
1

Bayesian Inference for Linear and Logistic Re-

gression Parameters

Bayesian inference for simple linear and logistic regression parameters follows
the usual pattern for all Bayesian analyses:

1. Form a prior distribution over all unknown parameters.

2. Write down the likelihood function of the data.

3. Use Bayes theorem to find the posterior distribution of all parameters.

• We have applied this generic formulation so far to problems with bino-
mial distributions, normal means (with variance known), multinomial
parameters, and to the Poisson mean parameter. All of these problems
involved only one parameter at a time (strictly speaking, more than one
in the multinomial case, but only a single Dirichlet distribution was used,
so all parameters were treated together, as if it were just one parameter).

• What makes regression different is that we have three unknown parame-
ters, since the intercept and slope of the line, α and β are unknown, and
the residual standard deviation (for linear regression), σ is also unknown.

• Hence our Bayesian problem becomes slightly more complicated, since
we are in a multi-parameter situation. Thus, we will use the Gibbs
sampler, as automatically implemented in WinBUGS software.

Introduction to WinBUGS

WinBUGS is a free program available from the Biostatistics Unit of the Med-
ical Research Council in the UK (see link on course web page). Installing
WinBUGS is straightforward, one downloads the single file required, typically
called winbugs14.exe, and runs that file to install in typical windows fashion.
However, this allows only a limited use of WinBUGS, and one also need to
install a key (again, this is free) for unlimited use. Instructions are on the
WinBUGS home page, and please let me know if you experience any difficulty

2

installing the program or the key. All computers in the basement of Purvis
Hall have WinBUGS installed on them for your use.

Once installed, a WinBUGS program consists of three parts, all of which can
be placed into a single file, or as three separate files (or two files):

Main program: A set of lines that let WinBUGS know what the prior and
likelihood of the model are.

Data set: The data that will be used, either formatted as an R like list, or
in rectangular format. Note that you can have as many data sets as you
wish, and can mix formatting types when entering data.

Initial Values: These are optional (but generally a good idea to include),
and are used by WinBUGS to start its algorithm.

WinBUGS solves problems in Bayesian analysis by multiplying the prior by
the likelihood, and then taking samples from the posterior distributions via an
iterative algorithm called the Gibbs sampler. Thus, rather than get an exact
formula for the posterior distribution, WinBUGS returns samples from it, as
shown below:

3

WinBUGS can be used to solve a very wide class of problems, much wider than
standard software packages. It must be used carefully, as the Gibbs sampler
algorithm does not always converge. Good practice dictates to run WinBUGS
several times (say, three times) to ensure that the answer is always the same
(or extremely close). For problems in this course, convergence will seldom, if
ever, be a problem.

Running WinBUGS

Follow these steps to produce analyses in WinBUGS:

1. Open WinBUGS by clicking on the WinBUGS icon on desktop (after
installation).

2. Either open an existing WinBUGS file (typical extension is *.odc) if
continuing from an already created file, or open a new window from the
file menu.

4

3. Type in the program (or cut and paste if a program already exists,
typically will be the case in this course).

4. Below the program (or if you prefer, in another window inside of Win-
BUGS), type in or cut and paste in the data set, remembering that the
format must be either rectangular or list-like (see examples on course
web page).

5. In list format, type in initial values (see examples on web page).

For our normal problem with unknown variance, the WinBUGS window
will typically look like this:

model

{ # Program must start with model

statement and open {

for (i in 1:27) # Loop over number of data points

{

x[i] ~ dnorm(mu,tau) # Enter the 27 likelihood terms

}

mu ~ dnorm(70,0.04) # Prior for the normal mean, mu, 0.04=1/25

sigma ~ dunif(0,50) # Prior for the normal standard deviation, sigma

tau<-1/(sigma*sigma) # WinBUGS normal form needs 1/sigma^2

} # End of program part

Data # Data section

list(x=c(76, 71, 82, 63, 76, 64, 64, 74, 70, 64, 75, 81, 75, 78, 66,

62, 79, 82, 78, 62, 72, 83, 79, 41, 80, 77, 67))

Initial Vlaues # Initial Values section

list(mu=60, sigma = 20)

6. Once all input is ready, WinBUGS must be run to produce the output,
following these steps:

(a) Open the Model → Specification menu item, highlight the word
“model” in the program, and then click on “check model”. This
checks the model for syntax errors. Watch for (often quite cryptic)
error messages on bottom status line, if any errors occur.

