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Hierarchical priors for bias parameters
in Bayesian sensitivity analysis for
unmeasured confounding
Lawrence C. McCandless,a*† Paul Gustafson,b Adrian R. Levyc

and Sylvia Richardsond

Recent years have witnessed new innovation in Bayesian techniques to adjust for unmeasured confounding. A
challenge with existing methods is that the user is often required to elicit prior distributions for high-dimensional
parameters that model competing bias scenarios. This can render the methods unwieldy. In this paper, we pro-
pose a novel methodology to adjust for unmeasured confounding that derives default priors for bias parameters
for observational studies with binary covariates. The confounding effects of measured and unmeasured variables
are treated as exchangeable within a Bayesian framework. We model the joint distribution of covariates by using
a log-linear model with pairwise interaction terms. Hierarchical priors constrain the magnitude and direction
of bias parameters. An appealing property of the method is that the conditional distribution of the unmeasured
confounder follows a logistic model, giving a simple equivalence with previously proposed methods. We apply
the method in a data example from pharmacoepidemiology and explore the impact of different priors for bias
parameters on the analysis results. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

1.1. Unmeasured confounding in pharmacoepidemiology

Bias from unmeasured confounding figures prominently in pharmacoepidemiology, which is concerned
with improving our understanding of the effectiveness and safety of medications. A typical pharma-
coepidemiology study compares outcome response rates in patients who were prescribed a medication
with those who were not. Study findings are often biased without careful adjustment for the factors that
influence prescribing. Unfortunately, control of confounding is notoriously difficult because medication
prescribing is intimately connected to the disease process that determines the study outcome. The myr-
iad of patient characteristics that influence prescribing can act as powerful confounders and bias effect
estimates in a manner that is difficult to predict. Epidemiologists call this confounding by indication
because the confounders are the clinical indications for treatment [1].

In this paper, we illustrate the problem of unmeasured confounding by using the data example of
McCandless et al. [2,3]. The authors collected data from a cohort of patients who were discharged from
hospital in 1999 and 2000 after treatment for heart failure. The goal of the study was to estimate the
association between beta blocker therapy and mortality after 1 year of follow-up. However, the study
used healthcare administrative data, which provides only basic information on the many possible con-
founders. A total of 21 covariates are available in the data, including patient characteristics, disease
indicator variables and prescribing of cardiovascular therapies (see Table I for a complete listing).
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Table I. Adjusted log-odds ratios (95% interval estimates) in outcome models predicting mortality.

Bayesian sensitivity analysis

Naive analysis U C jX U C jX

Beta blocker use �0:44 (�0:80, �0:07) �0:41 (�0:87, 0.06) �0:40 (�0:90, 0.11)
Disease indicator variables

CVD 0.40 (�0:33, 1.14) 0.22 (�0:45, 0.81) 0.23 (�0:40, 0.79)
COPD 0.01 (�0:44, 0.45) �0:13 (�0:58, 0.34) �0:13 (�0:54, 0.20)
HYPNAT 0.05 (�0:39, 0.48) �0:07 (�0:56, 0.35) �0:07 (�0:47, 0.25)
MTSTD 1.70 (0.97, 2.44) 1.35 (0.63, 1.97) 1.34 (0.69, 1.82)
MSRD 0.65 (0.24, 1.07) 0.51 (0.05, 0.93) 0.50 (0.12, 0.79)
VENTRAR 0.27 (�0:44, 0.99) 0.12 (�0:49, 0.75) 0.13 (�0:51, 0.64)
MLD 0.39 (�0:23, 1.00) 0.22 (�0:39, 0.74) 0.22 (�0:33, 0.70)
CAN 1.01 (0.52, 1.51) 0.87 (0.37, 1.33) 0.87 (0.41, 1.23)
CARS �0:09 (�0:73, 0.56) �0:19 (�0:78, 0.37) �0:18 (�0:74, 0.32)

Patient characteristics
Sex: female �0:35 (�0:60, �0:10) �0:36 (�0:61, �0:13) �0:36 (�0:60, �0:12)
Age (in years) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04)

Characteristics of hospitalisation
Transferred admission 0.75 (0.39, 1.12) 0.77 (0.41, 1.13) 0.76 (0.43, 1.12)
Hospital stay (no. of days) 0.01 (0.00, 0.01) 0.01 (0.00, 0.01) 0.01 (0.00, 0.01)

Heart failure medications
Digoxin 0.30 (0.00, 0.60) 0.30 (�0:01, 0.59) 0.30 (0.00, 0.58)
Diuretics �0:04 (�0:32, 0.25) �0:04 (�0:30, 0.25) �0:04 (�0:31, 0.24)
CCB �0:31 (�0:66, 0.04) �0:32 (�0:67, �0:01) �0:33 (�0:67, �0:01)
ACE inhibitor �0:01 (�0:29, 0.27) �0:02 (�0:28, 0.25) �0:02 (�0:30, 0.24)
ARB 0.13 (�0:58, 0.84) 0.12 (�0:57, 0.78) 0.11 (�0:59, 0.77)
Statin �0:62 (�1:10, �0:13) �0:64 (�1:12, �0:20) �0:64 (�1:10, �0:19)

LetX and Y denote binary treatment and outcome variables, respectively. We setX equal to one if the
patient was dispensed a beta blocker within 30 days of hospital discharge and zero otherwise. Similarly,
we let Y denote an indicator variable for death within 1 year of hospital discharge. In pharmacoepi-
demiological studies of cardiovascular therapies, interest centres on confounding induced by the various
patient illnesses. Let C D .C1; : : : ; Cp/ denote the p D 9 dimensional vector of disease indicator vari-
ables listed in Table I, which include cerebrovascular disease (CVD), chronic obstructive pulmonary
disorder (COPD), hyponatremia (HYPNAT), metastatic disorder (MTSTD), renal disease (MSRD), ven-
tricular arrhythmia (VENTRAR), liver disease (MLD), cancer (CAN) and cardiogenic shock (CARS).
Additionally, let Z D .Z1; : : : ; Zq/ denote q D 21 � 9 D 12 dimensional vector of the remaining 12
non-disease indicator variables listed in the bottom half of Table I.

