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Background. Bayesian methods have been proposed as
a way of synthesizing all available evidence to inform deci-
sion making. However, few practical applications of the use
of Bayesian methods for combining patient-level data (i.e.,
trial) with additional evidence (e.g., literature) exist in the
cost-effectiveness literature. The objective of this study
was to compare a Bayesian cost-effectiveness analysis using
informative priors to a standard non-Bayesian nonparamet-
ric method to assess the impact of incorporating additional
information into a cost-effectiveness analysis. Methods.
Patient-level data from a previously published nonrandom-
ized study were analyzed using traditional nonparametric
bootstrap techniques and bivariate normal Bayesian models
with vague and informative priors. Two different types of
informative priors were considered to reflect different valu-
ations of the additional evidence relative to the patient-level
data (i.e., ‘‘face value’’ and ‘‘skeptical’’). The impact of
using different distributions and valuations was assessed

in a sensitivity analysis. Models were compared in terms
of incremental net monetary benefit (INMB) and cost-effec-
tiveness acceptability frontiers (CEAFs). Results. The boot-
strapping and Bayesian analyses using vague priors
provided similar results. The most pronounced impact of
incorporating the informative priors was the increase in esti-
mated life years in the control arm relative to what was
observed in the patient-level data alone. Consequently, the
incremental difference in life years originally observed in
the patient-level data was reduced, and the INMB and
CEAF changed accordingly. Conclusions. The results of
this study demonstrate the potential impact and impor-
tance of incorporating additional information into an anal-
ysis of patient-level data, suggesting this could alter
decisions as to whether a treatment should be adopted
and whether more information should be acquired. Key
words: Bayesian; cost-effectiveness; informative priors;
decision making (Med Decis Making XXXX;XX:xx–xx)

Economic evaluation, an important tool for
informing rational health care decision making,

depends critically on the sources of evidence from

which estimates of the relative costs and effects are
derived. In the case of an economic evaluation con-
ducted alongside a clinical trial (i.e., a patient-level
analysis), cost and effect data would be determined
for each patient in the study. These sample data
could then be used to generate estimates for the
mean costs and effects for patients under each of
the treatments being compared. As these values rep-
resent estimates for the true population mean costs
and effects, uncertainty around these sample values
is often incorporated using the nonparametric boot-
strap method.1 The bootstrap method propagates
uncertainty using only the information contained
in the data, effectively ignoring all other sources of
evidence external to the trial (e.g., literature). In con-
trast, in a Bayesian approach, the trial data as well as
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any external evidence can be taken into account
through the combination of the prior distributions
(i.e., external evidence) and the likelihood function
(i.e., the data from the trial),2 thus allowing for
a more comprehensive approach to the incorpora-
tion of uncertainty.

Despite the importance of incorporating all avail-
able evidence to inform decision making,3–6 a recent
review7 of 16 trial-based Bayesian cost-effectiveness
studies reported that 50% of the studies used nonin-
formative or vague priors only in their analyses. This
provides little guidance to policy makers on the
potential of Bayesian methods to integrate all avail-
able evidence to capture the uncertainty inherent in
decision making.7 Noninformative or vague priors
are appropriate in those situations where there is
a genuine lack of additional (i.e., prior or new exter-
nal) information. However, in those situations where
prior information exists, or new information becomes
available either during the course of a trial or after its
completion, failure to take this into account could
impact the results. Through the use of the prior distri-
bution, the Bayesian approach provides a mechanism
by which this additional information can be incorpo-
rated into a trial-based cost-effectiveness analysis. At
the very least, it would be useful to have a sense of
what impact this external evidence might have on
the trial results.

The objective of the current analysis was to com-
pare the results of a traditional frequentist method
(i.e., nonparametric bootstrap) that relies only on
the information contained in the patient-level data
to a Bayesian approach using informative priors to
incorporate evidence in addition to the patient-level
data. To inform the prior distributions, our analyses
combined the results of several published studies,
available at the time of the original analysis, in
a meta-analysis. This article also makes use of 2 dif-
ferent types of informative prior distributions to
reflect different potential valuations of the additional
information (i.e., ‘‘face value’’ and ‘‘skeptical’’).
These prior distributions are then used to combine
the additional information with the patient-level
data from a published trial-based economic evalua-
tion comparing endovascular aneurysm repair
(EVAR) with open surgical repair (OSR).8

CASE STUDY

A previous trial-based economic evaluation com-
paring elective EVAR and OSR for the treatment of
abdominal aortic aneurysms for patients at high

surgical risk provides the patient-level data for the
current analysis.8 These data were based on a 1-year
nonrandomized study conducted at a single site in
Ontario, Canada. Total costs expressed in 2006 Cana-
dian dollars and life years at 1 year were reported for
140 EVAR patients (treatment group) and 52 OSR
patients (control group). The 2 groups were well
matched in terms of clinical characteristics.8 The
estimated mean costs indicated that EVAR
($34,147) was slightly less expensive than OSR
($34,170), and estimated mean life years indicated
EVAR (0.96) was more effective than OSR (0.85).
Thus, on the basis of point estimates only, EVAR
dominated OSR in terms of incremental cost per life
year gained. Sampling uncertainty in the trial data
was incorporated using the standard nonparametric
bootstrap method. Although additional evidence
existed from other studies,9 this information was
not included in the cost-effectiveness analysis.