5

(b) Highlight the word “list” in the data section of the program, and
click on “load data”. This loads in your data. Repeat this step as
many times as needed to load in all your data. If in rectangular
array style, highlight the first line (variable names) rather than the
word “list”.

(c) Click on compile (assuming all is fine so far...if not, find error(s)
and repeat first two steps).

(d) Highlight the word “list” in the initial values section of the program,
and click on “load inits”. This loads in your initial values. If you did
not provide all initial values, click on “gen inits” to have WinBUGS
do this automatically for you (not always a good idea).

(e) WinBUGS can now be run to produce posterior distributions. First,
run some “burn-in” or “throw away” values, to ensure convergence.
Typically, 2000 should be (more than) sufficient for models in this
course. To create the burn-in, open the Model → Update menu
item, change the default 1000 value to 2000, and click on the “up-
date” button.

(f) To run further iterations “to keep”, open the Inference → Samples
menu item. Enter all unknown variables you wish inferences on into
the window (in this case, mu and sigma), clicking “set” after each
one. Then go back to the update box, which should still be open,
and run the number of iterations you want. We will use 10,000, so
enter 10000 and click again on the update button.

(g) Finally, we can look at summaries of the posterior distributions.
Going back to the Samples dialogue box, type a “ * ” in the win-
dow (meaning look at all variables tracked), and then click on the
various items to get the desired summaries. Most useful for us
will be “Stats” and “density”, to get basic posterior inferences such
as means, medians and 95% credible intervals, and density plots
(somewhat crude). The results are:

node mean sd MC error 2.5% median 97.5% start sample

mu 71.63 1.727 0.01698 68.24 71.62 74.97 2001 10000

sigma 9.69 1.43 0.01567 7.358 9.532 12.92 2001 10000

For the mean, note that our posterior has mean of about 71.6 (com-
pare to 71.69 found previously), and the standard deviation for this
parameter is 1.73, compared to 1.63 found previously. As we have
an extra parameter to estimate, this decrease in the accuracy in

6

estimating µ is expected. Note that we have a new parameter to
estimate, σ, which was assumed known before.

Having been introduced to WinBUGS, we can now look at Bayesian linear
regression, first in general terms, then in terms of WinBUGS programming
and inferences. After that, we will look at logistic regression.

Brief Sketch of Bayesian linear regression

Recall the three steps: prior → likelihood → posterior.

1. We need a joint prior distribution over α, β, and σ. We will specify these as
three independent priors [which when multiplied together will produce a joint
prior]. One choice is:

• α ∼ uniform[−∞,+∞]

• β ∼ uniform[−∞,+∞]

• log(σ) ∼ uniform[−∞,+∞]

With this choice, we can approximate the results from a frequentist regression
analysis. Another possible choice is (more practical for WinBUGS):

• α ∼ Normal(0, 0.0001)

• β ∼ Normal(0, 0.0001)

• σ ∼ uniform[0, 100]

These are very diffuse (typically, depends on scale of data), so approximate
the first set of priors. Of course, if real prior information is available, it can
be incorporated.

Notes:

7

• The need for the log in first set of priors comes from the fact the the
variance must be positive. The prior on σ is equivalent to a density that
is proportional to 1

σ2 .

• We specify a non-informative prior distribution of these three parame-
ters. Of course, we can also include prior information when available,
but this is beyond the scope of this course.

• First set of priors is in fact “improper” because their densities do not
integrate to one, since the area under these curves in infinite! In general
this is to be avoided since sometimes it can cause problems with posterior
distributions. This is not one of those problem cases, however, and it is
sometimes convenient to use a “flat” prior everywhere, so it is mentioned
here (even if we use proper priors for the rest of this lecture).

2. Likelihood function in regression:

• As is often the case, the likelihood function used in a Bayesian analysis
is the same as the one used for the frequentist analysis.

• Recall that we have normally distributed residuals, ε ∼ N(0, σ2)

• Recall that the mean of the regression line, given that we know α and β
is y = α + β × x.

• Putting this together, we have y ∼ N(α + β × x, σ2).

• So for a single patient with observed value xi, we have y ∼ N(α + β ×
xi, σ

2)

• So for a single patient, the likelihood function is:

f(yi) =
1√
2πσ

exp

{
(yi − (α + β × xi))2

σ2

}

• So for a group of n patients each contributing data (xi, yi), the likelihood
function is given by

n∏
i=1

f(yi) = f(y1)× f(y2)× f(y3)× . . .× f(yn)

8

• So the likelihood function is simply a bunch of normal densities multi-
plied together . . . a multivariate normal likelihood of dimension n.

