
Computation and Monte Carlo Techniques

Up to now we have seen conjugate Bayesian analysis:

posterior ∝ prior × likelihood

beta(a + x, b + n − x) ∝ beta(a, b) × binomial(x; n)

θa+x−1(1 − θ)b+n−x−1 ∝ θa−1(1 − θ)b−1 × θx(1 − θ)n−x

For example:

beta(10, 4) ∝ beta(2, 2) × binomial(x = 8; n = 10)

Conjugate analyses can often be used for simple problems, but

almost all problems with more than two or three parameters no

conjugate pairing exists, and finding posterior distributions ana-

lytically can become very difficult:

Let’s see that even in still simple problems, this can be the case:

Example: Let ε = θ1 − θ2, where θ1 and θ2 are two independent

binomial parameters.

Suppose in a clinical trial (TIMI [thrombolysis in myocardial in-

farction], NEJM (1985; 923-936)) we observe

x1 = 78, n1 = 118, θ̂1 = 0.661, and

x2 = 44, n2 = 122, θ̂2 = 0.361

Question: What is the posterior distribution of ε?

In theory, this can be solved by following three steps:

1. Getting the joint posterior distribution of (θ1, θ2) using the

usual conjugate analysis for each of θ1 and θ2, and multiplying

them together, since they are independent.

2. Do a change of variable, letting

ε = θ1 − θ2, and

θ1 = θ1

This gives the joint posterior distribution of (θ1, ε).

3. Integrate θ1 out of the joint distribution in 3 to get the pos-

terior of ε.

Problem: While this is sometimes feasible, the exact answer is a

high degree polynomial (degree ≈ 250 for TIMI trial data).

Question: What alternatives are there, when exact posterior dis-

tributions are difficult or impossible to obtain directly?

Idea: Perhaps it will be sufficient to generate random variables

from the posterior distribution. Thus the idea is to replace the

posterior density curve by a histogram, and replace exact quantiles

of the posterior distribution with sample quantiles, for example to

get posterior means and variances, or 95% credible sets. If we can

generate a large enough sample, we can attain any accuracy we

desire.

We will see four such techniques in this course:

• Monte Carlo integration

• Direct simulation

• Sampling Importance Resampling (SIR)

• The Gibbs Sampler

Monte Carlo Integration

You may not know it, but every time you calculate a sample mean

(x) as an estimator of a mean µ, you are (sort of) using Monte

Carlo integration.

Remember the definition of a mean of a continuous variable:

µ =
∫ ∞

−∞
x × f (x)dx

Suppose this integral is too difficult to do analytically. How could

we approximate it?

Think of what the formula means: For each value of x, we “weight”

it how often it occurs, f (x). If we do the integral exactly, we get

the exact average value of x. What happens if we can generate a

random sample of x’s from f (x)?

Take x1, x2, . . . , xm ∼ f (x). If done correctly, the xi’s drawn

randomly are already weighted according to f (x). Thus, to ap-

proximate the weighted average, just average the xi’s! This is a

simple form of Monte Carlo integration.

What if we wanted to approximate the variance of a continuous

variable? Remember the definition of the variance in this case:

σ2 =
∫ ∞

−∞
(x − µ)2 × f (x)dx

Note that this is simply the function (x − µ)2, weighted by f (x).

So, the solution is very similar to what we had before:

Take x1, x2, . . . , xm ∼ f (x). Convert each of these sample points

to (x1 − µ)2, (x2 − µ)2, . . . , (xm − µ)2. If done correctly, the

(xi − µ)2’s are again already weighted according to f (x). Thus,

to approximate the variance, just average the (xi − µ)2’s.

Note the general pattern: We have an integral of the form

I =
∫ ∞

−∞
g(x) × f (x)dx

that we wish to evaluate (i.e., find the value of the integral, gener-

ically denoted by I here. To solve this integral, take a random

sample of xi’s from f(x), and for each, calculate g(xi). Then take

the average of these values, i.e., calculate

∑m
i=1 g(xi)

m

Note that Monte Carlo simulation as discussed here is very general,

and it is as useful to pure mathematics as it is to statistics. If you

have any integral that looks like

∫ ∞

−∞
g(x) × f (x)dx

where either f or g are probability distributions, this method can

be used to approximate the integral. Clearly, the larger the value

of m, the better the approximation will be, in general.