METHODS

The following describes the methods being com-
pared and introduces the sources of evidence used
to illustrate the potential impact of incorporating
informative priors into a Bayesian trial-based eco-
nomic evaluation.

The Bootstrapping Method

The bootstrapping method is nonparametric by
nature, meaning it makes no assumption about the
parametric distribution of the data. The method
resamples with replacement from the original sample
data to build an empirical estimate of the sampling
distribution for the statistic of interest.1 Although
nonparametric bootstrapping does not assume any
particular form of distribution, the choice of statistic
used implicitly does. For example, if the sample
mean is the statistic chosen to be monitored in the
repeated samples, the results will be similar to those
based on a parametric assumption of normality,10

provided the sample size is large enough.
Costs and effects were sampled simultaneously to

generate 1000 bootstrap replicates to estimate the
sampling distribution for the sample mean costs
and effects for both the EVAR and OSR groups as
well as for the incremental costs (DC) and effects
(DE) of EVAR compared to OSR. The incremental
net monetary benefit (INMB) was then obtained by
rescaling the incremental effects between EVAR and
OSR into a monetary value using a threshold
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willingness to pay for a life year gained (l) of $10,000
and subtracting the incremental costs from this value
(i.e., lDE – DC).1 Therefore, assuming the objective is
to maximize health gains for a given budget, an
INMB(l) . 0 indicates that EVAR is optimal com-
pared to OSR.11 Using the percentile method, the
limits of the 95% confidence intervals (CIs) around
the various statistics of interest were calculated
based on the 25th and 976th ordered values. Incor-
porating the uncertainty due to sampling error and
uncertainty about the cost-effectiveness threshold,
a cost-effectiveness acceptability curve (CEAC) was
computed. From a frequentist perspective, the
CEAC plots, as a function of l, are 1 minus the P
value of the 1-sided test of INMB(l) = 0 versus
INMB(l) . 0. However, the CEAC is more commonly
described from a Bayesian perspective as ‘‘the prob-
ability that the treatment is cost-effective’’ given the
data.12 To represent decision uncertainty in the
current analysis, a cost-effectiveness acceptability
frontier (CEAF) was constructed from the CEAC by
identifying the range of values of l over which
each intervention had the highest mean net benefit
(i.e., it was optimal).11 The frontier indicates the
probability that the intervention with the highest
net benefit will be cost-effective. The decision
uncertainty or the error probability is then 1 minus
the value of the frontier.13

Bayesian Analysis

The basis for making inferences from a Bayesian
perspective is Bayes theorem. In essence, Bayes the-
orem describes the combination of information
from 2 sources, the likelihood and the prior.2 The
likelihood function summarizes all of the informa-
tion that is contained in the data (e.g., a trial). In
the current analysis, this refers to the patient-level
data comparing EVAR and OSR.8 The prior distribu-
tion represents information that is available in addi-
tion to the data. In this analysis, the prior describes
the information from the literature available at the
time of the original analysis.9 In the absence of addi-
tional information, vague or noninformative prior
distributions can be used. The less informative the
prior, the more weight is given to the data in the anal-
ysis. The priors are combined with the data to gener-
ate the posterior distribution, which represents
what is now known about the unknown quantity
(e.g., mean effects) given the prior information and
the data. The posterior is proportional to the product
of the likelihood and the prior.2

Bivariate normal likelihood. The central limit the-
orem (CLT) states that for any population distribu-
tion of costs and effects, the distributions of the sam-
ple means will converge to normal distributions as
the sample size increases.12 In practice, the approx-
imation is generally very good for sample sizes of 50
or more.14 The simulation results of Nixon and
others,12 which were based on different scenarios
for sample size and skewness, further indicate that
for moderate to large sample sizes (i.e., n . 50),
the CLT performs well. Based on the current sample
sizes of 140 and 52 patients for EVAR and OSR,
respectively, we have invoked the CLT to justify
the validity of the sample means as estimators for
the population means. As noted previously, the
use of sample means gives similar results to assum-
ing normal distributions, especially for larger sam-
ple sizes, through the action of the CLT.10 To accom-
modate the correlation between costs and life years
observed in the patient-level data for both the
EVAR (–0.20) and OSR (–0.31) groups, the cost and
effect data were first modeled using bivariate normal
distributions.10 The 140 EVAR and 52 OSR patients
were indexed by i, and the 2 study arms were
indexed by j (i.e., j = 1 for EVAR and 2 for OSR):