3. Posterior densities in regression

• Bayes theorem now says to multiply the likelihood function (multivariate
normal) with the prior. For the first prior set, the joint prior simply is
1× 1× 1

σ2 . For the second, it is two normal distributions multiplied by
a uniform. Since the uniform is equal to 1 everywhere, this reduced to a
product of two normal distributions.

• For the first prior set, the posterior distribution simply is:

n∏
i=1

f(yi)×
1

σ2
.

• This is a three dimensional posterior involving α, β, and σ2.

• By integrating this posterior density, we can obtain the marginal densi-
ties for each of α, β, and σ2.

• After integration (tedious details omitted):

– α ∼ tn−2

– β ∼ tn−2

– σ2 ∼ Inverse Chi-Square (so 1/σ2 ∼ Chi-Square)

• Note the similar results given by Bayesian and frequentist approaches
for α and β, and, in fact, the means and variances are the same as well,
assuming the “infinite priors” listed above are used.

• When the second prior set is used, the resulting formulae are more com-
plex, and WinBUGS will be used. However, as both sets of priors are
very “diffuse” or “non-informative”, numerically, results will be similar
to each other, and both will be similar to the inferences given by the
frequentist approach (but interpretations will be very different).

• Although the t distributions listed above can be used, Bayesian computa-
tions usually carried out via computer programs. We will use WinBUGS
to compute Bayesian posterior distributions for regression and logistic
problems.

9

• Bayes approach also suggests different ways to assess goodness of fit and
model selection (we will see this later).

Example

Consider the following data:

Community DMF per 100 Fluoride Concentration
Number children in ppm

1 236 1.9
2 246 2.6
3 252 1.8
4 258 1.2
5 281 1.2
6 303 1.2
7 323 1.3
8 343 0.9
9 412 0.6

10 444 0.5
11 556 0.4
12 652 0.3
13 673 0.0
14 703 0.2
15 706 0.1
16 722 0.0
17 733 0.2
18 772 0.1
19 810 0.0
20 823 0.1
21 1027 0.1

We will now analyze these data from a Bayesian viewpoint, using WinBUGS.
The program we need is:

10

model

{

for (i in 1:21) # loop over cities

{

mu.dmf[i] <- alpha + beta*fl[i] # regression equation

dmf[i] ~ dnorm(mu.dmf[i],tau) # distribution individual values

}

alpha ~ dnorm(0.0,0.000001) # prior for intercept

beta ~ dnorm(0.0,0.000001) # prior for slope

sigma ~ dunif(0,400) # prior for residual SD

tau <- 1/(sigma*sigma) # precision required by WinBUGS

for (i in 1:21)

{ # calculate residuals

residual[i] <- dmf[i] - mu.dmf[i]

}

pred.mean.1.7 <- alpha + beta*1.7 # mean prediction for fl=1.7

pred.ind.1.7 ~ dnorm(pred.mean.1.7, tau) # individual pred for fl=1.7

}

Data are entered in one of the following two formats (both equivalent, note
blank line required after “END” statement):

dmf[] fl[]

236 1.9

246 2.6

252 1.8

258 1.2

281 1.2

303 1.2

323 1.3

343 0.9

412 0.6

444 0.5

556 0.4

652 0.3

673 0.0

703 0.2

706 0.1

722 0.0

11

733 0.2

772 0.1

810 0.0

823 0.1

1027 0.1

END

or

list(dmf=c(236, 246, 252, 258, 281, 303, 323, 343, 412, 444, 556, 652,

673, 703, 706, 722, 733, 772, 810, 823, 1027), fl=c(1.9, 2.6, 1.8, 1.2,

1.2, 1.2, 1.3, 0.9, 0.6, 0.5, 0.4, 0.3, 0.0, 0.2, 0.1, 0.0, 0.2, 0.1,

0.0, 0.1, 0.1))

Let’s look at a graph of these data:

12

We will use these initial values (rather arbitrary, just to get into right general
area to start):

list(alpha=100, beta = 0, sigma=100)

