [1] derived sample size for comparing two
rates using the predictive power of a hypothesis test. They used the probability of a clini-
cally important di7erence as the primary basis for their hypotheses. Hornberger and Eghtesady
[14] developed methods for sample size calculation for a two-sample test by estimating the
expected cost-beneLt of a randomized trial. The prior probability of the success rates be-
tween the experimental and control groups were assumed to have a joint beta distribution,
and sample size was determined by minimizing the posterior expected loss per patient in the
study.

Methods for sample size determination in hierarchical designs are much less developed
however. Parmigiani and Berry [15] proposed methods when interest centres on estimation of
the hyperparameters in equation (2), assuming a three-stage model with the hyperparameters
having distributions described in equation (3). The authors maximized the expected Lindley
information [16] for the hyperparameters and derived the optimal choice of n and k. However,
the method for determining sample size ultimately depends on the goal of the study; see, for
example, the discussion in Joseph and Wolfson [17] regarding interval-based versus decision-
analytic approaches.

In this article we extend the methods proposed by Joseph et al. [11; 12] to the hierar-
chical setting, developing methods to determine cluster size based on interval estimation of
the composite parameter �∗ = tk(�) for any given k. Because often at the planning phase
no information other than prior event data are available to distinguish among the �i’s, we
assume exchangeability and apply interval-based criteria using coverage of central posterior
intervals (CPI) to solve for optimal n. In Section 2, under the two-stage model, sample size
determination is described using two estimation methods for the posterior distribution: direct
simulation using Markov chain Monte Carlo methods and approximations based on sample
moments. In Section 3, the direct simulation method is extended to the three-stage model.
As recommended by MPuller and Parmigiani [18], the sample size is determined by Ltting a
curve across the grid values of sample sizes for improved estimation. The authors developed
numerical methods for the optimal design of a Bayesian Monte Carlo experiment. The authors
proposed Ltting a smooth utility surface and borrowing information from neighbourhood de-
sign points. We present the results of simulation studies describing the impact of the choice
of prior distribution on sample size in Section 4. In Section 5 methods are illustrated on
designing a multi-institutional study to determine the mean and range of appropriate hospital
discharge planning rates for a cohort of CHF patients. We conclude with a discussion in
Section 6.
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2. A TWO-STAGE MODEL

Let the random variable y= {y1; : : : ; yk} represent the observed data from a sample space Y,
and similarly let �= {�1; : : : ; �k} denote the vector of success probabilities assuming values in
a parameter space R. Throughout we assume that the hyperparameters, (
; �), are prespeciLed
by the investigator and the design is balanced with cluster sample sizes equal to n. Our
general approach to sample size determination uses the ‘average length criterion’ suggested
by Joseph et al. [12]. The minimum integer n such that the lengths of Lxed coverage of CPIs
averaged over the predictive distribution of the data is less than a prespeciLed value is found
(see Appendix A). Formally, we Lnd the minimum sample size n such that

∫ l(y; n)+T′(y; n)

l(y; n)
f(�∗ | y; n) d�∗ =1 − � with

∫
Y

T′(y; n)f(y) dy6T (4)

Here f(�∗ | y; n) is the posterior distribution for the composite parameter, f(y) is the predictive
distribution of y, l(y; n) is the lower limit of the CPI with length T′(y; n), and 1 − � is the
nominal coverage probability. The right-most term in equation (4) stipulates that the average
of such intervals be no more than a Lxed constant, T.

For the two-stage model speciLed by equations (1) and (2), the prior distributions are
conjugate, and thus the posterior distribution of �, given (
; �), is

f(� | y; 
; �)= c(y; n; 
; �)
k∏
1
�yi+
−1
i (1 − �i)n−yi+�−1 (5)

where the constant c(y; n; 
; �)=
∏k

1{B(yi + 
; n− yi + �)}−1 and B(·; ·) is the beta function.
The posterior distribution for �∗, f(�∗|y; 
; �) may be written as

∫
�
|J (�→ �∗)|c(y; n; 
; �)

k∏
1

(t−1
ki )yi+
−1(1 − t−1

ki )n−yi+�−1 df(�) (6)

where J is the Jacobian of transformation from � to �∗, t−1
ki is ith component of the inverse

function tk (i=1; : : : ; k), and f(�) is a function of the �’s to be integrated out, depending on
the tk(�) considered. The predictive distribution is given by

f(y|
; �)=
k∏
1

(
n
yi

)
B(yi + 
; n− yi + �){B(
; �)}−1

Because the posterior distribution in (6) is typically intractable, for any given n, numerical
methods must be used to approximate the lengths of each CPI for T′(y; n) and then averaged
over the predictive distribution. One wishes to Lnd the minimum n such that the average
length is within T.