Cij;Normal mCj;sCj
2

� �
; ð1Þ

Eij;Normal mEij;sEj
2

� �
; and ð2Þ

mEij5mEj1bj Cij � mCj

� �
: ð3Þ

Here, the costs have a normal distribution with
mean mCj and standard deviation sCj (equation 1).
The effects have a normal distribution with mean
mEij and standard deviation sEj (equation 2). As seen
in equation 3, the mean of Eij depends, through the
parameter bj, on how much the cost Cij is above the
mean cost mCj. The model allows the correlation
between costs and life years to be different in the 2
study groups, through the separate respective bj

parameters. The subtraction of mCj ensures that mEj

remains interpretable as the overall mean effect in
the jth arm of the study.10 As implied by the regres-
sion in equation 3, effects have been made a function
of costs. To justify the assumption of a linear relation-
ship between life years and costs, we plotted the
residuals versus the costs and found no departure
from linearity.
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Vague priors. In addition to the likelihood func-
tion, a Bayesian analysis requires prior distributions
for the unknown population parameters. In the
initial analysis, vague priors (Table 1) were used
so that the resulting inferences essentially depended
only on the data. In that regard, we would expect the
results from the Bayesian analysis to be similar to
those from the nonparametric bootstrap approach.10

Informative priors. To incorporate all available
evidence in the Bayesian cost-effectiveness analysis,
studies from a published systematic review,9 which
were available at the time of the original patient-
level analysis, were combined with the trial data.
The review identified 8 nonrandomized studies
conducted in high-risk patients. All 8 studies pro-
vided estimates of 30-day postoperative mortality.
Two of the high-risk studies also provided estimates
of longer term mortality but not at 1 year (i.e., mean
follow-up of 26.8 months for EVAR and 27.6 months
for OSR in one study15 and 15.6 months for EVAR
and 19.8 months for OSR in the other study16). In
addition to the body of evidence in high-risk
patients, the review also contained information
from another 8 nonrandomized studies that were
not restricted to high-risk patients but measured
mortality at 30 days and 1 year after treatment in
a mixed population of low- to high-risk patients.

To estimate the 1-year mortality rate in a high-risk
population, the 30-day mortality rates observed in the
8 high-risk studies were combined with conditional
probabilities measuring the probability of being
dead at 1 year given the patient was alive at 30
days. These conditional probabilities were calculated
from 2 sets of evidence. First, the 2 high-risk studies
reporting mortality data at around 2 years were
used,15,16 assuming that the 1- and 2-year probabili-
ties of being dead conditional on being alive at 30
days were similar. The second set of evidence
consisted of the 8 studies that measured mortality at
30 days and at 1 year in a mixed-risk population.9

For EVAR, the mortality rates for both 30 days and
conditional on being alive at 30 days for the studies
were fairly consistent with those from the trial (i.e.,
3% v. 1% for 30-day mortality and 4% high risk,
5% mixed risk v. 6% for conditional rates). In con-
trast, the studies reported, on average, lower mortal-
ity rates for OSR compared to the trial (i.e., 6% v.
10% for 30-day mortality and 3% high risk, 3% mixed
risk v. 9% for conditional rates). To estimate the 1-
year mortality associated with EVAR and OSR in
high-risk patients, for each of the 2 sets of evidence,
binomial models were constructed in WinBUGS17

to combine information on 30-day mortality and lon-
ger term mortality. The details of the additional

Table 1 Vague and Informative Prior Distributions for the Bayesian Models

Parameter Vague Prior

Informative Priora

Face Value Prior Skeptical Prior

EVAR
Mean costs (mC1) Normal(25,000, 1E11) Not applicable Not applicable
Precision costs (1/sC1

2) Gamma(0.50, 1E-07) Not applicable Not applicable
Mean life years (mE1)b Beta(1, 1) Normal(0.95, 1.01E-03) Normal(0.95, 8.38E-04)

Normal(0.95, 4.73E-04) Normal(0.95, 8.38E-04)
Standard deviation life years (sE1) Uniform(0, 10) Not applicable Not applicable
Relationship between costs and life years (b1) Normal(0, 10,000) Not applicable Not applicable
Shape costs (rC1) Uniform(0, 100) Not applicable Not applicable
Scale costs (yC1) Uniform(0, 100) Not applicable Not applicable
OSR
Mean costs (mC2) Normal(25,000, 1E11) Not applicable Not applicable
Precision costs (1/sC2

2) Gamma(0.50, 1E-07) Not applicable Not applicable
Mean life years (mE2)b Beta(1, 1) Normal(0.93, 2.21E-03) Normal(0.93, 8.76E-03)