Running 2000 burn-in values and then 10,000 further iterations, produces the
following results:

node mean sd 2.5% median 97.5%

alpha 730.1 41.45 646.8 730.6 809.7

beta -277.4 40.86 -358.8 -277.4 -196.8

mu.dmf[1] 203.0 57.16 89.49 203.0 314.1

mu.dmf[2] 8.869 82.93 -152.8 8.885 171.1

mu.dmf[3] 230.8 53.72 124.3 230.6 335.6

mu.dmf[4] 397.2 35.98 325.8 397.5 467.1

mu.dmf[5] 397.2 35.98 325.8 397.5 467.1

mu.dmf[6] 397.2 35.98 325.8 397.5 467.1

mu.dmf[7] 369.5 38.42 293.3 369.6 444.2

mu.dmf[8] 480.4 30.81 418.9 480.4 540.8

mu.dmf[9] 563.7 30.09 503.0 563.4 621.8

mu.dmf[10] 591.4 30.94 529.2 591.4 651.0

mu.dmf[11] 619.1 32.29 554.6 619.3 680.9

mu.dmf[12] 646.9 34.08 578.9 647.1 712.3

mu.dmf[13] 730.1 41.45 646.8 730.6 809.7

mu.dmf[14] 674.6 36.24 602.0 675.1 744.8

mu.dmf[15] 702.4 38.72 624.6 702.7 777.0

mu.dmf[16] 730.1 41.45 646.8 730.6 809.7

mu.dmf[17] 674.6 36.24 602.0 675.1 744.8

mu.dmf[18] 702.4 38.72 624.6 702.7 777.0

mu.dmf[19] 730.1 41.45 646.8 730.6 809.7

mu.dmf[20] 702.4 38.72 624.6 702.7 777.0

mu.dmf[21] 702.4 38.72 624.6 702.7 777.0

pred.ind.1.7 257.3 145.8 -33.89 255.3 546.8

pred.mean.1.7 258.5 50.37 158.7 258.5 356.8

residual[1] 32.96 57.16 -78.05 32.97 146.5

residual[2] 237.1 82.93 75.25 237.1 398.8

residual[3] 21.22 53.72 -83.55 21.39 127.9

residual[4] -139.2 35.98 -209.0 -139.5 -67.76

13

residual[5] -116.2 35.98 -186.0 -116.5 -44.76

residual[6] -94.22 35.98 -164.0 -94.46 -22.76

residual[7] -46.48 38.42 -121.0 -46.57 29.72

residual[8] -137.4 30.81 -197.8 -137.4 -75.79

residual[9] -151.7 30.09 -209.8 -151.4 -90.83

residual[10] -147.4 30.94 -206.9 -147.4 -85.25

residual[11] -63.13 32.29 -124.9 -63.27 1.432

residual[12] 5.126 34.08 -60.23 4.903 73.22

residual[13] -57.09 41.45 -136.7 -57.55 26.23

residual[14] 28.39 36.24 -41.83 27.93 101.0

residual[15] 3.647 38.72 -71.02 3.295 81.4

residual[16] -8.092 41.45 -87.68 -8.55 75.23

residual[17] 58.39 36.24 -11.83 57.93 131.0

residual[18] 69.65 38.72 -5.02 69.3 147.4

residual[19] 79.91 41.45 0.324 79.45 163.2

residual[20] 120.6 38.72 45.98 120.3 198.4

residual[21] 324.6 38.72 250.0 324.3 402.4

sigma 135.0 21.83 98.52 132.5 183.2

A quadratic model may fit better. Here is a program for this more complex
model, which also illustrates Bayesian regression for more than one variable.

model {

for (i in 1:21) # loop over cities

{

mu.dmf[i] <- alpha + beta1*fl[i] + beta2*fl[i]*fl[i]

regression equation

dmf[i] ~ dnorm(mu.dmf[i],tau)

distribution individual values

}

alpha ~ dnorm(0.0, 0.000001) # prior for intercept

beta1 ~ dnorm(0.0, 0.000001) # prior for slope for fl

beta2 ~ dnorm(0.0, 0.000001) # prior for slope for fl squared

sigma ~ dunif(0,200) # prior for residual SD

tau <- 1/(sigma*sigma) # precision required by WinBUGS

for (i in 1:21)

{ # calculate residuals

residual[i] <- dmf[i] - mu.dmf[i]

}

14

pred.mean.1.7 <- alpha + beta1*1.7 + beta2*1.7*1.7

mean prediction for fl=1.7

pred.ind.1.7 ~ dnorm(pred.mean.1.7, tau)

individual pred for fl=1.7

}

Running this model, the results are:

node mean sd 2.5% median 97.5%

alpha 808.6 34.31 739.8 808.4 875.5

beta1 -624.2 87.07 -792.6 -624.9 -448.1

beta2 161.5 38.16 85.78 162.1 236.3

pred.ind.1.7 214.7 105.0 3.166 213.7 424.9

pred.mean.1.7 214.2 37.34 140.5 213.8 287.7

sigma 94.4 17.54 67.35 91.79 135.8

Comparing Bayesian to Frequentist Regression

• If no prior information is used (i.e., if we use a Bayesian approach with
“noninformative” or “flat” or “diffuse”or “reference” priors), then the
inferences from Bayesian and frequentist are numerically similar. For
example, 95% confidence intervals will be very similar to 95% credible
intervals. We have illustrated this in the above examples.

