
1

Introduction to Regression

“Regression” is a generic term for statistical methods that attempt to fit a
model to data, in order to quantify the relationship between the dependent
(outcome) variable and the predictor (independent) variable(s).

Assuming it fits the data reasonable well, the estimated model may then be
used either to merely describe the relationship between the two groups of
variables (explanatory), or to predict new values (prediction).

There are many types of regression models, here are a few most common to
epidemiology:

Simple Linear Regression: Straight line regression between an outcome
variable (Y ) and a single explanatory or predictor variable (X).

E(Y ) = α + β ×X

Multiple Linear Regression: Same as Simple Linear Regression, but now
with possibly multiple explanatory or predictor variables.

E(Y ) = α + β1 ×X1 + β2 ×X2 + β3 ×X3 + . . .

A special case is polynomial regression.

E(Y ) = α + β1 ×X + β2 ×X2 + β3 ×X3 + . . .

Generalized Linear Model: Same as Multiple Linear Regression, but with
a possibly transformed Y variable. This introduces considerable flexibil-
ity, as non-linear and non-normal situations can be easily handled.

G(E(Y )) = α + β1 ×X1 + β2 ×X2 + β3 ×X3 + . . .

In general, the transformation function G(Y ) can take any form, but a
few forms are especially common:

• Taking G(Y ) = logit(Y ) describes a logistic regression model:

log(
E(Y )

1− E(Y )
) = α + β1 ×X1 + β2 ×X2 + β3 ×X3 + . . .
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• Taking G(Y ) = log(Y ) is also very common, leading to Poisson
regression for count data, and other so called “log-linear” models.

log(E(Y )) = α + β1 ×X1 + β2 ×X2 + β3 ×X3 + . . .

Multivariate Generalized Linear Model: Same as Generalized Linear Re-
gression, but with a possibly multivariate Y variable, i.e., Y is a vector,
with Y = (Y1, Y2, . . . , Ym). This allows several related outcomes to be
modeled jointly. The β parameters become vectors in this case.

G(E(Y1, Y2, . . . , Ym)) = α + β1 ×X1 + β2 ×X2 + β3 ×X3 + . . .

This course focusses on linear and logistic regression.
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Simple Linear Regression

Model: Y = α + βX + “error”

or equivalently: E(Y ) = α + βX

Assumptions:

• The “errors” (also known as “residuals”) are independent N(0, σ2)

• σ2 is constant throughout the range

• Relationship is linear between X and Y , i.e., relation is a straight line.
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Recall that the likelihood function of a model gives the likelihood that the
data would be observed, given the unknown parameters, α, β, σ2, in this case.
The form of the linear relationship, together with the normality assumption
for the errors, implies the following, for each data point included in the data
set, i = 1, 2 . . . , n:

Yi ∼ N(α + βXi, σ
2)

Recall also the form of the normal distribution:

f(z) =
1√
2πσ

exp

(
−1

2

(
z − µ
σ

)2
)

Thus, the likelihood function contribution from a single (Xi, Yi) pair is:

like(Yi) =
1√
2πσ

exp

−1

2

(
Yi − (α + βXi)

σ

)2


Since each data pair (Xi, Yi) is independent of the others (another common
assumption), and since independent probabilities multiply (basic probability
rule), we have the following likelihood for our model:

like(Y ) =
n∏
i=1

 1√
2πσ

exp

−1

2

(
Yi − (α + βXi)

σ

)2


Frequentist inference typically proceeds by maximizing this likelihood to find
estimates of α, β and σ2. We will omit the details, but here is a quick summary
of the steps involved:

1. Take the logarithm of the likelihood function. Recall that the logarithm
of a function will have the same maxima as the function itself. Because
of the exponential term, the log is easier to maximize.

2. To find the values of α, β and σ2 that maximize the logarithm of the
likelihood, take the (partial) derivatives with respect to α, β and σ2,
and set these equations to zero. Solving this system of equations (3
equations in 3 unknowns) gives the maximum likelihood estimators for
our unknown parameters.
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If the above steps are followed, we find the following are the maximum likeli-
hood estimates:

• a = α̂ = Y − bX

• b = β̂ =
∑n

i=1(Xi−X)(Yi−Y )∑n
i=1(Xi−X)2

• σ̂2 =
∑n
i=1

(Yi−Ŷi)2
n

where ŷi = α̂ + β̂ × xi is the predicted outcome for the ith subject.

Statistical estimators have various desirable properties associated with them,
such as unbiasedness and minimum variance. It turns out that all of the above
maximum likelihood estimators are asymptotically (as sample size n goes to
infinity) unbiased and minimum variance, but for finite sample sizes, while α̂
and β̂ are unbiased but σ̂2 is not unbiased. Therefore, it is more common to
use an unbiased (but not maximum likelihood) estimator for σ2:

σ̂2 =
n∑
i=1

(Yi − Ŷi)2

n− 2

Inference for Regression Parameters

Recall that confidence intervals are usually of the form:

estimate ±
{
z
t

}
s.d.(estimate)

For example, we have seen

x±
{
z
t

}
s.d.(x)
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or

x±
{
z
t

}
s or σ√

n

The same basic formulation is followed for inferences for regression parameters,
such as α, β, or even when making predictions for future observations,

ŷi = α̂ + β̂ × xi = a+ b× xi

Since we already have point estimates for each of these items, all we are missing
are the standard deviations, and what values of t or z to use.