For example, in the case of k=2 clusters with data y=(y1; y2) and unequal cluster sample
sizes n=(n1; n2), suppose it is desired to construct an interval estimate of �∗ = tk(�)= �1 −�2
within a speciLed length T, where

(�i|
i; �i) independent∼ beta(
i; �i)
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for i=1; 2: Because the di7erence is of interest, we assume prior parameters 
=(
1; 
2) and
�=(�1; �2) for the �i’s. The posterior distribution becomes

f(�∗|y; n; 
; �)=
∫ min(�∗+1;1)

max(0;�∗)
f(�1; �∗|y; n; 
; �) d�1 (7)

where the integrand is

c(y; n; 
; �)�y1+
1−1
1 (1 − �1)n1−y1+�1−1(�1 − �∗)y2+
2−1(1 − �1 + �∗)n2−y2+�2−1

with c(y; n; 
; �)=
∏2
i=1 {B(yi + 
i; ni − yi + �i)}−1. The quantity in (7) may be viewed as a

polynomial in �1, and this integral can be solved analytically [12].
The investigator may also be interested in the average length of the CPIs for �∗, over the

predictive distribution, to have the Lxed coverage probability of 95 per cent, such that the
length is within T. The target sample sizes, n1 and n2, require solving

∫ l(y;n)+T′(y;n)

l(y;n)

∫ min(�∗+1;1)

max(0;�∗)
f(�1; �∗|y; n; 
; �) d�1 d�∗ =0:95

with
n1∑
y1

n2∑
y2

T′(y; n)
2∏
i=1

(
ni
yi

)
B(yi + 
i; ni − yi + �i)

B(
i; �i)
6T

In the case of k=3 clusters with data y=(y1; y2; y3) and an equal sample size n in each
of these clusters, suppose it is desired to construct an interval estimate of �∗ = tk(�)= (�1 +
�2 + �3)=3 within a speciLed length T, where

(�i|
; �) independent∼ beta(
; �)

for i=1; : : : ; 3: The posterior distribution becomes

f(�∗|y; n; 
; �)=
∫ 1

0

∫ min(3�∗−�2 ;1)

max(0;3�∗−�2−1)
f(�1; �2; �∗|y; n; 
; �) d�1 d�2

where the integrand is

c(y; n; 
; �)�y1+
−1
1 (1 − �1)n−y1+�−1�y2+
−1

2 (1 − �2)n−y2+�−1(3�∗ − �1 − �2)y3+
3−1

×(1 − 3�∗ + �1 + �2)n−y3+�−1

with c(y; n; 
; �)=
∏3
i=1 {B(yi + 
; n− yi + �)}−1. The target sample size, n, requires solving

∫ l(y; n)+T′(y; n)

l(y; n)

∫ 1

0

∫ min(3�∗−�2 ;1)

max(0;3�∗−�2−1)
f(�1; �2; �∗|y; n; 
; �) d�1 d�2 d�∗ =0:95

with
n∑
y1

n∑
y2

n∑
y3

T′(y; n)
3∏
i=1

(
n
yi

)
B(yi + 
; n− yi + �)

B(
; �)
6T
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We describe simulation methods to sample size determination in the context of a general
number of clusters, k.

2.1. Sample size selection for general k using Markov chain Monte Carlo simulation

Direct simulations from the posterior distribution in (6) can be accomplished using Markov
chain Monte Carlo methods. Because of conditional independence, Gibbs sampling, imple-
mented in software such as BUGS [19], can be used to Lt the models. In order to solve for n
with Lxed k, an initial guess n0 is made by making an adjustment to the maximum likelihood
estimate of n (see Appendix B).