• However, the interpretations of these intervals are completely different:
Bayesian intervals are directly interpreted as the probability the param-
eter is in the credible interval, given the data and any prior information.
Frequentist confidence intervals cannot be interpreted this way, one can
only say that if the confidence interval procedure were to be used repeat-
edly, then 95% of all intervals will contain the true value.

• If there is prior information, then only the Bayesian approach can for-
mally include this information in the model.

• Both Bayesian and frequentist approaches can be extended to much more
complex models. However Bayesian methods tend to be more flexible,
in general.

15

• Using WinBUGS, it is trivially easy to obtain inferences for any function
of any estimated parameter. For example, having estimated, say, β1 and
β2, it is trivial to obtain the posterior distribution for, say, β1 ×

√
β2.

• As we will soon see, Bayesian methods for model selection tend to work
better than standard frequentist methods (although there is no single
perfect method for model selection developed so far).

16

Bayesian Inference for Logistic Regression Pa-

rameters

Bayesian inference for logistic analyses follows the usual pattern for all Bayesian
analyses, likelihood, prior, then multiple to derive the posterior density, from
which all inferences follow.

For logistic regression, the three steps are summarized as follows:

Likelihood function: As usual, the likelihood function used by Bayesians
matches that from frequentist inference.

In particular, recall that once we have the probability of success (which in
logistic regression varies from one subject to another, depending on their
covariates), the likelihood contribution from the ith subject is binomial:

likelihoodi = π(xi)
yi(1− π(xi))

(1−yi)

where π(xi) represents the probability of the event for subject i who has
covariate vector xi, and yi indicates the presence, yi = 1, or absence
yi = 0 of the event for that subject.

Of course, in logistic regression, we know that

π(x) =
eβ0+β1X1+...+βpXp

1 + eβ0+β1X1+...+βpXp

so that the likelihood contribution from the ith subject is

likelihoodi =

(
eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)yi (
1− eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)(1−yi)

17

Since individual subjects are assumed independent from each other, the
likelihood function over a data set of n subjects is then

likelihood =
n∏
i=1

(eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)yi (
1− eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)(1−yi)

Prior distribution:

The set of unknown parameters consists of β0, β1, . . . , βp.

In general, any prior distribution can be used, depending on the available
prior information. The choice can include informative prior distributions
if something is known about the likely values of the unknown parameters,
or “diffuse” or “non-informative” priors if either little is known about
the coefficient values or if one wishes to see what the data themselves
provide as inferences.

If informative prior distributions are desired, it is often difficult to give
such information on the logit scale, i.e., on the β parameters directly.

One may prefer to provide prior information on the OR = exp(β) scale,
and mathematically transform back to the logit scale. Alternatively,
one can take various situations (e.g., male, 73 years old, on drug A,
etc.) and derive prior distributions on the probability scale. If sufficient
elicitations of this type are made, one can mathematically transform
back to the coefficient scale. One can find free software (e.g., a program
called ELICITOR) that facilitates such prior derivations.

For this course, however, we will use the most common priors for logistic
regression parameters, which are of the form:

βj ∼ N(µj, σ
2
j)

18

The most common choice for µ is zero, and σ is usually chosen to be large
enough to be considered as non-informative, common choices being in
the range from σ = 10 to σ = 100.

Posterior distribution via Bayes Theorem:

The posterior distribution is derived by multiplying the prior distribution
over all parameters by the full likelihood function, so that

posterior =
n∏
i=1

(eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)yi (
1− eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)(1−yi)

×
p∏
j=0

1√
2πσj

exp

−1

2

(
βj − µj
σj

)2

the latter part of the above expression being recognized as normal dis-
tributions for the β parameters.

Of course, the above expression has no closed form expression, and even if
it did, we would have to perform multiple integration to obtain the marginal
distribution for each coefficient. So, as is usual for Bayesian analysis, we will
use the Gibbs sampler as implemented by WinBUGS to solve approximate the
properties of the marginal posterior distributions for each parameter.