In this article, we focus on the data set consisting of n D 1299 study participants that have at least
one of the co-morbidities in Table I. To estimate the association between beta blocker therapy and mor-
tality while adjusting for confounding, we fit a logistic regression with Y as the dependent variable
and .X;C ;Z / as the independent variables. We present the results in the first column of Table I under
the heading ‘Naive analysis’. The table displays regression coefficients, which are log-odds ratios, with
95% interval estimates. We estimate the regression coefficient for the treatment effect X as �0:44 with
95% interval estimate (�0:80, �0:07), suggesting that beta blocker therapy reduces mortality. The cor-
responding odds ratio exp.�0:44/ D 0:64 roughly agrees with estimates reported from randomised
trials of beta blockers and heart failure. In a scientific review of meta-analyses of randomised trials,
Foody et al. [4] found that beta blocker use is associated with a 30% reduction in mortality compared
with placebo.

Nonetheless, there are concerns about unmeasured confounding. This analysis uses healthcare admin-
istrative data with limited clinical information on the factors that influence prescribing of beta blockers.
For example, one unmeasured confounder is severity of heart failure (i.e. the degree of low cardiac out-
put and the resulting impairment in physical activity). Severe heart failure is characterised by systolic
dysfunction, which is failure of the pump function of the heart. The severity of heart failure falls on a
spectrum from high to low and is measured by the ejection fraction, which is a continuous variable that
typically ranges between 50% and 70% but which falls below 50% for severe heart failure. An alternative
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measure of the severity of heart failure is the New York Heart Association class of heart failure (see [4]
and [5] for a review). This is an ordinal variable with four levels, which measures heart failure symptoms
and limitations in physical activity. Severity of heart failure is an important predictor of mortality and
treatment. It can either increase or decrease the probability of receiving a beta blocker, depending on the
preferences of the prescribing physician [6].

1.2. Bayesian sensitivity analysis for unmeasured confounding and the challenges of prior elicitation
for bias parameters

A typical sensitivity analysis for unmeasured confounding posits the existence of an unmeasured binary
variable U that confounds the association between X and Y . Paralleling existing modelling frameworks
(e.g. [1–3, 7–10]), we model the probability density P.Y; U jX;C ;Z /D P.Y jX;C ;Z ; U /P.U jX;C /
where

logitŒP.Y D 1jX;C ;Z ; U /�D ˇ0C ˇXYX C ˇCY
TC C ˇZY

TZ C ˇUYU (1)

logitŒP.U D 1jX;C /�D �U C �XUX C �CU
TC : (2)

Equation (1) includes U as a missing covariate in the regression model for the outcome. Equation (2)
characterises the distribution of the missing confounder within levels of .X;C /.

The quantity ˇXY is the parameter of primary interest and is the causal log-odds ratio for the effect
of X on Y conditional on .C ;Z ; U /. Provided that all models are correctly specified and that there
are no additional unmeasured confounders, then the parameter ˇXY has a causal interpretation. The
quantities ˇUY , �U , �XU and �CU are bias parameters because they determine the magnitude of
unmeasured confounding. The parameter ˇUY governs the association between U and Y , conditional
on .X;C ;Z /, whereas the parameters .�XU ;�CU / capture the association between U and .X;C /. The
quantity exp.�U /=.1 C exp.�U // is the prevalence of U D 1 when X D 0 and C1; : : : ; Cp D 0 (see
Table II for a detailed explanation of the variables and parameters).

In this investigation, the unmeasured confounder is severity of heart failure. We classify patients as
having severe (U D 1) versus not severe (U D 0) heart failure. Thus, the binary variable U is a hypo-
thetical dichotomy to quantify severity, which falls on a spectrum from high to low. Ideally, we would
model U as a continuous variable. However, because severity is unmeasured to begin with, there is
necessarily a trade-off between realistic modelling versus minimising complexity of the model. Further-
more, we argue that it is reasonable to classify patients into two categories of severity because ejection
fraction is dichotomised in clinical practice by using a threshold of 50% (see [5] for a discussion of
dichotomisation). In Section 4, we discuss the limitations of assuming a binary unmeasured confounder
and extensions to the ordinal case by using a series of indicators.

Because U is unmeasured, the data provide no information about the relationship between U and the
measured variables .Y;X;C ;Z /, and the model is non-identifiable. But non-identifiability does not pre-
clude Bayesian model fitting if additional sources of information are incorporated. A Bayesian analysis
would start by assigning proper prior distributions to model parameters that translate beliefs about the
magnitude and direction of confounding by U . We then study the posterior distribution for the treatment
effect ˇXY integrating over the unmeasured confounder U . Posterior credible intervals for the treatment
effect incorporate uncertainty from unmeasured confounding in addition to random error [2, 3, 11–13].