The following algorithm for sample size calculation in the two-stage model is based on a
grid search. The target CPI length and the nominal coverage probability 1−� are Lrst speciLed.
Around n0, we select a grid of equal spacing. For various �∗ functions (for example, mean
and range), the CPI lengths are computed by Monte Carlo simulations. Finally the optimal n
satisfying the desired average CPI length within T is identiLed.

2.1.1. Sample size algorithm using Markov chain Monte Carlo sampling for �∗. Assuming
the number of clusters, k, is Lxed, let n0 denote the initial sample size, m the total number
of Monte Carlo iterations, G the number of grid values around n0, J the number of iterates
of Gibbs’ samplers, and 1− � the desired nominal coverage probability. To determine sample
size:

1. Specify the hyperparameters (
; �), the number of clusters k, and the target average CPI
length, T.

2. Calculate an initial guess for sample size, n0. For example, if �∗ =
∑ �i

k , then specify the
initial guess by subtracting (
+ �) from the maximum likelihood estimate of n

n0 =
{

2U−1(�=2)
T(
+ �)

}2 (
�
k

)
− (
+ �) (8)

where U is the cumulative distribution function of a standard normal distribution.
3. Create G grid values around n0, yielding ng for g=1; : : : ; G sample sizes.
4. For l=1; : : : ; m Monte Carlo iterations:

(a) For i=1; : : : ; k, generate (�il|
; �)∼ beta(
; �).
(b) Calculate (�∗l |
; �).
(c) For g=1; : : : ; G grid values:

(i) generate (Ygil|�il; 
; �)∼ binominal(ngl; �il);
(ii) for j=1; : : : ; J iterates of Gibbs samplers, calculate (�∗( j)

gl |ygl; 
; �)=
1
k

∑k
i=1{(�̂

( j)
gil |gl; 
; �)} by Markov chain Monte Carlo;

(iii) calculate the CPI (Igl) and length T̂′(Igl) based on the 100(�=2) and 100(1− �=2)
percentiles of the J ordered iterates (�∗( j)

gl |ygl; 
; �);
(iv) compute coverage using the indicator 1{(�∗l |
; �) ∈ Igl} where 1(·) is the indicator

function;
(d) calculate Monte Carlo average length T̂′

g(I)= 1
m

∑m
l=1 T̂′(Igl);

(e) calculate Monte Carlo coverage probability �̂g=
1
m

∑m
l=1 1{(�∗l |
; �)∈ Igl}:

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2163–2182
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5. Repeat (b)–(d) for g=1; : : : ; G potential sample sizes. Choose n′g= minng{T̂′
g(I)6T} as

the required cluster size.

Note: in step 4(c)(ii), with independent beta priors, a more eBcient approach is to directly
simulate the J �’s from the posterior, followed by calculating �∗ for each of these.

2.2. Sample size selection using an approximation to the posterior distribution

Rather than simulating directly from the posterior distribution for the composite parameter,
we approximate the posterior distribution in (5) by matching its moments to that of another
distribution [20]. For simple composite functions of the parameters, such as the average,
the advantage of this approach is that the CPIs are symmetric so that their lengths can be
calculated explicitly. The ith marginal posterior distribution (�i|yi; 
; �), conditioned on 

and �, is

(�i|yi; 
; �) independent∼ beta(ci; di) with ci=yi + 
 and di= n− yi + � (9)

The posterior distribution f( W�|y; 
; �) can be approximated by a Normal distribution N(m; v),
where

m=E( W�|y; 
; �)=
1
k

k∑
i=1

ci
ci + di

and

v=var( W�|y; 
; �)=
1
k2

k∑
i=1

cidi
(ci + di)2(ci + di + 1)

(10)

with ci and di given in (9). Alternatively, because of skewness, the posterior distribution in
(6) may also be approximated by a beta(s; t) distribution, with

s=m
{
m(1 −m)
v

− 1
}

and t=(1 −m)
{
m(1 −m)
v

− 1
}

(11)

and (m; v) given in (10).