Calculating an RR for our two binomial problem

Let’s return to our TIMI data. Suppose we wish to calculate the

relative risk for the treatment versus control group. We know that

θ1 ∼ beta(a1 + x1, b1 + n1 − x1)

and

θ2 ∼ beta(a2 + x2, b2 + n2 − x2),

from conjugacy within each group, where the a’s and b’s are the

prior parameters. Now, from the independence of the two groups,

we know that

f (θ1, θ2) ∼ beta(a1 +x1, b1 +n1−x1)×beta(a2 +x2, b2 +n2−x2)

Note that we can easily simulate from this joint distribution, by

simulating from each beta distribution separately.

Now suppose we want to find the mean posterior relative risk.

This is defined by:

mean(RR) =
∫ ∞

−∞

θ2

θ1
× f (θ1, θ2)dx

By Monte Carlo integration, we simply need to simulate a sample

of (θ1i, θ2i) samples, calculate RR = θ2/θ1 from each, and average

these values.

Here is a quick R program that does this (assumes a1 = b1 = a2 =

b2 = 1, i.e., uniform priors:

> theta1 <- rbeta(10000, 79, 41)

> theta2 <- rbeta(10000, 45, 79)

> rr <- theta1/theta2

> mean.rr <- mean(rr)

Running this program in R produces mean.rr = 1.84.

In solving integrals involved in Bayesian analyses by Monte Carlo

simulation, we were able to gets posterior means and variances,

for example. However, we usually want to calculate entire poste-

rior distributions, not just univariate summaries of them. There

are several ways we will see how to approximate entire posterior

distributions. We will first see the most simple way, which is only

a very small variation of Monte Carlo integration, which is called

“direct sampling” (by some) or simply Monte Carlo simulation (by

others).

Direct Simulation

In this problem, we know

θ1 ∼ beta(a1 + x1, b1 + n1 − x1)

and

θ2 ∼ beta(a2 + x2, b2 + n2 − x2).

If we have a random number generator that can generate beta ran-

dom numbers, we can get a sample from the posterior distribution

of any quantity that depends only on θ1 and θ2. For example,

the following steps produce a sample from the correct posterior

distribution for ε = θ1 − θ2:

Direct Simulation

1. Simulate θ∗1 from beta(a1 + x1, b1 + n1 − x1)

2. Simulate θ∗2 from beta(a2 + x2, b2 + n2 − x2)

3. Form ε∗1 = θ∗1 − θ∗2

4. Repeat steps 1, 2, and 3 a large number (M) of times to get

ε∗1, ε∗2, . . . , ε
∗
M . This is a sample from the correct posterior dis-

tribution. We can now approximate the posterior distribution

by the histogram of ε∗1, ε∗2, . . . ε
∗
M , or get posterior quantiles

from the sample quantiles.

To code this in R, the first few steps are identical to what we had

before for Monte Carlo integration, except we replace the RR by

the difference in probabilities θ1 − θ2:

> theta1 <- rbeta(10000, 79, 41)

> theta2 <- rbeta(10000, 45, 79)

> diff <- theta1-theta2

Here the similarity ends, however. Rather than taking the mean

of the r quantity “diff”, we will graph it. Typing

> hist(diff)

in R gives the following graphic:

Histogram of diff

diff

Fr
eq

ue
nc

y

0.1 0.2 0.3 0.4 0.5

0
50

0
15

00
25

00

Similarly, if we want a 95% credible interval, we simply type

> quantile(diff, prob=c(0.025, 0.975))

which gives as the result:

2.5% 97.5%

0.1741083 0.4127239

Sampling Importance Resampling

Direct simulation requires that the posterior distributions of θ1

and θ2 are directly available to be simulated.

What can be done if this is not the case?

Usually we can write down the prior and the likelihood, so that

usually the function prior × likelihood is available. The problem

is that the normalizing constant is missing, so direct simulation is

not possible.

Idea: Start with a random sample from a guess at the posterior

distribution, and modify the sample to be more like the true pos-

terior.

Setup: Let

g(θ)

be a first guess approximation to the true posterior distribution.

Let

f
′
(θ|data) = likelihood × prior,

which we can write down.

Sampling Importance Resampling

The SIR algorithm follows three steps:

1. Sample: Draw a random sample from g(θ), θ∗1, θ∗2, . . . θ
∗
M .

2. Importance: Attach a weight to each element in the sample,

wi =
f

′
(θ∗i |data)

g(θ∗i)

3. Resample: Draw a sample with replacement from the original

sample θ∗1, θ∗2, . . . θ
∗
M , using the weights calculated in step 2.

The sample in step 3 is an approximate random sample from the

posterior distribution, without needing to directly simulate from

it.

Using SIR in our Example

Letting ε = θ1 − θ2, so that θ2 = θ1 − ε.