A difficulty with Bayesian analysis is eliciting prior distributions for the bias parameters. In particular,
the quantities �U , �XU , �CU consist of pC 2 unique parameters that characterise how U is distributed
within levels of X and C . In many applications, it is burdensome to obtain reasonable prior guesses for
�CU , which describes the association between C and U givenX . For this problem to be mitigated, most
sensitivity analysis techniques assume that the unmeasured confounder is independent of measured con-
founders, conditional on treatment (i.e. that they are not correlated with one another). Mathematically, we
write U C jX , where ‘ ’ denotes conditional independence ([1–3, 7–9] for examples and [1, 14–16]
for a discussion). In Equations (1) and (2), this assumption forces �CU D 0, where 0 is a zero vector of
length p, and then explores sensitivity for the remaining bias parameters ˇUY , �XU and �U . Statistical
methods that do not require U C jX include those of Greenland [10] and Gustafson et al. [13], and we
review these in Section 1.4.

Hernán and Robins [14] and VanderWeele [15] argue that it is unrealistic to assume that U C jX .
Furthermore, epidemiologists argue that such assumptions give inferences from sensitivity analysis,

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 383–396

385



L. C. MCCANDLESS ET AL.

Table II. Description of variables and parameters.

Quantity Dimension Description

Data
Y 1 Binary outcome indicating death within 1 year of hospital discharge
X 1 Binary treatment indicating being dispensed a beta blocker within

30 days of hospital discharge
C p Vector of p-measured confounding variables
Z q Vector of q-measured covariates that are not confounding variables
U 1 Binary unmeasured confounding variable

Parameters
ˇ0 1 y-intercept in outcome model
ˇXY 1 Causal log-odds ratio for effect of X on Y conditional on .C ;Z ; U /

ˇUY 1 Log-odds ratio for association between U and Y given .X;C ;Z /
ˇCY p Log-odds ratios for association between C and Y given .X;Z ; U /

ˇZY q Log-odds ratios for association between Z and Y given .X;C ; U /

�U 1 Main effect for U in Equation (5). Note that
exp.�U /
1Cexp.�U /

is the prevalence of U D 1 when X D 0 and C1; : : : ; Cp D 0

�X 1 Main effect for X in Equation (5)
�C p Main effects for C in Equation (5)
�XU p Log-odds ratio for association between X and U given C
�CU p Log-odds ratios for association between C and U given X
�CX p Log-odds ratios for association between C and X given U
�C˚C

�p
2

�
Log-odds ratios for pairwise conditional associations among components of C

Hyperparameters
�2
ˇ

1 Prior variance of ˇXY ;ˇCY ; ˇUY
�� 1 Prior mean of �XU ;�CU ;�CX ; �C˚C
�2� 1 Prior variance of �XU ;�CU ; �CX ;�C˚C
�0 1 Prior mean of �X ;�C ; �U
�20 1 Prior variance of �X ;�C ; �U

which are too pessimistic [1, 16]. In a simulation study, Fewell et al. [16] demonstrate that strong
correlations between measured and unmeasured confounders tend to reduce bias from unmeasured con-
founding. Intuitively, the reason is that adjusting for measured variables may control for unmeasured
variables because they are correlated with one another. This reasoning suggests that forcing �CU D 0 for
convenience may actually exaggerate the sensitivity of the analysis results to unmeasured confounding.

1.3. Correlations between measured and unmeasured confounders in the beta blocker data

Returning to the beta blocker example, we attempt to elicit judgements about plausible values for the
bias parameters ˇUY , �U , �XU and �CU . Table III describes the confounding induced by the p D 9

disease indicator variables C D .C1; : : : ; Cp/ listed in Table I. In Section A of Table III, we list the
adjusted log-odds ratios for the association between each variable and mortality by copying and pasting
from the Naive analysis column of Table I. Section B describes the pairwise conditional associations
among the components of .X;C /. In Section B, we use maximum likelihood to fit the log-linear model

P.X;C /D
1

Q.�X ;�C ;�CX ;�C˚C /
exp

˚
�XX C �C

TC C �CX
TCX C �C˚C

T .C ˚C /
�

(3)

for the joint distribution of .X;C /. The quantities �X and �C are the main effects of .X;C / in the log-
linear model, whereas the vectors �CX and �C˚C are coefficients of the interaction terms, with lengths
p D 9 and

�
9
2

�
D 36, respectively. The quantity C ˚ C denotes the vector of length

�
p
2

�
of pairwise

products among the p components of C D .C1; : : : ; Cp/. In other words,

C ˚C D .C1C2; C1C3; : : : ; C1Cp; C2C3; C2C4; : : : ; C2Cp; : : : ; Cp�1Cp/:

The denominator Q.�X ;�C ;�CX ;�C˚C / is the constant of normalisation and is the summation of the
numerator over the support of .X;C /, which is a set with 2pC1 elements.
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−4 −2 0 2 4

Log-odds Ratios for Associations among X, C1, ...,Cp

μ̂γ σ̂γ

Figure 1. Sample mean ( O�� D 1:36) and standard deviation ( O�� D 0:94) of the log-odds ratio estimates listed in
Section B of Table III.

Section B contains point estimates and standard errors of the interaction terms .�CX , �C˚C /. There
is a well-known connection between log-linear models and logistic regression via conditioning. The
interaction terms can be interpreted as log-odds ratios [17]. Specifically, the quantities .�CX , �C˚C /
are conditional log-odds ratios for pairwise associations among individual components of .X;C / (see
Section 2.1 for details and an illustration). Consequently, Section B of Table III tells us about how
strongly the confounders are correlated with one another. For example, the log-odds ratio for the asso-
ciation between CVD and COPD is 2.1 with standard error 0.7. Elements denoted ‘NA’ indicate terms
that were dropped from the model because of sparsity to obtain a valid maximum likelihood estimator.
Section C of Table III describes the prevalences of the disease variables.