2.2.1. Sample size determination using an approximation to the posterior distribution for
�∗. The algorithm for sample size determination is similar to that described in Section 2.1.1.
Step 4(c)(ii) of the original algorithm is replaced by

(c)(ii) Calculate CPI Igl=ml±U−1(�=2)(vl)1=2 and length T̂
′
(Igl)=2U−1(�=2)(vl)1=2, where

(ml; vl) are given in (10)
in the case of a Normal approximation to the posterior, or by
(c)(ii) Calculate CPI Igl and length T̂′(Igl) based on a sorted random sample generated by

beta(sl; tl), given in (11)
in the case of a beta approximation.

2.3. Specifying the prior distribution

In order to design a study, a prior distribution for the rate parameters must be speciLed by the
investigator, which subsequently impacts sample size determination. The choices of priors can
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be based on several criteria (see the discussion by Kass and Wasserman [21] on guidelines
for the selection of prior distributions). Subjective prior distributions can be created from pilot
data or could be elicited from experts. A moment-approach or matching a given functional
form [22] is the most frequently used method. The investigator can choose the prior density
that most closely matches prior beliefs.

In the two-stage model, the prior mean and variance of (�i|
; �)∼ beta(
; �) are used to
determine 
 and � (
¿0; �¿0). Symmetry (
=�) or lack of it (
 �=�) can be suitably
characterized. A uniform prior is (
; �)= (1; 1) [23].

Although most Bayesian analyses are performed with non-informative priors constructed by
formal rules, such as Je7reys’ prior [24] with (
; �)= (0:5; 0:5), it is not necessary to adopt
such a prior when dealing with simple hierarchical binomial models. This is especially true
at the design stage, where very di7erent sample sizes are needed for estimating binomial
parameters near 0 or 1, compared to values near 0:5.

3. A THREE-STAGE MODEL

In order to learn about 
 and �, we consider the additional third stage stated in equation (3).
The two independent gamma distributions of the third-stage hyperprior distributions are not
conjugate with the Lrst two. The joint posterior distribution of �, given (p
; p�; q
; q�), is

f(�|y; p
; q
; p�; q�)=
∫ ∞

0

∫ ∞

0
f(
|p
; q
)f(�|p�; q�)f(�|y; 
; �) d
 d� (12)

where f(
|p
; q
) and f(�|p�; q�) have two independent gamma distributions, and f(�|y; 
; �)
is given by (5). Similarly, the predictive distribution can be obtained.

More so than the two-stage model, the posterior distribution of a function of the �i’s is
quite intractable. In addition, the approximation methods are not possible because of the non-
conjugacy of the third-stage hyperprior distribution. Therefore, we employ direct sampling
from the posterior distribution by Markov chain Monte Carlo. The algorithm is similar to
that presented in Section 2.1, except that (p
; q
; p�; q�) are speciLed. For an initial guess of
n0, we approximate the second-stage parameters by (
0|p
; q
)=p
=q
 and (�0|p�; q�)=p�=q�.
Consequently, n0 is obtained by (8), where 
 and � are replaced by (
0|p
; q
) and (�0|p�; q�),
respectively.

In order to reduce the computational burden from Ltting the three-stage model, while still
providing accurate sample sizes, we adopt the smoothing procedure of MPuller and Parmigiani
[18] by smoothing the observed CPI lengths against the corresponding evenly spaced grid-
values of sample sizes. In practice, we employ the ‘lowess’ smoother in S-plus with smoothing
parameter f.

3.1. Prior distributions in the three-stage model

Because the variance of a gamma(p; q) distribution is p=q2, the inverse-scale hyperparameters,
q
 and q�, determine the precision of the prior information. In the absence of information
about (
; �), we seek a relatively di7use hyperprior distribution by specifying small q
 and
q�. Conversely, large values for the q’s provide more informative priors. The expectation
of a gamma(p; q) distribution is p=q, allowing us to derive ad hoc shape hyperparameters,
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p
 and p�. For example, if a uniform beta(1; 1) distribution is used in a two-stage model,
we make p
= q
 and p�= q� in a three-stage model, so that the underlying expectations of
these gamma distributions are both 1. However, we recommend updating the priors using
pilot data, whenever available, after Ltting a three-stage model to pilot data using ad hoc
hyperparameters selected above. See the example in Section 5 for details on eliciting and
updating the hyperprior distributions.