Normal(0.93, 2.12E-03) Normal(0.93, 8.76E-03)
Standard deviation life years (sE2) Uniform(0, 10) Not applicable Not applicable
Relationship between costs and life years (b2) Normal(0, 10,000) Not applicable Not applicable
Shape costs (rC2) Uniform(0, 100) Not applicable Not applicable
Scale costs (yC2) Uniform(0, 100) Not applicable Not applicable

Note: EVAR = endovascular aneurysm repair; OSR = open surgical repair.
a. Informative priors were only available for mean life years (mEj) in the EVAR and OSR groups.
b. Two informative priors for each type derived from 2 sets of evidence (i.e., 2 high-risk and 8 mixed-risk studies).
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studies and the calculations are provided in the
Appendix. In the absence of information on Cana-
dian-specific costs from these studies, the informa-
tive priors were limited to effects.

For each of the 2 sets of data used to estimate the 1-
year mortality to inform the prior on effects (i.e., 2
high-risk studies and 8 mixed-risk studies), 2 differ-
ent types of informative prior distributions for mEj

were examined.18 These priors are described in Table
1. The first informative prior used in the analysis was
labeled a ‘‘face value’’ prior because the additional
information was taken at face value and no specific
concession was made for any potential differences
between the additional information and the patient-
level data. This could reflect a belief that the evidence
from the literature was of high quality and as reliable
as the patient-level data. The second informative
prior was labeled ‘‘skeptical.’’ This could reflect
concerns regarding the risk level of the patients in
the studies, the time periods over which mortality
was measured, or the quality of the evidence. In that
case, the additional information could be explicitly
given less weighting than the patient-level data. To
explicitly downweight the external evidence relative
to the trial data, we initially used a prior variance for
mean life years that was 4 times the variance of the
patient-level data. This was based on a previous study
by Sutton and Abrams.18 Such downweighting reflects
skepticism regarding the additional evidence and
would be appropriate in situations where a researcher
believes that although this evidence provides some
information, it should be treated with caution.18

Sensitivity analysis. While the use of a variance
that was 4 times as large as that for the patient-level
data corresponded to the variance inflation factor
used by Sutton and Abrams,18 other choices are pos-
sible. The more the variance from the additional
studies is inflated relative to the variance for the
patient-level data, the more their evidence is down-
weighted relative to the patient-level data. To get
a better understanding of the impact of using differ-
ent inflation factors to explicitly downweight the
additional information, a sensitivity analysis was
conducted (e.g., inflating the variance by 2 rather
than by 4).

To assess the sensitivity of the cost-effectiveness
results to different cost distributions, the normal
distributions in equation 1 were replaced with gamma
distributions for both the EVAR and OSR arms:

Cij; Gamma rCj; yCj

� �
: ð4Þ

The gamma distributions for the costs were param-
eterized by their shape rCj and their scale yCj. The
mean was then rCj/yCj, and the standard deviation
was OrCj/yCj. Otherwise, the formulation of the model
was the same as before. Vague priors for the shape and
scale parameters are given in Table 1.

Estimations. All posterior distributions of quanti-
ties of interest for both the informative priors and
the Bayesian cost-effectiveness analyses were esti-
mated in WinBUGS.17 For all Bayesian analyses,
an initial burn-in of 100,000 iterations was
discarded to ensure convergence. History plots,
autocorrelation plots, and various diagnostics avail-
able in the Bayesian Output Analysis package,19

performed on 2 chains, were used to assess conver-
gence. Posterior estimates were based on a subse-
quent sample of 100,000 iterations. These posterior
distributions were summarized as posterior means
and 95% credible intervals (CrIs). In contrast to
a frequentist 95% CI, a Bayesian 95% CrI is an inter-
val that has a 95% probability of containing the true
parameter value. As with the nonparametric boot-
strap, the estimated quantities included the sample
means for costs and effects for EVAR and OSR as
well as the mean cost difference (DC) and the
mean effect difference (DE) between the EVAR and
OSR groups. The INMB, CEACs, and CEAFs were
also calculated.

RESULTS

The Bootstrapping Method

Estimated values for mean costs and life years for
both the EVAR and OSR groups and incremental
costs and life years and their associated 95% CIs are
presented in Table 2. The results closely correspond
to those from the original study (i.e., DC = –$24(–
$11,582, $9165) and DE = 0.11(0.02, 0.21)).8 The esti-
mated mean INMB at a willingness to pay of $10,000
and its 95% CI are also reported. The positive mean
value indicates that EVAR is optimal compared to
OSR at l equal to $10,000.

