
Basic Elements of Bayesian Analysis

The basic elements in a “full” Bayesian analysis are:

1. The parameter of interest, say θ. Note that this is completely general, since θ
may be vector valued. So θ might be a binomial parameter, or the mean and
variance from a Normal distribution, or an odds ratio, or a set of regression
coefficients, etc. The parameter of interest is sometimes usefully thought of
as the “true state of nature”.

2. The prior distribution of θ, f(θ). This prior distrubution summarizes what
is known about θ before the experiment is carried out. It is “subjective”, so
may vary from investigator to investigator.

3. The likelihood function, f(x|θ). The likelihood function provides the distri-
bution of the data, x, given the parameter value θ. So it may be the binomial
likelihood, a normal likelihood, a likelihood from a regression equation with
associated normal residual variance, etc.

4. The posterior distribution, f(θ|x). The posterior distribution summarizes
the information in the data, x, together with the information in the prior
distribution, f(θ). Thus, it summarizes what is known about the parameter
of interest θ after the data are collected.

5. Bayes Theorem. This theorem relates the above quantities:

posterior distribution =
likelihood of the data × prior distribution

a normalizing constant
,

or

f(θ|x) =
f(x|θ)× f(θ)∫
f(x|θ)× f(θ)dθ,

or, forgetting about the normalizing constant,

f(θ|x) ∝ f(x|θ)× f(θ).

Thus we “update” the prior distribution to a posterior distribution after
seeing the data via Bayes Theorem.

6. The action, a. The action is the decision or action that is taken after the
analysis is completed. For example, one may decide to treat a patient with
Drug 1 or Drug 2, depending on the data collected in a clinical trial. Thus
our action will either be to use Drug 1 (so that a = 1) or Drug 2 (so that
a = 2).
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7. The loss function, L(θ, a). Each time we choose an action, there is some loss
we incur, which depends on what the true state of nature is, and what action
we decide to take. For example, if the true state of nature is that Drug 1 is in
fact superior to Drug 2, then choosing action a = 1 will incur a smaller loss
than choosing a = 2. Now, the usual problem is that we do not know the true
state of nature, we only have data that lets us make probabilistic statements
about it (ie, we have a posterior distribution for θ, but do not usually know
the exact value of θ). Also, we rarely make decisions before seeing the data,
so that in general, a = a(x) is a function of the data. Note that while we
will refer to these as “losses”, we could equally well use “gains”.

8. Expected Bayes Loss (Bayes Risk): We do not know the true value of θ, but
we do have a posterior distribution once the data are known, f(θ|x). Hence,
to make a “coherent” Bayesian decision, we minimize the Expected Bayesian
Loss, defined by:

EBL =
∫
L(θ, a(x))f(θ|x)dθ

In other words, we choose the action a(x) such that the EBL is minimized.

The first five elements in the above list comprise a non-decision theoretic
Bayesian approach to statistical inference. This type of analysis (ie, non-decision
theoretic) is what most of us are used to seeing in the medical literature. However,
many Bayesians argue that the main reason we carry out any statistical analyses
is to help in making decisions, so that elements 6, 7, and 8 are crucial. There is
little doubt that we will see more such analyses in the near future, but it remains
to be seen how popular the decision theoretic framework will become in medicine.
The main problem is to specify the loss functions, since there are so many possible
consequences (main outcomes, side-effects, costs, etc.) to medical decisions, and
it is difficult to combine these into a single loss function. My guess is that much
work will have to be done on developing loss functions before the decision theoretic
approach becomes mainstream. This course, therefore, will focus on elements 1
through 5. Nevertheless, for completeness, today we will look at an example using
loss functions in some detail.
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An Example Using A Loss Function

Loss functions can take on many different forms, but there are at least two basic
types:

Mathematical loss functions: Rather generic, used for selecting the best esti-
mator in certain ”classes” of problems. Used for inferential purposes, not
necessarily tied to detailed substantive decision problems. Typical example
is “squared error loss”, where the further an estimate is likely to be from its
true value, the larger the loss will be.

Substantive loss functions: Non-generic and non-generalizable, tied to a spe-
cific real decision problem that needs to be solved.

We will now see an example of the first type. The second type are difficult to real-
istically implement in medicine, and more work is required before the application
becomes routine.

Squared Error Loss - A generic mathematical loss function

Suppose we want to estimate a normal mean with known variance (arbitrary, so
say σ = σ2 = 1). Suppose we have data of sample size n = 10

x1, x2, . . . , x10 ∼ N(µ, σ2 = 1)

Suppose we take a normal prior on µ, N(0, σ2 = 100). Let our estimator be denoted
by a (so that our action is the estimate we will choose for µ). Also suppose that
our loss function is “squared error loss”, that is,

L(µ, a) = (a− µ)2

So, the further our estimate is from the true (but unknown) µ, the larger our loss,
and we sqaure the difference to construct a loss function L.

To summarize, let’s see exactly what our 8 steps are in this scenario:

1. The parameter of interest is µ, the normal mean.
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2. The prior distribution is N(θ = 0, τ 2 = 100). Note that θ is the prior mean,
and τ is the prior SD so that τ 2 is the prior variance.

3. The likelihood function is, as usual for normally distributed data when σ = 1,

f(x1, . . . , xn|µ, σ2 = 1) =
n∏
i=1

1√
2π

exp
(
−1

2
(xi − µ)2

)

4. Suppose that the mean of the observed data is 2, i.e., x = 2. The posterior
distribution (as seen in EPIB-607 or EPIB-613, or, if not, in a few classes)
is again normally distributed

µ ∼ N

(
A× θ +B × x, τ 2σ2

nτ 2 + σ2

)

where

A = σ2/n
τ2+σ2/n

12/10
100+1/10

= 0.00099901

B = τ2

τ2+σ2/n
=0.999001

n = 10
σ = 1
τ =
√

100 = 10
θ = 0, and
x = 2

Hence the posterior distribution is f(µ|x) = µ ∼ N(1.998002, 0.0999001).
As expected, the posterior density concentrates around the observed mean
2, since the prior distribution was very weak. There is only small “move-
ment” back towards the prior mean of zero.

5. Bayes Theorem. This theorem relates the above quantities, which we have
already seen.

6. The action, a, will be our choice of estimator of µ, our inferential target
parameter.

7. The loss function is L(µ, a) = (a− µ)2.

8. Expected Bayes Loss (Bayes Risk) is

EBL =
∫
L(µ, a(x))f(µ|x)dθ

In other words, we average the loss over all possible values of µ, where the
average is over the posterior density of µ. This average is minimized for
some choice of a (i.e., some estimate of µ, and the challenge is to find that
estimate.
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technical details are omitted (complex integration), but it can be shown
that the estimate that minimizes the EBL over the posterior density is the
posterior mean, 1.998002. Thus, this is our best estimate under squared
error loss function. It should not be too surprising the the posterior mean
is a good estimate, but maybe not obvious that it is the absolutely optimal
estimate.
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