Table III suggests that the disease indicator variables are confounders for the effect of X on Y and,
furthermore, that they are correlated with one another. Most of the variables show associations with
X and Y because the point estimates are positive. Furthermore, previous clinical evidence indicates
that they are predictors of mortality in heart failure patients and that they influence prescribing of car-
diovascular therapies [6, 18]. Therefore, they induce confounding. But the disease variables are also
correlated with one another. In Section B of Table III, most of the log-odds ratios are greater than zero.
Figure 1 plots the log-odds ratios. The sample mean is equal to 1.36, which gives an average odds ratio
of exp.1:36/D 3:90, and the standard deviation is 0.94. This suggests that patients who have one disease
are also likely to have other diseases. In other words, the confounders are correlated with one another.

The missing confounder U is a binary indicator of the severity of heart failure. In formulating judge-
ments about U , it is possible that U is correlated with C . Vasan et al. [5] studied ejection fraction in
heart failure patients and showed that patients with low ejection fraction were more likely to have dia-
betes, hypertension, high blood pressure and other chronic illnesses. This suggests that adjustment for C
in the Naive analysis column of Table I may also control for some of the confounding from U becauseX
and C are correlated with one another. Therefore, if we do a sensitivity analysis assuming that �CU D 0
(i.e. assuming that U C jX ), then this may exaggerate the bias from U . Thus, we are faced with a
conundrum. On the one hand, it seems unrealistic to assume that �CU D 0 in the sensitivity analysis. On
the other hand, it is not clear how to formulate a prior for �CU because it is a p-dimensional vector and
because there is only limited information available about U .

1.4. Plan of the paper

One way to elicit priors for the bias parameters is to assume that the confounding effects of measured
and unmeasured confounders are exchangeable in a Bayesian analysis, that is, to assume that the con-
founding induced by U is similar in magnitude to the confounding induced by C . The assumption of
exchangeability is a strong one; however, it is has been used previously in epidemiology to form qualita-
tive judgements about unmeasured confounding. For example, in a 2000 review paper on confounding by
indication, Joffe [19] wrote that ‘. . . one can learn about unmeasured confounders and confounding from
measured factors. The argument is sometimes advanced that if adjustment for known covariates fails to
change the measure of effect, there must be little residual confounding. . . . When control for measured
factors reveals confounding, it is then more likely that there is residual confounding’. This logic rests
on the assumption that the measured and unmeasured confounders are similar. If the investigator col-
lects enough covariate information on the study participants, then this can be used to characterise the
bias that would be produced from a confounder that is missing. Stampfer and Colditz [20] give a high
profile example of this reasoning, concerning the potential confounding from socio-economic status to
explain the observation that women taking postmenopausal estrogens are at decreased risk of coronary
heart disease.
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McCandless et al. [3] and Gustafson et al. [13] describe Bayesian methods that assume exchangeabil-
ity in the confounding effects of measured and unmeasured confounders. In the paper of McCandless
et al. [3], the authors analyse the beta blocker data, but they ignore the bias parameter �CU altogether
because of the difficulties of prior specification. Gustafson et al. [13] consider the specific case where
all of the measured covariates are continuous and are assumed to have a multivariate Gaussian distri-
bution. However, the method of Gustafson et al. [13] relies heavily on the Gaussian framework and
cannot be extended to binary covariates, as is the case with the beta blocker data. A different approach
due to Greenland [10] uses random effects to characterise heterogeneity in the conditional association
between U and a categorical covariate, given X . The variance of the random effects is specified by the
investigation based on prior considerations. However, this does not permit data-driven learning about the
correlations between measured and unmeasured confounders.

In this article, we propose a new formulation that models exchangeability among measured and
unmeasured confounders. Our method builds on previous work [2, 3] because it is able to handle the
case of binary covariates as in the beta blocker data. We extend the models in [2,3] by using a log-linear
model for the joint distribution of .X;C ; U /with pairwise interactions. Hierarchical priors borrow infor-
mation from C to learn about bias from U . The method has the appealing property that conditioning on
.X;C / yields a logistic model for unmeasured confounding that is identical to that of McCandless et al.
[2, 3] and Lin et al. [9]. Section 2 describes the method including the model, prior distributions and
posterior computation by using MCMC. In Section 3, we apply the method to the beta blocker data. A
key objective of this article was to investigate the impact of the prevailing approach to sensitivity analy-
sis that assumes zero correlation between measured and unmeasured confounders. We study the results
when using degenerate zero mass priors that force �CU D 0. Following the logic of Schneeweiss [1] and
Fewell et al. [16], we illustrate that if U and C are strongly correlated then confounding from U tends
to diminish. In the beta blocker data, setting �CU D 0 for convenience gives conclusions that are too
pessimistic. The exchangeability assumption is a strong one, and we discuss the merits and trade-offs of
our approach in Section 4.

2. Bayesian adjustment for unmeasured confounding

2.1. Model

We model the joint probability density P.Y;X;C ; U jZ /D P.Y jX;C ;Z ; U /P.X;C ; U / as

logitŒP r.Y D 1jX;C ;Z ; U /� D ˇ0C ˇXYX C ˇCY
TC C ˇZY

TZ C ˇUYU (4)

P.X;C ; U / D
1

Q.�X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C /

� exp
˚
�XX C �C

TC C �UU

C �XUXU C �CU
TCU C �CX

TCX C �C˚C
T .C ˚C /

�
:

(5)

Equation (4) is identical to Equation (1) and models the log-odds of the outcome as a function of
.X;C ;Z ; U /. Equation (5) is an extension of Equation (3) to incorporate U into the joint distribu-
tion of .X;C /, and they are equivalent if the bias parameters .�U ; �XU ;�CU / are equal to zero. The
denominator Q.�X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C / is the constant of normalisation.