Bayesian Bivariate Normal Analysis

Vague prior distributions. The posterior mean
estimates and 95% CrIs obtained from the Bayesian
bivariate normal analysis with vague priors were
similar to the mean estimates and 95% CIs from
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the nonparametric bootstrap (Table 2). The CEAFs
were also quite similar (Figure 1). These results
reflect the vagueness of the prior distributions and
suggest that most of the information in the analysis
is coming from the patient-level data.

Informative priors. As evidenced by the informa-
tive prior distributions given in Table 1 for the
mean life years, the lower mortality rates for OSR
reported in the literature translated into higher esti-
mates for mean life years in the OSR group (i.e.,
0.93) relative to the patient-level data (i.e., 0.85).
The consistency of the mortality rates for EVAR
led to estimates for mean life years that were roughly
the same for both the informative priors (i.e., 0.95)
and the patient-level data (i.e., 0.96). Consequently,
and in contrast to the results for the vague prior
distributions, the incorporation of informative priors
for mean life years increased the posterior estimates
for mean life years in the OSR group from 0.85 life
years gained (LYG) to between 0.87 LYG and 0.89
LYG depending on the type of prior used (e.g.,
‘‘face value’’). The associated 95% CrIs shifted
upwards and as a result of the added information
became narrower. Likewise, the posterior estimates
for mean life years and the associated intervals,

although slightly narrower, were essentially
unchanged for EVAR. These results were consistent
across both types of priors for both sets of evidence
(Table 2).

The extent of the increase relative to the mean
values for OSR observed in the nonparametric boot-
strap and vague models reflected the weight of the
information associated with each type of informative
prior. In the current analysis, the weight of the addi-
tional information relative to the data decreased as
the priors moved from ‘‘face value’’ to ‘‘skeptical.’’
This was also apparent in the incremental estimates
as the differences in mean life years between EVAR
and OSR got progressively larger as the additional
information was given less weight. In terms of the
95% CrIs associated with these incremental differ-
ences, they all shifted downwards and became more
precise compared to those based on vague priors.
These changes resulted in differing estimates for the
mean INMB both between the 2 types of informative
priors and relative to the vague and bootstrap models.
As seen in Table 2, the estimated values for the ‘‘skep-
tical’’ priors remained positive, while for the ‘‘face
value’’ priors, the values became negative, indicating
that, for the latter, OSR would be optimal and, for the
former, EVAR would be optimal.

Due to modeling the correlation between costs and
effects, the informative priors on life years also
impacted the mean costs. As the mean life years in
the OSR group increased, the mean costs in the OSR
group decreased. The combined impact of these
changes in terms of both the optimal alternative based
on existing information and the decision uncertainty
can be seen in a comparison of the CEAFs. Figure 1
presents the range of values for l over which EVAR
or OSR had the highest mean net benefit and the
approximate switch point where the current decision
changes from one intervention to the other. The fron-
tiers indicate that the more informative the prior, the
larger the range over which OSR is optimal compared
to EVAR and the higher the switch point or l required
for EVAR to be cost-effective. The switch point corre-
sponds to the base incremental cost-effectiveness
ratio (i.e., DC/DE) for the decision. For example, the
l for which EVAR would be optimal compared to
OSR increased from $0 for the bootstrap and vague
normal models to approximately $20,000 for the
‘‘face value’’ priors. The priors also impacted the
decision uncertainty. As the priors became more
informative, the probability that EVAR was optimal
compared to OSR decreased for all ls, and conse-
quently, the decision uncertainty increased.

Figure 1 Cost-effectiveness acceptability frontiers (CEAFs) for

nonparametric bootstrap and Bayesian bivariate normal models

with vague and informative priors for mean life years. Two CEAFs
are reported for each type of informative prior (i.e., face value and

skeptical) for mean life years. Each of the 2 CEAFs refers to the set

of evidence on longer term mortality used in the calculation of the

informative priors (i.e., 2 high-risk or 8 mixed-risk studies). Open
surgical repair (OSR) is optimal for solid lines, and endovascular

aneurysm repair (EVAR) is optimal for dashed lines. Switch points

(base incremental cost-effectiveness ratios) occur where solid and
dashed lines intersect.

BAYESIAN INFORMATIVE PRIORS AND COST-EFFECTIVENESS

7

 at MCGILL UNIVERSITY LIBRARY on November 19, 2012mdm.sagepub.comDownloaded from 

http://mdm.sagepub.com/


Sensitivity analysis. In the initial analysis, the
‘‘skeptical’’ priors were downweighted by 4 times
the variance of the patient-level trial data. Although
this introduced a switch point ($6000–$7000) where
the decision changed from OSR to EVAR (Figure 1),
EVAR still had the higher mean net benefit com-
pared to OSR for l equal to $10,000 (Table 2). A sen-
sitivity analysis revealed that the additional evi-
dence for the OSR group would have to be down-
weighted by between 2 and 2.5 times the variance
of the patient-level data in order for EVAR to remain
optimal compared to OSR at a willingness to pay of
$10,000. This would mean that the additional infor-
mation for the OSR group would have to be down-
weighted by at least 50% relative to the patient-level
data in order for the current decision to remain
unchanged.