As was the case for frequentist inference, taking exp(β) provides the odds ratio
for a one unit change of that parameter. We will see how easy it is to carry
out such inferences from a Bayesian viewpoint using WinBUGS.

Let’s see some examples. We will begin with a simple simulated model, and
move on to multivariate examples. We will program each in WinBUGS.

Simple Logistic Regression Program UsingWin-

BUGS

We will investigate a simulated logistic regression model of bone fractures with
independent variables age and sex. The true model had: alpha = -25, b.sex =

19

0.5, b.age = 0.4. With so few data points and three parameters to estimate,
do not expect posterior means/medians to equal the correct values exactly,
but all would most likely be in the 95% intervals.

Model

model

{

for (i in 1:n) {

Linear regression on logit

logit(p[i]) <- alpha + b.sex*sex[i] + b.age*age[i]

Likelihood function for each data point

frac[i] ~ dbern(p[i])

}

alpha ~ dnorm(0.0,1.0E-4) # Prior for intercept

b.sex ~ dnorm(0.0,1.0E-4) # Prior for slope of sex

b.age ~ dnorm(0.0,1.0E-4) # Prior for slope of age

}

Data

list(sex=c(1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1,
1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0,
0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,
0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1),
age= c(69, 57, 61, 60, 69, 74, 63, 68, 64, 53, 60, 58, 79, 56, 53, 74, 56, 76, 72,
56, 66, 52, 77, 70, 69, 76, 72, 53, 69, 59, 73, 77, 55, 77, 68, 62, 56, 68, 70, 60,
65, 55, 64, 75, 60, 67, 61, 69, 75, 68, 72, 71, 54, 52, 54, 50, 75, 59, 65, 60, 60,
57, 51, 51, 63, 57, 80, 52, 65, 72, 80, 73, 76, 79, 66, 51, 76, 75, 66, 75, 78, 70,
67, 51, 70, 71, 71, 74, 74, 60, 58, 55, 61, 65, 52, 68, 75, 52, 53, 70),
frac=c(1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1,
1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,

20

1, 0, 1, 1, 0, 0, 1, 0, 0, 1),
n=100)

Initial Values

list(alpha=0, b.sex=1, b.age=1)

Results

node mean sd MC error 2.5% median 97.5% start sample
alpha -22.55 5.013 0.6062 -34.33 -21.64 -14.29 1001 4000
b.age 0.3559 0.07771 0.009395 0.227 0.3418 0.5338 1001 4000
b.sex 1.405 0.7719 0.05094 -0.0387 1.374 3.031 1001 4000

p[1] 0.9575 0.03153 0.002943 0.879 0.9647 0.9952 1001 4000
p[2] 0.307 0.09828 0.004853 0.13 0.3012 0.5082 1001 4000
p[3] 0.6308 0.1041 0.003344 0.4166 0.6356 0.8178 1001 4000
p[4] 0.2477 0.103 0.007281 0.07738 0.2379 0.4728 1001 4000

(etc...)

So, as expected, CrIs are wide, but all contain the true values.

Can compare the results to a frequentist analysis of the same data:

> logistic.regression.or.ci(glm(frac ~ age + sex, family = binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -21.85041 4.42511 -4.938 7.90e-07 ***

age 0.34467 0.06857 5.027 4.99e-07 ***

sex 1.36110 0.73336 1.856 0.0635 .

Note the very similar results. Small differences arise from two different places:
Frequentist results are not particularly accurate in small sample sizes, and
Bayesian results are not that accurate (check the MC error column) because
only 4000 iterations were run.

Bayesian analysis accuracy here can be improved by running more iterations.
Nothing much can be done for the frequentist analysis except to change to a
more “exact” method (beyond scope of this course).

21

We will next look at another simple example, but include predictions and odds
ratios.