As discussed in Section 3.1, there is a well-known connection between logistic and log-linear models
through conditioning [17]. The interaction terms �XU and �CU are conditional log-odds ratios for the
association between .X;C / and U . If we take P.X;C ; U / from Equation (5) and condition on .X;C /,
then P.U jX;C / obeys Equation (2). We have

logitŒP.U D 1jX;C /�D log

�
P.U D 1jX;C /

P.U D 0jX;C /

�

D log

�
P.U D 1;X;C /

P.U D 0;X;C /

�
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D log
�
exp

˚
�XX C �C

TC C �UC

�XUX C �CU
TC C �CX

TCX C �C˚C
T .C ˚C /

�
=

exp
˚
�XX C �C

TC C �CX
TCX C �C˚C

T .C ˚C /
��
:

D �U C �XUX C �CU
TC :

This gives an equivalence between our proposed model and previously proposed models for unmeasured
confounding given by McCandless et al. [2, 3] and Lin et al. [9].

2.2. Prior distributions

Suppose that �1; �2; : : : ; �J are a collection of J unknown parameters. In Bayesian analysis, we say that
�1; �2; : : : ; �J are exchangeable in their joint distribution if P.�1; �2; : : : ; �J / is invariant to the permu-
tation of the indices f1; : : : ; J g [21]. An exchangeable prior distribution is plausible if, on the basis of
available information, we are unable to distinguish one parameter from another. Gelman et al. [21] wrote
that ‘In practice, ignorance implies exchangeability. Generally, the less we know about a problem, the
more confidently we can make claims about of exchangeability’.

Now suppose that �1; �2; : : : ; �J are exchangeable. Then, following standard principles of Bayesian
analysis, we can apply de Finetti’s theorem, which states that in the limit as J !1, then under certain
regularity conditions, any exchangeable distribution for �1; �2; : : : ; �J can be expressed as an indepen-
dent and identically distributed mixture of random variables conditional on some latent variable [21]. In
other words, �1; �2; : : : ; �J can be modelled as a random sample from a distribution. Technically, the
theorem does not apply for finite J (see [22] for further discussion of exchangeability).

Building on the discussion of unmeasured confounding in Section 1, we model the confounding effects
of U and C as exchangeable (for further discussion of the merits and trade-offs of assuming exchange-
ability, see Section 4). For the outcome model, we assign a diffuse normal prior to ˇ0 and ˇZY with
mean zero and variance 103. We assign

ˇXY ;ˇCY ; ˇUY
i:i:d:
� N.0; �2

ˇ
/

�2
ˇ
� Inv-�2

�
10�3; 10�3

�
:

(6)

The left-hand side of Equation (6) refers to the individual components of ˇXY , ˇCY and ˇUY , and
Inv-�2f:g is an inverse �2 distribution with degrees of freedom 10�3 and scale parameter 10�3. This
choice of hyperparameters gives priors that are proper but uninformative. Equation (6) models the con-
ditional associations between .X;C ; U / and Y as exchangeable. The variance parameter �2

ˇ
shares

information between C and U . If �2
ˇ

is small, then this shrinks the posterior for the bias parameter
ˇUY towards zero to reflect that there is less unmeasured confounding.

Eliciting a prior for �XU and �CU is more challenging because the parameters describe the manner
in which U is distributed within levels of X and C . We assign

�XU ;�CU ;�CX ;�C˚C
i:i:d:
� N.�� ; �

2
� /

�� � N.0; 103/ (7)

�2� � Inv-�2
�
10�3; 10�3

�
;

where the left-hand side of Equation (7) refers to the individual components of �XU , �CU , �CX and
�C˚C . Equation (7) models the pairwise conditional log-odds ratios among .X;C ; U / as exchangeable.
The parameter �� is the mean log-odds ratio, and �2� is the variance.

Finally, we assign priors to the remaining model parameters �X , �C and �U , which are the main
effects in the log-linear model of Equation (5). The quantity exp.�U /=.1C exp.�U // is the prevalence
of U D 1 when X D 0 and C1; : : : ; Cp D 0. We model the quantities �X , �C and �U as exchangeable
and assign

�X ;�C ; �U
i:i:d:
� N.�0; �

2
0 /

�0 � N.0; 103/ (8)

�20 � Inv-�2
�
10�3; 10�3

�
:
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Note that the Inv-�2 priors have the convenience of conjugacy; however, they are known to be inappro-
priately informative when the true variance is small or the number of observations is small. Alternatively,
we could use a uniform prior on the standard deviation. We refer the reader to the study by Gelman et al.
[21] for a discussion.