A second sensitivity analysis considered the
impact on the results of using gamma distributions
for the costs instead of normal distributions (Table
3). The main impact was in terms of the estimated
precision for the mean costs in the OSR group. The
gamma distribution increased this precision relative
to the normal distribution. This increased precision
around the mean costs was due to lower estimates
for the variance in the data compared to what was
estimated using a normal distribution and what was
observed in the trial data itself. Accordingly, the pre-
cision of the estimates for the mean DC and mean
INMB also increased. When informative priors were
used, the estimates for the mean costs in the OSR
group decreased, as before, but by less than with the
normal distributions. Consequently, EVAR remained
optimal compared to OSR for l equal to $10,000
across all priors. In terms of decision uncertainty,
the CEAFs in Figure 2 have the same pattern as those
in Figure 1. The switch points, however, are about
half the value they were with the normal distribu-
tions (i.e., approximately $10,000 and $3000, respec-
tively, for the ‘‘face value’’ and ‘‘skeptical’’ priors).

DISCUSSION

By comparing the nonparametric bootstrap to
a Bayesian approach with both vague and informative
priors, this study has sought to assess the potential
impact of incorporating all available evidence into
a trial-based economic evaluation. While the non-
parametric bootstrap and the Bayesian approach
using vague priors produced similar results, our
study has demonstrated the potential for informative
priors to impact both the decision about which

alternative should be chosen based on existing infor-
mation and whether more information should be
acquired. Based on whether the additional informa-
tion was incorporated into the analysis, and
depending on a decision maker’s willingness to pay
for a life year gained, this could result in very differ-
ent funding decisions. The impact on decision uncer-
tainty observed in the CEAFs suggests the synthesis
of evidence from different sources could also play
a role in decisions about future research, ensuring
that resources are used efficiently. This could be par-
ticularly important in those situations where the
additional information suggests something different
from the patient-level data, as was observed in our
case study.

In addition to exploring the potential impact of
combining all available evidence, this study also con-
sidered how the additional information might be
weighted or valued relative to the patient-level data
from the original cost-effectiveness analysis. As the
objective was to combine all available evidence to
inform decision makers, this study provides insight
into how multiple sources of evidence may be com-
bined together in the prior and used in addition to
the trial data. Integral to this process is an under-
standing of how to value the additional information
relative to the patient-level data. Attempts were
made to assess the impact on the cost-effectiveness
results of different types of informative prior distribu-
tions. Specifically, 2 types of priors were examined
(i.e., ‘‘face value’’ and ‘‘skeptical’’).

In terms of deciding how much the additional
information should contribute to the analysis,
a more thorough consideration would need to be
given as to why the mortality rates for OSR reported
in the literature differed from the patient-level esti-
mates. This could have implications both in terms
of the weight ascribed to the additional information
and to the potential need for future research. Unfortu-
nately, none of the studies in the literature provided
detailed information on all of the clinical characteris-
tics necessary to evaluate the risk level of the patients.
In addition, although both the trial-based economic
evaluation and the studies from the literature were
nonrandomized, the trial was well balanced in terms
of patient characteristics, while there was evidence of
covariate imbalance among the literature studies.
Again, attempts to understand the potential impact
of these imbalances are limited by the extent of miss-
ing covariate data.

In combination, these factors (i.e., real surgical risk
level unknown in many studies and nonrandomized
evidence) suggest that we may be unlikely to take the
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evidence from the literature at ‘‘face value.’’ As in our
case study, this essentially gives the external evi-
dence and the patient-level data for the OSR group
equal weighting. Rather, some degree of down-
weighting would seem to be necessary. The results
of the sensitivity analysis indicate that the additional
information for the OSR group must be down-
weighted by at least 50% in order for EVAR to remain
optimal compared to OSR. Whether this represents
a reasonable valuation of the evidence in the litera-
ture relative to the patient-level data is not clear and
likely would require additional research. Future
research could also look at the feasibility of using
models that elicit expert opinion concerning the rigor
and relevance of the studies being combined.20

Methods have also been proposed that use estimates
from previously published meta-analyses to adjust
and downweight studies.21 Again, the limited avail-
ability of covariate data would likely make any
assessments regarding adjustment and down-
weighting difficult in the current analysis.

This article focused on the use of the prior distribu-
tion to combine all available evidence in a Bayesian
cost-effectiveness analysis. A possible concern was

the absence of data for life years at 1 year after treat-
ment for the 8 high-risk studies from the literature.
This meant that these values had to be estimated.
Although actual data would have been preferable,
the similarity of the outcomes for both sets of infor-
mation (i.e., 2 high-risk and 8 mixed-risk studies)
reinforced the results. Under ideal circumstances,
additional information on total 1-year costs in
EVAR and OSR patients would also have been avail-
able from the studies.