4. SIMULATION STUDIES

We investigated the average lengths of CPIs for several composite parameters tk(�) using
Monte Carlo simulation. Our simulations studies were based on a full-factorial design
involving four factors: (1) number of clusters (four levels), k= {10; 20; 50; 100}; (2) sample
size per cluster (Lve levels), n= {5; 20; 50; 100; 500}; (3) type of composite
parameter (Lve levels), �∗ = {mean;median;min;max; range}; and (4) type of prior distribu-
tion (5 levels) in the two-stage model, (
; �) = {(1, 3), (1, 1), (9, 9), (3, 1), (9, 1)}, so
that E(�|
; �) were {0:25; 0:50; 0:50; 0:75; 0:90}. In order to have approximately compa-
rable means of �i to the two-stage model, we used the following parameters in the three-
stage model: (p
; q
; p�; q�)={(9; 9; 9; 3); (9; 9; 9; 9); (9; 1; 9; 1); (9; 3; 9; 9);
(9; 1; 9; 9)}.

The nominal coverage probability, 1 − �, was set at 95 per cent. Fifty (m=50) Monte
Carlo iterations were used to estimate all CPI lengths. We applied both direct simulation and
approximation methods for estimating the posterior distribution for the composite parameter.

For each Monte Carlo iteration and under each of the Lve prior distributions in the two-stage
models, we Lrst generated 100 rate parameters, (�i|
; �). We then generated the corresponding
data y(n; �) for various n’s. The Lrst k ∈{10; 20; 50; 100} of the 100 (y|�; 
; �)’s and the
true (�|
; �) were used in the study. We used direct simulation based on 500 iterates after
a burn-in of 500 iterates, employing the Gibbs sampler as well as the method of matching
moments. The latter method also utilized 50 simulations to estimate the posterior distribution.
Similar simulation procedures were conducted under each of the corresponding Lve priors in
the three-stage model.

Tables of CPI lengths were constructed with Lxed k, while cluster sizes, n, were permitted
to vary. Although we studied sample size for the mean, median, minimum, maximum, and
range of the rate parameters, we report results only for the mean and range (the remaining
results are available from the authors).

4.1. Results

Selected results using the direct simulation method are reported in Tables I and II for the
mean and range functions, respectively. For completeness, Table III presents the large-sample
95 per cent frequentist conLdence intervals (see Appendix B). As expected, the average CPI
lengths in Table I were smaller than those reported in Table II.

For both the mean and range functions, the three-stage models generally yielded greater av-
erage CPI lengths than the two-stage models, especially when n¡50. Such di7erences also de-
pended on the value of the third-stage hyperpriors. For example, (p
; q
; p�; q�)= (9; 1; 9; 1)
gave much larger variances in their gamma distributions, compared with (9; 9; 9; 9). As a
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Table III. Large-sample frequentist 95 per cent conLdence intervals (T̂) for the mean function, 1
k

∑
i �i.

E(�i) = 0:50 E(�i) = 0:75 (or 0.25) E(�i) = 0:90

k k k

n 10 20 50 100 10 20 50 100 10 20 50 100

5 0.277 0.196 0.124 0.088 0.240 0.170 0.107 0.076 0.166 0.118 0.074 0.053
20 0.139 0.098 0.062 0.044 0.120 0.085 0.054 0.038 0.083 0.059 0.037 0.026
50 0.088 0.062 0.039 0.028 0.076 0.054 0.034 0.024 0.053 0.037 0.024 0.017

100 0.062 0.044 0.028 0.020 0.054 0.038 0.024 0.017 0.037 0.026 0.017 0.012
500 0.028 0.020 0.012 0.009 0.024 0.017 0.011 0.008 0.017 0.012 0.007 0.005

result, greater di7erences of the average lengths were observed between (p
; q
; p�; q�)= (9; 1;
9; 1) in the three-stage model and (
; �)= (9; 9) in the two-stage model, than between
(9; 9; 9; 9) and (
; �)= (9; 9).

When estimation of the mean rate across clusters is of interest, the direct simulation and
approximation methods yielded almost identical results. However, the approximation methods
required much less computing time and may be preferred. In all cases we examined, the
beta approximation did not have any extra advantage over the Normal approximation. In
general, the extremely skewed priors yielded the smallest average length. Furthermore, the
‘prior sample size’ of the beta prior distribution (that is, the sum of the two prior beta
parameters) plays an important role in determining this length.