The likelihood × prior is then given by

θa1+x1−1

1 (1 − θ1)
b1+n1−x1−1(θ1 − ε)a2+x2−1(1 − (θ1 − ε))b2+n2−x2−1

Note that for any given value of θ1, ε is restricted to the region

θ1 ≤ ε ≤ 1 − θ1

We will use a uniform distribution over this region for our g(θ1, ε)

function.

The SIR steps then are:

1. Draw a random sample of size M from g(θ1, ε). This is ac-

complished by first selecting θ1 from a uniform distribution

on the interval [0,1], and then selecting ε randomly from a

uniform distribution on the interval

−θ1 ≤ ε ≤ 1 − θ1

where θ1 is the value just selected.

2. For each εi, i = 1, . . . , M selected, assign a weight, given by

wi = θa1+x1−1

1i (1 − θ1i)
b1+n1−x1−1(θ1i − εi)

a2+x2−1(1 − (θ1i − εi))
b2+n2−x2−1

3. Resample a sample of size M
′
(which need not equal M) with

replacement from the original (uniform) sample of ε’s, with

probability wi as the sampling weight. This latter sample is

the random sample from the posterior distribution of ε that

we desire.

Here is an R program that does this:

SIR.for.epsilon.1 <- function(a1, b1, a2, b2, x1, n1, x2, n2, size=10000)

{

theta1 <- runif(size, min=0,max=1)

epsilon <- runif(size, min=theta1-1, max=theta1)

weight <- theta1^(a1+x1-1)*(1-theta1)^(b1+n1-x1-1)*

(theta1 - epsilon)^(a2+x2-1)*(1- (theta1 - epsilon))^(b2+n2-x2-1)

epsilon.post <- sample(epsilon, size, replace=T, prob=weight)

layout(matrix(c(1,2), byrow=T, nrow=2))

hist(epsilon.post)

hist(weight)

return(quantile(epsilon.post, prob=c(0.025, 0.25, 0.5, 0.75, 0.975)))

}

SIR.for.epsilon.1(1,1,1,1,78, 118, 44, 122, 10000)

2.5% 25% 50% 75% 97.5%

0.1780713 0.2603438 0.2969588 0.3378202 0.4149166

Note that the solutions are identical to what we had before using

direct simulation.

Here are the graphs:

Histogram of epsilon.post

epsilon.post

Fr
eq

ue
nc

y

0.1 0.2 0.3 0.4 0.5

0
15

00

Histogram of weight

weight

Fr
eq

ue
nc

y

0.0 e+00 1.0 e−68 2.0 e−68 3.0 e−68

0
40

00
10

00
0

There were no problems calculating the weights here, but they can

sometimes be problematic, especially in large data sets, where all

weights may appear to be zero. A way around this is to calculate

all terms in the weights first on a log scale, then convert back.

Here is the program, identical expect for the way the weights are

calculated:

SIR.for.epsilon.2 <- function(a1, b1, a2, b2, x1, n1, x2, n2, size=10000)

{

theta1 <- runif(size, min=0,max=1)

epsilon <- runif(size, min=theta1-1, max=theta1)

log.weight <- (a1+x1-1)*log(theta1) + (b1+n1-x1-1)* log(1-theta1) +

(a2+x2-1)*log(theta1 - epsilon) + (b2+n2-x2-1)* log(1- (theta1 - epsilon))

weight <- exp(log.weight)

epsilon.post<-sample(epsilon, size, replace=T, prob=weight)

layout(matrix(c(1,2), byrow=T, nrow=2))

hist(epsilon.post)

hist(weight)

return(quantile(epsilon.post, prob=c(0.025, 0.25, 0.5, 0.75, 0.975)))

}

SIR.for.epsilon.2(1,1,1,1,78, 118, 44, 122, 10000)

2.5% 25% 50% 75% 97.5%

0.1700592 0.2563583 0.2928192 0.3324690 0.4095839

Note again the identical results. In general, the second method is

preferable to the first, it is less “error prone”.

There is still another problem, however. We can see from the

graphs of the weights that almost all weights are near zero, with

just a handful further from zero. This means that in resampling,

the same small set of values will be chosen over and over again.

This, in turn, can lead to “grainy” histograms, made up of just a

few large values used over and over, where we know that the real

density is a smooth curve.

This problem arises because of a poor choice of proposal distribu-

tion, where most values are far from where the posterior density

is located, and so are given very low weight. Here is a picture that

illustrates what is happening:

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
35

Poor Proposal Distribution is SIR

P
os

te
rio

r D
en

si
ty

This problem is fixed by using a better proposal. Note that

when you change the proposal, you must also change the weights

by the same amount.