Another possible limitation is that in an empirical
cost-effectiveness analysis, the true form of the distri-
butions for the costs and effects remains unknown. If
correct about the true population distributions, effi-
ciency in estimating the population means could be
gained. However, the use of estimators based on
incorrect distributional assumptions can lead to
totally misleading conclusions. Overall, the sample
mean performs well.22 Accordingly, we have used
the sample mean in the current analysis and assessed
the sensitivity of the results to different parametric
distributions for the costs.

Despite limitations, this study has demonstrated
the potential importance of using all available evi-
dence to inform decision makers. Where cost-effec-
tiveness analyses and economic evaluations are
a critical input to health care policy making, it is par-
amount that these policy decisions be based on the
available evidence. This study contributes to the lit-
erature an example of how this may be achieved
using actual data from a previous patient-level
cost-effectiveness analysis and evidence available
from the literature at the time of the original analy-
sis. Future research could focus on further refine-
ments, and of course, the approaches undertaken
will likely vary depending on the context and avail-
ability of data.

CONCLUSIONS

This analysis indicates that ignoring specific
sources of evidence could undermine cost-effective-
ness results. Not only might it change decisions
regarding the cost-effectiveness of one intervention
compared to another, but it could also impact deci-
sions regarding the need for future research. Only
when all available evidence is taken into consider-
ation can we be confident of well-informed health
care decisions.

Figure 2 Cost-effectiveness acceptability frontiers (CEAFs) for

gamma cost distributions with vague and informative priors for
mean life years. Two CEAFs are reported for each type of informa-

tive prior (i.e., face value and skeptical) for mean life years. Each of

the 2 CEAFs refers to the set of evidence on longer term mortality
used in the calculation of the informative priors (i.e., 2 high-risk

or 8 mixed-risk studies). Open surgical repair (OSR) is optimal

for solid lines, and endovascular aneurysm repair (EVAR) is opti-

mal for dashed lines. Switch points (base incremental cost-effec-
tiveness ratios) occur where solid and dashed lines intersect.
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Calculation of Informative Priors

The following presents the methods used to com-
bine the studies from the literature and generate the
informative prior distributions for the cost-effective-
ness analysis comparing EVAR and OSR in high-
risk patients. Eight studies presenting 30-day mortal-
ity in high-risk patients were found in the literature.9

The studies did not present information on life years,
nor did they present mortality data at 1 year. There-
fore, mortality at 1 year in high-risk patients was esti-
mated by combining 30-day mortality rates from the 8
studies in high-risk patients with probabilities of
being dead at 1 year conditional on being alive at 30
days from 2 sources of evidence. The 2 sets of evi-
dence were as follows: 1) 2 high-risk studies
presenting mortality data at around 2 years, and 2) 8
studies conducted in a mixed-risk population and
reporting mortality data at 1 year. Details of the stud-
ies are provided below.

As each of the studies had the same 2 comparators,
EVAR and OSR, we combined the data across arms.
This allowed for separate informative priors for
mean life years in each study arm, in keeping with
the original patient-level trial that estimated mean
life years in each arm. For each of the 2 sets of data,
the binomial model given below was used to generate
estimates for 30-day mortality and 1-year mortality
conditional on being alive at 30 days:

deathsEVARmn;Binomial pdeadEVARmn;patientsEVARmnð Þ
and deathsOSRmn;Binomial pdeadOSRmn;patientsOSRmnð Þ;

ð5Þ
log odds pdeadEVARmnð Þ5cmnand log

odds pdeadOSRmnð Þ5gmn;
ð6Þ

cmn;Normal um;sm
2

� �
; ð7Þ

gmn;Normal am; tm
2

� �
; ð8Þ

cm:new;Normal um;sm
2

� �
; and ð9Þ

gm:new;Normal am; tm
2

� �
; ð10Þ

where m = 30 for deaths occurring 0 to 30 days after
treatment or 1 for deaths occurring after 30 and up to
365 days after treatment; n = 1, . . ., xm studies.