When estimation of the range in cluster-speciLc rates is of interest, the two slightly skewed
priors generally yielded greatest and almost identical average lengths for k=10. The uniform
prior had the smallest average lengths for a large number of clusters (k=100). Figure 1
displays the average 95 per cent CPI lengths for the range of the rates with 10 (upper) and
100 (lower) clusters, and with two- (left) and three-stage (right) prior distributions.

Finally, all methods are accurate with coverage results approximately equal to the nominal
coverage level.

5. EXAMPLE: CONGESTIVE HEART FAILURE

The Q-SPAN Cardiovascular Disease study, funded by the Agency for Healthcare Research
and Quality, involves the examination of quality of care rendered to patients with cardio-
vascular conditions, one of which is congestive heart failure (CHF). An important indicator
of the quality of care subsequent to hospitalization is whether a patient has an appropriate
discharge plan. The investigators wanted to design a study to estimate the average rate of
appropriate hospital discharge planning and the range in these rates across a consortium of
k=30 hospitals.

5.1. A two-stage design

In the absence of prior studies, the investigators assumed that the mean rate was 0.75 and
that the average length of a CPI for the range of rates was 3:5 times greater than that for the

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2163–2182
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Figure 1. Average 95 per cent CPI length for the range of rates for k =10 (upper) and 100 (lower)
and for the two- (left) and three-stage (right) binomial models.

mean rate. Using these assumptions, a beta prior with hyperparameters (
; �)= (29; 10) (see
the Appendix C) was constructed.

Figures 2 and 3, respectively, display the required hospital sample sizes, n, when interest
centres on the mean rate and range in rates. Using a predetermined length of 2.5 per cent for
the average, the required sample sizes are 109, 110 and 114 by the direct simulation, Normal
approximation, and beta approximation methods for the composite parameter. In contrast, 154
patients per hospital are required if estimation is to proceed by the frequentist large-sample
method. Given a CPI length of at most 10 per cent for the range in discharge planning rates,
230 patients per hospital are required.

5.2. A three-stage design

The investigators obtained pilot information from 21 hospitals, each hospital having a min-
imum of Lve patients meeting entry criteria. For each patient, information abstracted from
medical records regarding the appropriateness of the discharge plan was available. To deter-
mine sample size for the new study, a three-stage model with unequal cluster sizes, ni, was
Ltted to the pilot data assuming (p
; q
; p�; q�)= (54; 1; 7; 1). The posterior means of the rates

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2163–2182
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Figure 2. Average 95 per cent CPI length for the mean rate for k =30 in a two-stage
model, using the prior beta(29; 10).

Figure 3. Average 95 per cent CPI length for the range of the rates for k =30 in a
two-stage model, using the prior beta(29; 10).

of the 21 hospitals ranged between 0.87 to 0.91. Based on these results, the hyperparameters
were updated (see Appendix D), resulting in (p
; q
)= (57; 1) and (p�; q�)= (16; 3), which
were used to determine the number of CHF patients per hospital necessary for the new study
of 30 hospitals.

Figures 4 and 5 display the required hospital sample sizes, n. A grid using cluster sizes
ranging between 20 to 65 in increments of 5 was created. A lowess smoother was applied to

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2163–2182
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Figure 4. Average 95 per cent CPI length for the mean rate for k =30 in a three-stage model, using
two independent priors gamma(57; 1) and gamma(16; 3).

Figure 5. Average 95 per cent CPI length for the range of the rates for k =30 in a three-stage model,
using two independent priors gamma(57; 1) and gamma(16; 3).

the scatter plot of CPI lengths at these grid values with the degree of smoothing, f, ranging
from 0.30 to 0.90. The results suggest that given a CPI length of at most 2.5 per cent for the
mean rate, 58 patients per hospital are required while 46 patients per hospital are required to
achieve a CPI length of at most 10 per cent for the range in discharge planning rates. The
required sample sizes were robust to choice of f.
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6. DISCUSSION

Practical methods to implement designs in hierarchical models are limited although the use
of such designs has increased in both experimental and observational settings. In this article
we considered hierarchical binomial models with two or three stages. We examined various
functions of the rate parameters across the clusters. Algorithms for computing the number of
patients per cluster, n, for given number of clusters k, over a range of priors, were developed
and illustrated with an example.