SIR.for.epsilon.3 <- function(a1, b1, a2, b2, x1, n1, x2, n2, size=10000)

{

theta1 <- runif(size, min=0,max=1)

epsilon <- rbeta(size, 30,70)

weight <- theta1^(a1+x1-1)*(1-theta1)^(b1+n1-x1-1)*

(theta1 - epsilon)^(a2+x2-1)*

(1- (theta1 - epsilon))^(b2+n2-x2-1)/dbeta(epsilon, 30, 70)

epsilon.post<-sample(epsilon, length(epsilon), replace=T, prob=weight)

layout(matrix(c(1,2), byrow=T, nrow=2))

hist(epsilon.post)

hist(weight)

return(quantile(epsilon.post, prob=c(0.025, 0.25, 0.5, 0.75, 0.975)))

}

SIR.for.epsilon.3(1,1,1,1,78, 118, 44, 122, 10000)

2.5% 25% 50% 75% 97.5%

0.1841660 0.2575468 0.2947968 0.3348847 0.4088054

The Gibbs Sampler

Bayes Theorem is:

f (θ|x) =
l(x; θ)f (θ)

∫
l(x; θ)f (θ)dθ

Problem:
∫
l(x; θ)f (θ)dθ may be difficult.

We have seen so far that direct simulation or SIR could be used,

but very often may not have distributions to simulate from directly

and SIR only works well in low dimensional problems (almost im-

possible to get good “proposal” distributions in high dimensions).

We need a general method that works in high dimensions.

The Gibbs sampler – General Idea

• Similar to Direct Sampling, results in a sample from the de-

sired density or densities, does not give a formula for the den-

sity directly.

• Usually used to get samples from marginal densities, but can

also be used for joint (that is, f (θ1, θ2)) densities.

• Iterative algorithm, while Direct Sampling was non-iterative

• Gibbs sampler is a special case of a family of similar algorithms

called Monte Carlo Markov Chain (MCMC) algorithms.

Example: In two dimensions, may be interested in the marginal

posterior density of θ1:

f (θ1|x) =
∫

f (θ1, θ2|x)dθ2

Problem:
∫
f (θ1, θ2|x)dθ2 may be difficult.

Idea: Exploit relationships between conditional and marginal den-

sities to simplify the problem, that is, break down one harder step

into several easier steps.

Mathematical Statistical Background

Useful identities concerning probability densities:

1.

f (θ1, θ2) = f (θ1|θ2)f (θ2)

= f (θ2|θ1)f (θ1)

2.

f (θ1) =
∫

f (θ1, θ2)dθ2

=
∫

f (θ1|θ2)f (θ2)dθ2

3. Similarly,

f (θ2) =
∫

f (θ2, θ1)dθ1

=
∫

f (θ2|θ1)f (θ1)dθ1

Densities ⇐⇒ Samples

1. Can replace knowing f (θ) by a sample θ∗1, θ
∗
2, . . . θ

∗
M from

f (θ).

2. From previous page,

f (θ1) =
∫

f (θ1|θ2)f (θ2)dθ2

To get a sample from f (θ1), a “two-stage” process can be

used:

(a) Draw θ∗2 from f (θ2)

(b) Draw θ∗1|θ
∗
2 from f (θ1|θ

∗
2)

This is helpful if f (θ1|θ2) is simpler than f (θ1).

Gibbs sampler algorithm – two dimensions

Situation: Want to generate random samples from posterior marginal

densities of θ1 and θ2. The joint density f (θ1, θ2) is difficult to

work with, hence the marginal densities f (θ1) and f (θ2) are not

available for sampling from, either directly or using SIR. However,

the conditional densities f (θ1|θ2) and f (θ2|θ1) are easier to work

with, and are “available” to sample from.

If the likelihood × prior can be written down (as is usually the

case), the conditional densities are usually derivable by “simplify-

ing” this function.

Example

For the problem of a difference between two binomial densities, we

had the likelihood × prior for ε, θ1 as:

f (θ1, ε) ∝ θa1+x1−1
1 (1−θ1)

b1+n1−x1−1(θ1−ε)a2+x2−1(1−(θ1−ε))b2+n2−x2−1

Then, to get f (θ1|ε), assume ε is a constant, to get:

f (θ1|ε) ∝ θa1+x1−1
1 (1−θ1)

b1+n1−x1−1(θ1−ε)a2+x2−1(1−(θ1−ε))b2+n2−x2−1

where ε is treated as constant. Then, to get f (ε|θ1), assume θ1 is

a constant, to get:

f(ε|θ1) ∝ θa1+x1−1

1 (1 − θ1)
b1+n1−x1−1(θ1 − ε)a2+x2−1(1 − (θ1 − ε))b2+n2−x2−1

∝ (θ1 − ε)a2+x2−1(1 − (θ1 − ε))b2+n2−x2−1

The last reduction is because θ1 is a constant.