As shown in equation 5, this model assumed that
the number of events in each arm of the nth study of
time m (i.e., deathsEVARmn and deathsOSRmn for the
treatment and control groups, respectively) followed
a binomial distribution defined by the proportion of
patients who died in each arm in the nth study of

time m (i.e., pEVARmn and pOSRmn) and the total num-
ber of patients alive in each arm in the nth study at
time 0 and 30 days after treatment (i.e., patientsE-

VARmn and patientsOSRmn). Equation 6 describes the
log odds for death in the treatment (cmn) and control
(gmn) arms of each of the xm studies. For each of the 2
time periods, the log odds of dying for both the treat-
ment and control groups were assumed to follow nor-
mal distributions with means of um and am, respec-
tively. Between-study variability for studies at time
m was represented by sm

2 for the EVAR group and
tm

2 for the OSR group. Predictions for the log odds
of dying in the patient-level trial are provided in
equations 9 and 10 for EVAR and OSR, respectively.
These distributions incorporate all of the uncertainty
associated with um and am, the pooled effects in the
mth time periods, and sm

2 and tm
2, the between-

study variability for the mth time periods.
Prior distributions for the unknown parameters um,

sm
2, am, and tm

2 were intended to be vague. Normal
priors with means of 0 and standard deviations of
100 were specified for the mean log odds um and am

(i.e., 30-day and 1-year mortality conditional on being
alive at 30 days for EVAR and OSR, respectively). Nor-
mal prior distributions with means of 0 and standard
deviations of 0.50 truncated to be positive were used
for the between-study standard deviations (sm, tm).
These priors are intended to be vague within a realistic
range of values for the standard deviations. Combining
the studies together is predicated on the assumption of
at least some degree of similarity; therefore, these
priors allow for equality among the studies while
discounting substantial heterogeneity.2 They reflect
a prior belief that we are 95% sure that the average
deviation from the mean log odds for both EVAR and
OSR will be between 0 and 1. This could include situa-
tions where the log odds are the same in both groups
and situations where they are higher or lower in one
group relative to the other.

Summary of the Posterior Distribution and Poste-
rior Predictive Distribution for the Log Odds of

Dying for Endovascular Aneurysm Repair (EVAR)
and Open Surgical Repair (OSR) from the Bayesian

Meta-Analysis

Variable Parameter Mean Standard Deviation

30-day mortality
EVAR u30 –3.83 0.4852

c30.new –3.83 0.7058

continued
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After combining the studies to generate estimates
for the mean log odds in both the EVAR and OSR
groups for 30-day mortality (i.e., c30.new and
g30.new) and 1-year mortality conditional on being
alive at 30 days (i.e., c1.new and g1.new), the corre-
sponding probabilities were derived by exponenti-
ating the results. The resulting values were used to
estimate the probabilities of dying for EVAR
and OSR between 0 and 30 days postoperatively
(i.e., pdeadEVAR30 and pdeadOSR30) and the conditional
probabilities used to estimate mortality after 30 days
and up to 1 year (i.e., pdeadEVAR1|aliveEVAR30 and
pdeadOSR1|aliveOSR30).

Estimating different probabilities for dying in the
immediate 30-day postoperative period and the lon-
ger term period from 30 days to 1 year allows the
number of people dying to change over time. To con-
vert these probabilities into life years, we have
assumed no prior knowledge of when these deaths
occur within the respective time periods. Thus, death
was assumed equally likely to occur at any time
within the respective time periods. As a result, we
have effectively assumed uniform distributions
with mean life years of approximately 0.04 (i.e., 15/
365) for patients who died between 0 and 30 days
and mean life years of approximately 0.46 (i.e., 168/
365) for patients who died after 30 days and up to 1
year after treatment. Life years of 1 were applied to
those patients still alive at 1 year. The probability of
being alive at 1 year for EVAR (paliveEVAR1) and OSR
(paliveOSR1) was calculated as 1 minus the respective
probabilities of being dead by 1 year in each of the
groups. That is,

paliveEVAR151� pdeadEVAR30 � ðpdeadEVAR1jaliveEVAR30 3

1� pdeadEVAR30

� ��
and

paliveOSR151� pdeadOSR30 � ðpdeadOSR1jaliveOSR30 3

1� pdeadOSR30

� ��
:

Based on these assumptions, the following equa-
tions were used to estimate mean life years in the trial
at 1 year for EVAR and OSR, respectively:

mE15ðpaliveEVAR1 3 1Þ1ðpdeadEVAR30 3 15=365ð ÞÞ1
ðpdeadEVAR1jaliveEVAR30 3 1� pdeadEVAR30

� �
3 168=365ð ÞÞ; and

mE25ðpaliveOSR1 3 1Þ1ðpdeadOSR30 3 15=365ð ÞÞ1
ðpdeadOSR1jaliveOSR30 3 1� pdeadOSR30

� �
3 168=365ð ÞÞ:

The mean and standard deviation of mEj, the pre-
dictive value of mean life years, are used as the
parameters of the normal ‘‘face value’’ prior distribu-
tions for mean life years in the trial. The mean of the
posterior predictive distribution, mEj, and a variance 4
times the variance of the patient-level data are used
for the ‘‘skeptical’’ prior. The standard deviations
for mean life years in the patient-level data were
0.01447 and 0.04678 for EVAR and OSR,
respectively.
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