Both two- and three-stage models produced smaller average CPI lengths than those with-
out assuming any of the hierarchical structures. Compared with the two-stage models, the
three-stage models yielded greater average CPI lengths for the same approximated true rates,
especially for small n in our speciLc simulations. It may not always be the case that the
three-stage model will provide equal or greater sample sizes relative to the two-stage model
as the sample size depends on the choice of prior distributions. The advantage of the three-
stage model is also to allow for borrowing strength from neighbour design clusters and for
updating the prior distributions whenever pilot information is available. We demonstrated in
our example that much smaller sample sizes were needed by considering a three-stage model
and pilot information.

The choice of the prior distribution impacts the average CPI length. In the two-stage models,
when the mean function was of interest, all priors gave similar average lengths, especially
when cluster sizes were large (n¿100). For estimation of the range of the rates, the uniform
prior gave greater average lengths when the number of clusters was small. The opposite was
true when the number of clusters was large. This may be because the lower and upper bounds
of the CPIs tend to be close when we sample with these two priors. In the three-stage model,
the precision of the third-stage hyperprior distributions impacts the di7erences in the average
CPI length between the two- and three-stage models.

It is not surprising that the beta and Normal approximation methods in the two-stage design
are easy to implement and performed very well. The approximation using a beta distribution
did not add extra accuracy in estimation over the range of parameters examined. In more
complex situations, Markov chain Monte Carlo may be needed.

We approached the sample size problem from an interval-based framework. Some authors
have argued that this approach has the drawback of not including costs [17]. With the increas-
ing concern of the cost-e7ectiveness issue when designing a health services research study, it
may be advantageous to revisit the Bayesian decision and information approach in which a
utility function can be speciLed and maximized for the functions of the parameters of interest.

It is also important to note that di7erent approaches to sample size determination can lead
to di7erent answers, even in the context of an interval-based approach. Joseph et al. [11]
determined samples sizes when requiring the average interval lengths to be less than a cut-o7
while Lxing the coverage probability (‘average length criterion’) and compared to sample
sizes when requiring the average coverage probability of Lxed interval lengths to maintain
a prespeciLed level (‘average coverage criterion’). They suggested using the former because
it typically requires fewer subjects, especially when the nominal coverage level is high or
when the desired average CPI length is small. Although we did not perform an extensive
simulation study based on the average coverage criterion, we did perform some simulations
and observed results similar to those reported by Joseph and colleagues when using a two-stage
design.
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Several extensions are necessary to this research on several fronts. Two important exten-
sions involve use of other sampling models, such as the Poisson or Normal and inclusion
of covariates in both the sampling model and in the prior distribution [25; 26]. The latter
extension is especially needed in the observational setting where case-mix will vary across
the clusters.

APPENDIX A: BAYESIAN POSTERIOR COVERAGE PROBABILITY

Let I�(y)= {l(y; n); l(y; n)+T(y; n)} be an interval estimate of �∗ based on y for Lxed values
of the hyperparameters 
 and �. The performance of this interval is measured by averaging the
posterior probability that �∗ is included in I�(y) over the distribution of the data. We denote
this quantity by Q(y)=

∫
�∗ 1{�∗ ∈ I�(y)} × f(�∗ | y) d�∗, where 1(:) is an indicator function

assuming a value of 1 if the condition is true and 0 otherwise. A 100(1 − �) per cent CPI
for �∗ is deLned as a subset I�(y) of all �∗ ∈R such that 1− �6Q(y). In repeated draws of
{y; �∗} from f(y | �∗)f(�∗), the average posterior probability coverage of I�(y) is thus given
by (Rubin and Schenker [27])

�{�∗}=
∫
y∈Y

∫
R
Q(y)f(y | �∗)f(�∗) d�∗ dy (A1)

APPENDIX B: SAMPLE SIZE DETERMINATION BY THE MAXIMUM
LIKELIHOOD METHOD

Ignoring the second stage in the model, assume a common underlying �i= �, and a balanced
design of size n for each cluster. By large-sample approximation, for the average function,
tk(�)= W�= �i, the desired length of 100(1 − �) per cent conLdence interval for W� is

T=2U−1(�=2)
{
�(1 − �)
kn

}1=2

where U−1 is the standard normal quantile. The resulting n for any given T is then

n=
4
{
U−1(�=2)

}2 �(1 − �)
k[T{I�( W�)}]2 (B1)

Note that this solution does not accommodate between-cluster heterogeneity. In practice, how-
ever, � in (14) is substituted by E(�|
; �)= 
=(
 + �) if there is a second-stage beta prior
with hyperparameters of (
; �).