Gibbs sampler Algorithm – Two Dimensions

1. Start with any θ
(0)
2 . Set i = 0.

2. Draw θ
(i+1)
1 from f (θ1|θ

(i)
2)

3. Draw θ
(i+1)
2 from f (θ2|θ

(i+1)
1)

4. Set i = i + 1. Repeat steps 2 and 3, M times to get samples

θ
(1)
1 , θ

(2)
1 , . . . , θ

(M)
1 ∼ f (θ1)

θ
(1)
2 , θ

(2)
2 , . . . , θ

(M)
2 ∼ f (θ2)

Note: We always sample from the conditional distributions

rather than marginal densities, which we assume are simpler. In

fact, we saw how conditional densities are directly available from

the likelihood × prior, so they can always be written down from

there.

Gibbs sampler Algorithm – Three Dimensions

1. Start with any θ
(0)
2 and θ

(0)
3 . Set i = 0.

2. Draw θ
(i+1)
1 from f (θ1|θ

(i)
2 , θ

(i)
3)

3. Draw θ
(i+1)
2 from f (θ2|θ

(i+1)
1 , θ

(i)
2)

4. Draw θ
(i+1)
3 from f (θ3|θ

(i+1)
1 , θ

(i+1)
2)

5. Set i = i+1. Repeat steps 2, 3 and 4, M times to get samples

θ
(1)
1 , θ

(2)
1 , . . . , θ

(M)
1 ∼ f (θ1)

θ
(1)
2 , θ

(2)
2 , . . . , θ

(M)
2 ∼ f (θ2)

θ
(1)
3 , θ

(2)
3 , . . . , θ

(M)
3 ∼ f (θ3)

Gibbs sampler algorithm for ε = θ1 − θ2

1. Start with any θ
(0)
1 . Set i = 0.

2. Draw ε(i+1) from f (ε|θ
(i)
1)

3. Draw θ
(i+1)
1 from f (θ1|ε

(i+1))

4. Set i = i + 1. Repeat steps 2, and 3 M times to get samples

θ
(1)
1 , θ

(2)
1 , . . . , θ

(M)
1 ∼ f (θ1)

ε(1), ε(2), . . . , ε(M) ∼ f (ε)

Recall that:

f (θ1|ε) ∝ θa1+x1−1
1 (1−θ1)

b1+n1−x1−1(θ1−ε)a2+x2−1(1−(θ1−ε))b2+n2−x2−1

and

f (ε|θ1) ∝ (θ1 − ε)a2+x2−1(1 − (θ1 − ε))b2+n2−x2−1

Both of these may be sampled from using SIR.

Gibbs Program and 2 needed subroutines

--

> gibbs.eps <-

function(x1, n1, x2, n2, size1, size2) {

p.samp <- rep(0, 1000)

eps.samp <- rep(0, 1000)

p.samp[1] <- x1/n1

for(i in 1:(size2 - 1)) {

eps.samp[i] <- nexteps(p.samp[i], x1, n1, x2, n2, size1)

p.samp[i + 1] <- nextpi(eps.samp[i], x1, n1, x2, n2, size1)

}

eps<-eps.samp[1:(size2 - 1)]

return(eps)

}

> nexteps <-

function(p, x1, n1, x2, n2, size) {

eps <- runif(size, min = - p, max = 1 - p)

w <- p^(x1) * (1 - p)^(n1 - x1) * (p + eps)^(x2) * (1 - p - eps)^(n2 -

x2)

eps.samp <- sample(eps, 1, replace = T, prob = w)

return(eps.samp)

}

> nextpi <-

function(eps, x1, n1, x2, n2, size) {

p <- runif(size, min = max(- eps, 0), max = min(1, 1 - eps))

w <- p^(x1) * (1 - p)^(n1 - x1) * (p + eps)^(x2) * (1 - p - eps)^(n2 -

x2)

p.samp <- sample(p, 1, replace = T, prob = w)

return(p.samp)

}

To run the program, type (-a is used since the program was written

for theta2-theta1 rather than theta1-theta2):

> a<-gibbs.eps(78,118,44,122,1000,5000)

> hist(-a)

> quantile(-a,prob=c(0.025,0.5,0.975))

2.5% 50.0% 97.5%

0.1661262 0.2981026 0.4157432