2.3. Model fitting and computation

Denote data as data D f.Yi ; Xi ;C i ;Z i /I i D 1; : : : ; ng. If U1; : : : ; Un were measured, then the
likelihood function would be

nY
iD1

P.Yi jXi ;C i ;Z i ; Ui /P.Xi ;C i ; Ui /

D

nY
iD1

"
expfYi .ˇ0C ˇXYXi C ˇCY

TC i C ˇZY
TZ i C ˇUYUi /g

1C expfˇ0C ˇXYXi C ˇCY
TC i C ˇZY

TZ i C ˇUYUig

�
expf�XXi C �C TC i C �UUi C �XUXiUi C �CU TC iUiC �CXTC iXi C �C˚C

T .C i ˚C i /g

Q.�X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C /

#
:

Because U is unmeasured, we obtain the likelihood for the observed data by integrating over the binary
U . We obtain

L.ˇ0; ˇXY ;ˇCY ;ˇZY ; ˇUY ; �X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C /

D

nY
iD1

ŒP.Yi jXi ;C i ;Z i ; U D 0/P.Xi ;C i ; U D 0/CP.Yi jXi ;C i ;Z i ; U D 1/P.Xi ;C i ; U D 1/�

D

nY
iD1

"
expfYi .ˇ0C ˇXYXi C ˇCY

TC i C ˇZY
TZ i /g

1C expfˇ0C ˇXYXi C ˇCY
TC i C ˇZY

TZ ig

�
expf�XX i C �C

TC i C �CX
TC iX i C �C˚C

T .C i ˚C i /g

Q.�X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C /
(9)

�
expfYi .ˇ0C ˇXYXi C ˇCY

TC i /C ˇZY
TZ i C ˇUY /g

1C expfˇ0C ˇXYXi C ˇCY
TC i C ˇZY

TZ i C ˇUY g

�
expf�U C .�X C �XU /Xi C .�C C �CU /TC i C �CXTC iXi C �C˚C

T .C i ˚C i /g

Q.�X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C /

#
:

The posterior distribution is

P.ˇ0; ˇXY ;ˇCY ;ˇZY ; ˇUY ; �X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C ; �
2
ˇ ; �� ; �

2
� ; �0; �

2
0 jdata/ (10)

/ L.ˇ0; ˇXY ;ˇCY ;ˇZY ; ˇUY ; �X ;�C ; �U ; �XU ;�CU ;�CX ;�C˚C /

�P.ˇ0/P.ˇZY /P.ˇXY ;ˇCY ; ˇUY j�
2
ˇ /P.�XU ;�CU ;�CX ;�C˚C j�� ; �

2
� /P.�X ;�C ; �U j�0; �

2
0 /

(11)

�P.�2ˇ /P.�� /P.�
2
� /P.�0/P.�

2
0 / (12)

where lines (11) and (12) refer to the prior distributions for model parameters.
We sample from the posterior distribution by using MCMC and the Metropolis Hastings algorithm.

We update sequentially from the conditional densities

Œˇ0; ˇXY ;ˇCY ;ˇZY j:� ŒˇUY j:� Œ�x;�C ; �U j:� Œ�XU ;�CU ;�CX ;�C˚C j:�

Œ�2ˇ j:� Œ�� ; �
2
� j:� Œ�0; �

2
0 j:�;

where ‘Œ j:�’ means conditional on the data and remaining model parameters. To update each of the sets
of parameters .ˇ0; ˇXY ;ˇCY ;ˇZY /, ˇUY , .�x ;�C ; �U / and .�XU ;�CU ;�CX ;�C˚C /, we use a mul-
tivariate random walk with proposal distributions that are multivariate t -distributed with small degrees
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of freedom and with scale matrix equal to the identity matrix multiplied by a tuning parameter that is set
by trial MCMC runs. To update the hyperparameters, we note that the prior distributions for �2

ˇ
, .�� ; �2� /

and .�0; �20 / are conditionally conjugate, and we can update them by using the computational algorithm
described by Gelman et al. [21].

However, a computational difficulty is that the model for unmeasured confounding is not identifiable,
which means that different points in the parameter space give identical likelihood functions for the data.
This can lead to slow MCMC convergence, particularly if the data set is large. In Section 3.1 and in the
Supplementary Appendix,‡ we discuss an alternative method for fast simulation from the posterior distri-
bution. Computer code using the software R [23] is available from the author’s website (see [2,3,10,13]
for a discussion of non-identifiable models for unmeasured confounding).

3. Analysis results for the beta blocker data

3.1. Full Bayesian analysis

We fit the model in Equations (4) and (5) to the beta blocker data and estimate the association between
X and Y while adjusting for .C ;Z / and exploring sensitivity to the unmeasured confounder U .

As discussed in Section 2.3, the model for unmeasured confounding is not identifiable, and this gives
poor MCMC mixing. In principle, it is possible to get satisfactory convergence by using long MCMC
chains. However, in the Supplementary Appendix, we describe an alternative procedure for sampling
approximately from the posterior. Briefly, the idea is to proceed in two stages. First, we estimate the
hyperparameters .�ˇ ; �� ; �� ; �0; �0/ by using maximum likelihood and plug them in place of true
parameter values. This reduces the dimension of the parameter space and the overall computational
burden. However, it also ignores uncertainty in the hyperparameter estimates (see Section 4 for a dis-
cussion). Second, we use the technique of modularisation proposed by Liu, Bayarri and Berger [24],
which accelerates MCMC computation by sampling from approximations to the full conditional distri-
butions for model parameters. It is equivalent to the computational technique of cutting feedback, which
has been implemented in the BUGS software [25]. R code for MCMC sampling is available from the
author’s website.

For the hyperparameters, we obtain estimates . O�ˇ ; O�� ; O�� ; O�0; O�0/ D .0:62; 1:36; 0:94;�2:23; 1:04/
(see the Supplementary Appendix for details on how they are calculated and for the interpretation). We
run a single MCMC chain of length 100,000 after 10,000 burn-in iterations. We assess sampler con-
vergence by using separate simulation runs with overdispersed starting values and the diagnostics tools
included in the R package CODA [23].