APPENDIX C: METHOD OF MOMENTS FOR DETERMINING THE BETA
HYPERPARAMETERS IN THE EXAMPLE IN SECTION 5.1

Let (m; v) be the underlying mean and variance of the second-stage parameter �i (i=1; : : : ; k),
where

(�i|
; �) iid∼ beta(
; �)
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so that m= 
=(
 + �) and v= 
�={(
 + �)2(
 + � + 1)}: Denote the ‘standardized mean’ as
c1 =m=v: It can easily be obtained that


=m(
+ �) and �=
(

1 −m
m

)



For k clusters, the underlying mean and variance of the cluster average W�, respectively, are

E( W�|
; �)=E(�i|
; �)=m

and

var( W�|
; �)=
1
k2

∑
i=1; k

var(�i|
; �)=
v
k

=
m
c1k

We assume that the posterior of the mean rate parameter over k clusters is an estimator
with above underlying mean and variance. Using the frequentist large-sample central limit
theorem as a crude approximation, a 95 per cent ‘conLdence interval’ of ( W�|a; b) has length

I0:05( W�|a; b)=2 × 1:96 ×
(
m
c1k

)1=2

leading to

c1 =
3:922m

k{I0:05( W�|
; �)}2
(C1)

In addition, we assume that the ratio of the length of ‘conLdence intervals’ of the range
and sample average of the estimated rate parameters over clusters is

c2 = I0:05{range(�)|
; �)}=I0:05( W�|
; �) (C2)

for c2¿1. Thus, from (C1) and (C2),

c1 =
(3:92)2m

k{I0:05( W�|
; �)}2
=

(3:92)2mc22
k[I0:05{range(�)|
; �}]2 (C3)

If the range is of interest, we only need to specify m, k, I{range(�)|
; �} and c2. Alter-
natively, if the mean of interest we need to specify the m, k and I0:05( W�|
; �). We then may
use (C3) for the initial (
; �)-value. This procedure can be repeated by trial and error for the
desirable c2-value.

In our case, we assume m=0:75, k=30, c2 = 3:5, and I0:05{range(�)|
; �}=0:10, translating
to I0:05( W�|
; �)=0:03; approximately. Thus by (C3)

c1 =
3:922 × 0:75 × 3:52

30 × 0:12 =471

resulting in


=0:75 × (471 × 0:25 − 1)=29 and �=
1 − 0:75

0:75
× 29=10

Note that in the Lnal results we give the sample size n needed for the target length of CPI
credible set I0:05( W�|y; 
; �)=0:025; close to the above 0:03 assumption.
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APPENDIX D: METHOD OF MOMENTS FOR DETERMINING THE GAMMA
HYPERPARAMETERS IN THE EXAMPLE IN SECTION 5.2

Let (m
; v
) be the underlying mean and variance of the third-stage parameter 
, where

(
|p
; q
)∼ gamma(p
; q
)

where m
=p
=q
 and v
=p
=q2
 . It follows that

p
=m2

=v
 and q
=m
=v
 (D1)

Estimate (m
; v
) by their respective posterior mean and variance from the pilot data, and
then update the hyperparameters (p
; q
) by equation (D1). Similarly we apply this method
to derive (p�; q�).

In our case, we Lrst Lt the three-stage model using the pilot data and hyperparameters
(p
; q
; p�; q�)= (54; 1; 7; 1). The resulting posterior mean and variance for 
 were 53:91 and
51:24. Thus

p
=53:912=51:24=57 and q
=53:91=51:24=1

The posterior mean and variances for � were 6:44 and 2:52. Thus

p�=6:442=2:52=16 and q�=6:44=2:52=3
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