CHD and age example

We have already seen this data set:

Age CHD Age CHD Age CHD Age CHD
20 0 35 0 44 1 55 1
23 0 35 0 44 1 56 1
24 0 36 0 45 0 56 1
25 0 36 1 45 1 56 1
25 1 36 0 46 0 57 0
26 0 37 0 46 1 57 0
26 0 37 1 47 0 57 1
28 0 37 0 47 0 57 1
28 0 38 0 47 1 57 1
29 0 38 0 48 0 57 1
30 0 39 0 48 1 58 0
30 0 39 1 48 1 58 1
30 0 40 0 49 0 58 1
30 0 40 1 49 0 59 1
30 0 41 0 49 1 59 1
30 1 41 0 50 0 60 0
32 0 42 0 50 1 60 1
32 0 42 0 51 0 61 1
33 0 42 0 52 0 62 1
33 0 42 1 52 1 62 1
34 0 43 0 53 1 63 1
34 0 43 0 53 1 64 0
34 1 43 1 54 1 64 1
34 0 44 0 55 0 65 1
34 0 44 0 55 1 69 1

A WinBUGS program for these data could be:

22

model {

for (i in 1:n) {

logit(p[i]) <- alpha + b.age*age[i] # Linear regression on logit for age

Likelihood function for each data point

CHD[i] ~ dbern(p[i])

}

alpha ~ dnorm(0.0,1.0E-4) # Prior for intercept

b.age ~ dnorm(0.0,1.0E-4) # Prior for slope of age

Now to calculate the odds ratios for various functions of age

OR per unit change in age

or.age <- exp(b.age)

OR per decade change in age

or.age10 <- exp(10*b.age)

OR per five year change in age

or.age5 <- exp(5*b.age)

We can also make various predictions

Predict fracture rate for 20 year old

pred.age20 <- exp(alpha + b.age*20)/(1+ exp(alpha + b.age*20))

Predict fracture rate for 50 year old

pred.age50 <- exp(alpha + b.age*50)/(1+ exp(alpha + b.age*50))

Predict fracture rate for 70 year old

pred.age70 <- exp(alpha + b.age*70)/(1+ exp(alpha + b.age*70))

23

}

Data

list(CHD = c(0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0, 1 , 0 , 0 , 1, 0 ,

0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0, 0 ,

1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0, 1 ,

0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1,

1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1),

n=100,

age = c(20, 23, 24, 25, 25, 26, 26, 28, 28, 29, 30, 30, 30, 30, 30,

30, 32, 32, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 37, 37,

37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 42, 42, 43, 43, 43, 44,

44, 44, 44, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50,

50, 51, 52, 52, 53, 53, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 57,

57, 57, 58, 58, 58, 59, 59, 60, 60, 61, 62, 62, 63, 64, 64, 65, 69))

Inits

list(alpha = 0, b.age=0)

Results

node mean sd MC error 2.5% median 97.5% start sample

alpha -5.465 1.166 0.05372 -7.833 -5.426 -3.302 1001 20000

b.age 0.1142 0.02476 0.001142 0.06816 0.1134 0.1646 1001 20000

or.age 1.121 0.02783 0.001285 1.071 1.12 1.179 1001 20000

or.age10 3.232 0.8271 0.03851 1.977 3.108 5.184 1001 20000

or.age5 1.784 0.2238 0.01039 1.406 1.763 2.277 1001 20000

pred.age20 0.0484 0.03161 0.001302 0.01013 0.04084 0.1294 1001 20000

pred.age50 0.5599 0.06235 8.727E-4 0.4388 0.5599 0.6821 1001 20000

pred.age70 0.9143 0.04954 0.001894 0.7902 0.9252 0.9785 1001 20000

Note ease in getting ORs for any value of age change, and predictions.

Compare to frequentist results we saw earlier

Coefficients:

24

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***

age 0.11092 0.02406 4.610 4.02e-06 ***

$intercept.ci

[1] -7.531374 -3.087533

$slopes.ci

[1] 0.06376477 0.15807752

$OR

age

1.117307

$OR.ci

[1] 1.065842 1.171257

Note that results are extremely similar, because we ran

more iterations, and because sample size is larger.

Can get MC errors smaller by running more iterations...

node mean sd MC error 2.5% median 97.5% start sample

b.age 0.1145 0.02475 5.187E-4 0.06807 0.1137 0.1655 1001 100000

or.age 1.122 0.02782 5.838E-4 1.07 1.12 1.18 1001 100000

...but nothing much really changes. Differences due to priors

and/or frequentist normal approximations, sample size not that

large still.

One more example

Finally, consider again the multivariate model we saw before on low birth
weights.

Recall the data description:

25

Variable Coding
Low Birth Weight (0 = Birth Weight ≥ 2500g, low
1 = Birth Weight < 2500g)

Age of the Mother in Years age

Weight in Pounds at the Last Menstrual Period lwt

Race (1 = White, 2 = Black, 3 = Other) race

Smoking Status During Pregnancy (1 = Yes, 0 = No) smoke

History of Premature Labor (0 = None 1 = One, etc.) ptl

History of Hypertension (1 = Yes, 0 = No) ht

Presence of Uterine Irritability (1 = Yes, 0 = No) ui

Number of Physician Visits During the First Trimester ftv
(0 = None, 1 = One, 2 = Two, etc.)