We give the results in the second column of Table I. The column has the heading ‘U C jX ’ to indicate
that the components of �CU are modelled as exchangeable with the components of .�XC ;�CX ;�C˚C /
in Equation (7) and, therefore, that the analysis does not assume that �CU D 0. The log-odds ratio for
the beta blocker effect parameter ˇXY is �0:41 with 95% credible interval (�0:87, 0.06). This point
estimate is slightly shrunk towards zero compared with the naive analysis because we have assumed an
informative prior distribution N.0; 0:622/ on ˇXY . The interval estimate is wider because the Bayesian
analysis acknowledges uncertainty from unmeasured confounding. The prior distribution in Equation (6)
assumes that the bias parameter ˇUY has a prior mean zero and standard deviation O�ˇ D 0:62. In other
words, the sensitivity analysis assumes thatU is associated with Y , given .X;C ;Z /, and this association
may either increase or decrease the probability of Y . Because the prior is symmetric at zero, this means
that the posterior mean for ˇXY is similar to that of the naive analysis but that the interval estimate is
wider. McCandless et al. [2, 3] report similar results.

3.2. Assessing prior sensitivity for �CU

Our modelling framework gives the opportunity to study the role of �CU in sensitivity analysis for
unmeasured confounding. One issue is assessing the impact of the usual assumption that �CU D 0.
Recall from Section 1.2 that most sensitivity analysis techniques assume that measured and unmeasured
confounders are uncorrelated (i.e. U C jX ) to reduce the burden of prior elicitation.

‡Supplementary appendix may be found in the online version of this article.
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To study the effect of this assumption, we redo the Bayesian analysis in exactly the same way as
Section 3.1 but change the prior in Equation (7) to be

�CU D 0

�XU ;�CX ;�C˚C
i:i:d:
� Nf O�� ; O�2� g;

(13)

where O�� D 1:36 and O�� D 0:94. This sets each component �CU equal to zero and guarantees that
U C jX . However, it permits the other three bias parameters ˇUY ; �UX and �U to be non-zero. Thus,
using the prior in Equation (13) instead of (7) allows U to be an unmeasured confounder for the effect
of X and Y , despite the fact that U C jX .

We present the results in the third column of Table I under the heading ‘U C jX ’. As intuition sug-
gests, assuming that �CU D 0 increases the posterior uncertainty about unmeasured confounding in the
beta blocker data. The credible interval for the beta blocker effect is nearly 10% wider than in the mid-
dle column where U C jX . We have �0:40 (�0:90, 0.11) versus �0:41 (�0:87, 0.06). Both analyses
acknowledge uncertainty from unmeasured confounding, but only the exchangeable analysis allows the
possibility that U and C are correlated. The magnitude of this correlation is driven by the hyperparam-
eter estimates O�� D 1:36 and O�� D 0:94, which in turn are estimated from the joint distribution of X
and C .

To illustrate the prior sensitivity more clearly, we repeat the analysis while toying with fixed values
for �CU . Figure 2 illustrates what happens to the posterior distribution of ˇXY when we set �CU equal
to 0; 1; : : : ; 5, which denote vectors of length p. For example, 0 D .0; 0; : : : ; 0/ and 1 D .1; 1; : : : ; 1/.
When �CU D 5, this means that the odds ratios for the conditional association between U and each of
component C is equal to exp.5/ D 148, which corresponds to roughly perfect correlation between C
and U . In Figure 2, we calculate each of the interval estimates for ˇXY by doing a Bayesian sensitiv-
ity analysis with �CU locked at either 0; 1; : : : ; 5. The grey-shaded region indicates the width and the
positioning of the naive interval estimate for ˇXY , which is (�0:80, �0:07).

The key observation is that when �CU is large, the interval estimates collapse towards the shaded
region, and we obtain inferences that are essentially identical to assuming that there is no unmeasured
confounding. Indeed, if U and C are strongly correlated, then regression adjustment for C eliminates
confounding from U , despite the fact that U is unmeasured. This occurs even though the prior distribu-
tions on the bias parameters ˇUY , �UX and �U are not degenerate at zero. In other words, U induces
essentially no bias upon adjustment for C , provided that C is sufficiently correlated with U .

In Figure 2, the interval estimates are shifted slightly towards zero compared with the shaded region.
This is because of the informative prior on ˇXY in Equation (6). The prior has mean zero and variance
O�ˇ D 0:62, which tends to shrink point estimates for ˇXY a little towards the zero. In contrast, we
compute the naive interval estimate in Table I by maximum likelihood, which effectively presumes a flat
prior on ˇXY .
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Figure 2. 95% credible intervals for the beta blocker effect ˇXY when we repeat the Bayesian sensitivity anal-
ysis with �CU held fixed at 0 versus 1 versus 2; : : : ;versus 5. The grey-shaded region indicates the width and
the position of the naive interval estimate for ˇXY , which is (�0:80, �0:07) and taken from Table I. Notice that
the intervals collapse around the grey-shaded region as we move to the right (i.e. as we assume that U is more

correlated with C ).
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3.3. Assessing prior sensitivity when incorporating continuous confounders

A limitation of our method is that it assumes that the components of C are dichotomous. In the beta
blocker data, the assumption that age and duration of hospital stay are unrelated to severity of heart
failure seems unlikely. It would be useful to incorporate them into the analysis so that they inform
assumptions about the magnitude of unmeasured confounding. However, we cannot use log-linear
models for continuous variables. Log-linear models are only applicable for contingency tables [17].

A pragmatic solution is to dichotomise age and hospital stay at the median when entering them into
Equation (5). As an illustration, we fix C to include age and hospital stay in addition to the p D 9

disease indicator variables listed in Table I. We denote the remaining 21� 9� 2D 10 covariates by Z .
We dichotomise age at 77 years and hospital length of stay at 5.0 days. This yields two new indicator
variables that take the value 1 if age is greater than 77 years or zero 0 otherwise (versus 1/0 for length of
stay that is greater/less than 5.0 days). We include the dichotomised variables in C in Equation (5).

We keep age and hospital length of stay as continuous variables in Equation (4). Following Gelman
[21], we rescale both variables to have unit 1 variance prior to analysis. This makes the prior distribution
in Equation (6) more realistic. After rescaling, the regression coefficients correspond to log-odds ratios
for an increase of roughly one population standard deviation in age or hospital stay. We judge that these
coefficients are roughly exchangeable with the coefficients for the dichotomous disease variables.

Dichotomising continuous variables is not recommended because of loss of power and possible resid-
ual confounding [26]. However, because we retain continuous version of age and length of stay in the
outcome model, this means that residual confounding is less an issue. Nonetheless, Equation (5) will
not capture the full richness of dependence in the joint distribution of .X;C /. This could affect the
interpretation and plausibility of the hyperparameter estimates O�� ; O�� ; O�0; O�0. Therefore, we frame this
investigation as a sensitivity analysis to study the effect of incorporating continuous variables.

After including age and length of stay, the new hyperparameter estimates are . O�ˇ ; O�� ; O�� ; O�0;
O�0/D .0:62; 1:06; 1:29;�2:31; 0:95/ (see the Supplementary Appendix for details on how the estimates
are calculated). We repeat the full Bayesian analysis and estimate the exposure effect ˇXY as�0:40 with
95% credible interval (�0:86, 0.02). The interval estimate is similar, albeit slightly more narrow, than
the intervals reported in Table I. For this specific analysis, incorporating continuous confounders does
not greatly affect the conclusions. A challenge with interpreting the results (see Section 4 for further
discussion) is that we ignore uncertainty in the hyperparameter estimates to speed MCMC computation,
and the results may be slightly conservative.

4. Discussion

Recent years have witnessed new innovation in Bayesian techniques to adjust for unmeasured confound-
ing in observational studies. A challenge is that the user is often required to elicit prior distributions
for high-dimensional parameters that model competing bias scenarios. This can render the methods
unwieldy. In this paper, we propose a novel methodology for settings where the confounding effects
of measured and unmeasured variables can be viewed as exchangeable within a Bayesian framework.
Exchangeability captures the intuitive idea put forth by Joffe [19] that confounding from measured
variables may be informative about unmeasured variables. Our method reduces the burden of prior
elicitation in sensitivity analysis because it assigns priors to bias parameters without requiring that the
analyst encode assumptions about each parameter individually. It builds on previous work [3, 10, 13]
because it is able to accommodate binary covariates in settings where one cannot reasonably assume that
U C jX .

One can argue that the assumption of exchangeability is not plausible in the beta blocker data.
Exchangeability means that there is no reason to believe that the confounding from heart failure severity
is any different from the set of assembled disease indicators. However, a recent study [27] estimated
1-year mortality risks in 70-year-old men as 9%, 13%, 21% and 31% for New York Heart Association
classes of heart failure 1, 2, 3 and 4, respectively. This suggests that heart failure is a far greater risk
factor for mortality than virtually all of the risk factors considered, with the exception of cancer. A fur-
ther problem is that there are several additional confounders that were omitted from our study including
smoking, physical activity and blood pressure. If our sensitivity analyses must, for operational reasons,
be restricted to a single, dichotomous, unmeasured confounder, then it seems prudent to assume that it
has a very strong relationship with the outcome and also that it has a weak relationship with measured
confounders.
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More generally, exchangeability is only contingent on making judgements about the labelling of the
indices of the parameters in the prior distribution (Section 2.2). An exchangeable prior is plausible for
a collection of parameters if, on the basis of available information, we are unable to distinguish one
parameter for another. We emphasise that care is needed in choosing which variables to include in C .
If the investigator incorporates weak or marginal confounders, then the hierarchical priors will shrink
the hyperparameters towards zero, giving the impression that there is little unmeasured confounding. An
alternative extension would be to relax the normal assumption in Equations (6)–(8) to a heavier tailed
distribution, such as a t -distribution. This would give less shrinkage and would allow greater variability
of the confounder effect.

A limitation of this investigation is the hypothetical dichotomy of U . The unmeasured confounder is
severity of heart failure in terms of reduced cardiac output and limitations in physical activities. Sever-
ity of heart failure is measured over a range from low to high. Thus, a binary U will not capture the
full spectrum of confounding. One possible extension would be to model U as an ordinal variable by
using a series of indicators. However, we caution that this adds complexity because it requires that the
analyst speculate about how U is distributed over levels of .X;C /. Additionally, we note that clinical
researchers sometimes dichotomise severity by using a threshold of 50% to identify low ejection fraction
(see [5] for a discussion of classification of patients as having normal versus low ejection fraction).

An additional limitation of our analysis is that there are other biases at play. The assessment of beta
blocker use in the month after hospital discharge can introduce immortal time bias [28]. Ideally, this
could be remedied by incorporating time-dependent covariates, although this is beyond the scope of this
paper. Additionally, as discussed previously, there may be additional unmeasured confounders apart from
heart failure severity. Nonetheless, accounting for several unmeasured confounders is difficult without
additional data sources. This is because such a sensitivity analysis requires the analyst to guess the joint
confounding effects of several variables acting in unison [1].

A final limitation of our method is that we use MCMC computation based on point estimates for the
hyperparameters (see Section 3.1 and the Supplementary Appendix). In our experience, this substantially
reduces computational time. However, it also ignores uncertainty in the hyperparameter estimates and
may give interval estimates that are too narrow if the number of measured confounders p is small.
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