Birth Weight in Grams bwt

Unlike frequentist analyses, there is no problem in declaring variables as factors
or not in WinBUGS. This simplifies matters somewhat, but also means that
dummy variables need to be created “manually” before the analysis is run.

The only such variable here is race, which we will need to recode as two separate
dummy variables (as is done internally by R when the variable is declared to
be a factor).

model {

for (i in 1:189) {

logit(p[i]) <- alpha + b.age*age[i] + b.lwt*lwt[i]

+ b.race2*race2[i] + b.race3*race3[i]

+b.smoke*smoke[i] + b.ptl*ptl[i]

+ b.ht*ht[i] + b.ui*ui[i] + b.ftv*ftv[i]

26

Likelihood function for each data point

low[i] ~ dbern(p[i])

}

alpha ~ dnorm(0.0,1.0E-2) # Prior for intercept

b.age ~ dnorm(0.0,1.0E-2) # Priors for slopes

b.lwt ~ dnorm(0.0,1.0E-2)

b.race2 ~ dnorm(0.0,1.0E-2)

b.race3 ~ dnorm(0.0,1.0E-2)

b.smoke ~ dnorm(0.0,1.0E-2)

b.ptl ~ dnorm(0.0,1.0E-2)

b.ht ~ dnorm(0.0,1.0E-2)

b.ui ~ dnorm(0.0,1.0E-2)

b.ftv ~ dnorm(0.0,1.0E-2)

Now to calculate the odds ratios for various functions of age

OR per decade change in age

or.age10 <- exp(10*b.age)

OR for smoke

or.smoke <- exp(b.smoke)

Predict rate for 40 year old, with lwt, smoker and ht

pred.age20 <- exp(alpha + b.age*40 + b.lwt + b.smoke + b.ht)

/(1+ exp(alpha + b.age*40 + b.lwt + b.smoke + b.ht))

}

Inits

list(alpha = 0, b.age=0, b.lwt=0, b.race2=0, b.race3=0,

b.smoke=0, b.ptl=0, b.ht=0)

Data

low[] age[] lwt[] race2[] race3[] smoke[] ptl[] ht[] ui[] ftv[]

27

0 19 182 1 0 0 0 0 1 0

0 33 155 0 1 0 0 0 0 1

0 20 105 0 0 1 0 0 0 1

0 21 108 0 0 1 0 0 1 1

0 18 107 0 0 1 0 0 1 0

0 21 124 0 1 0 0 0 0 0

0 22 118 0 0 0 0 0 0 1

0 17 103 0 1 0 0 0 0 1

0 29 123 0 0 1 0 0 0 1

0 26 113 0 0 1 0 0 0 0

..............etc........................

END

Note: Compulsory blank line above after END statement.

Results

node mean sd MC error 2.5% median 97.5% start sample

alpha 0.7015 1.272 0.06921 -1.659 0.6785 3.368 1001 20000

b.age -0.02903 0.04015 0.001827 -0.1112 -0.02705 0.0462 1001 20000

b.ftv -0.07864 0.3802 0.00588 -0.8317 -0.0774 0.6678 1001 20000

b.ht 1.964 0.7269 0.01085 0.5814 1.951 3.447 1001 20000

b.lwt -0.01705 0.00689 3.053E-4 -0.03086 -0.017 -0.00379 1001 20000

b.ptl 0.5933 0.3651 0.00421 -0.1112 0.5897 1.327 1001 20000

b.race2 1.313 0.5474 0.006877 0.2388 1.308 2.402 1001 20000

b.race3 0.8732 0.4706 0.01131 -0.04335 0.8692 1.822 1001 20000

b.smoke 0.9452 0.4286 0.008723 0.1257 0.942 1.798 1001 20000

b.ui 0.7688 0.4802 0.005109 -0.173 0.7688 1.714 1001 20000

or.age10 0.8096 0.3299 0.01425 0.3288 0.763 1.587 1001 20000

or.smoke 2.825 1.307 0.02651 1.134 2.565 6.035 1001 20000

pred 0.8559 0.163 0.005065 0.3824 0.9182 0.9956 1001 20000

Results similar to frequentist results previously seen, differences mostly owing
to some coding changes.