Standard Error (Standard Deviation) Formulae

SE(α̂) = SE(a) = σ

√√√√ 1

n
+

x2∑n
i=1 (xi − x)2

SE(β̂) = SE(b) =
σ√∑n

i=1 (xi − x)2

SE(predicted MEAN at x) = σ

√√√√ 1

n
+

(x− x)2∑n
i=1 (xi − x)2

SE(predicted INDIVIDUAL at x) = σ

√√√√1 +
1

n
+

(x− x)2∑n
i=1 (xi − x)2

Problem: We usually do not know σ.

Solution: Estimate σ by
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σ̂ =

√
Residual sum of squares (RSS)

n− 2

=

√∑n
i=1(yi − predicted(yi))2

n− 2

=

√∑n
i=1(yi − [a+ b× xi])2

n− 2

Confidence Intervals and Tests

Now that we know the standard errors, confidence intervals are easy to com-
pute:

• CI for α: α̂± t1−α/2,n−2 × SE(α̂)

• CI for β: β̂ ± t1−α/2,n−2 × SE(β̂)

• CI for predicted mean:

ŷi ± t1−α/2,n−2 × SE(predicted MEAN at x)

• CI for predicted individual:

ŷi ± t1−α/2,n−2 × SE(predicted INDIVIDUAL at x)

Even though we will rarely use hypothesis tests after we know the CIs, for
completeness, tests of hypotheses about α and β can be constructed as follows:

To test H0 : α = α0, use the fact that

α̂− α0

SE(α̂)
∼ tn−2,

and similarly for β:

To test H0 : β = β0, use the fact that

β̂ − β0
SE(β̂)

∼ tn−2.
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Residuals and Assumptions of Simple Linear

Regression

Recall the three main assumptions of simple linear regression:

• “error” is N(0, σ2)

• σ2 is constant throughout the range

• Relationship is linear between X and Y , i.e., relation is a straight line.

We can roughly verify if these assumptions hold true by looking at patterns
of residuals. Let’s look at three examples:
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In the first case, all assumptions seem satisfied, but in the second graph, the
relationship does not seem linear, and in the third, the variance is not constant
throughout the range.
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Example of Simple Linear Regression

We continue with an example: The data below describe the tooth decay ex-
perience of 7257 children 12–14 years old in 21 communities according to the
fluoride concentration of their public water supply. DMF denotes “Decayed,
Missing or Filled.”

Community DMF per 100 Fluoride Concentration
Number children in ppm

1 236 1.9
2 246 2.6
3 252 1.8
4 258 1.2
5 281 1.2
6 303 1.2
7 323 1.3
8 343 0.9
9 412 0.6

10 444 0.5
11 556 0.4
12 652 0.3
13 673 0.0
14 703 0.2
15 706 0.1
16 722 0.0
17 733 0.2
18 772 0.1
19 810 0.0
20 823 0.1
21 1027 0.1

A typical simple linear regression analysis will follow these steps:

(a) Draw a rough scatter plot to visually examine the association between
DMF teeth and fluoride.
(b) Calculate the parameters of regression line of DMF teeth on fluoride con-
centration.
(c) Estimate of σ, the residual standard deviation, and thus calculate 95%
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confidence intervals for the intercept and slope parameters. With these esti-
mates available, clinically interpret the results.
(d) Make predictions, for example for the average number of DMF teeth there
would be in a community with a fluoride concentration of 1.5 ppm.
(e) Calculate a 95% confidence interval around your answer in (d).
(f) Examine the graph of the residuals. Does a linear regression seem appro-
priate?

We will now go through each of these steps:

(a) Using the following R program with results:

> dmf.data <- data.frame(

dmf = c( 236, 246, 252, 258, 281, 303, 323, 343, 412, 444, 556, 652,

673, 703, 706, 722, 733, 772, 810, 823, 1027),

flor = c( 1.9, 2.6, 1.8, 1.2, 1.2, 1.2, 1.3, 0.9, 0.6, 0.5, 0.4, 0.3,

0.0, 0.2, 0.1, 0.0, 0.2, 0.1, 0.0, 0.1, 0.1))

> dmf.data # just to look at the data set

dmf flor

1 236 1.9

2 246 2.6

3 252 1.8

4 258 1.2

5 281 1.2

6 303 1.2

7 323 1.3

8 343 0.9

9 412 0.6

10 444 0.5

11 556 0.4

12 652 0.3

13 673 0.0

14 703 0.2

15 706 0.1

16 722 0.0

17 733 0.2

18 772 0.1

19 810 0.0

20 823 0.1

21 1027 0.1
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> attach(dmf.data) # For convenience, to make the dmf and flor variables

> # available outside the data.frame

>

> plot(flor, dmf) # Create a scatter plot

(b) Again we can use R, obtaining:

> regression.out<-lm(dmf~flor)

> summary(regression.out)

Call:

lm(formula = dmf ~ flor)

Residuals:

Min 1Q Median 3Q Max

-152.825 -94.305 1.575 56.495 322.575

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 732.34 38.55 18.996 8.1e-14 ***

flor -279.20 38.18 -7.312 6.2e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 127.3 on 19 degrees of freedom

Multiple R-Squared: 0.7378, Adjusted R-squared: 0.724

F-statistic: 53.47 on 1 and 19 DF, p-value: 6.199e-07

(c) From the printout above, the residual standard error is σ = 127.3.

Note that the R summary does not provide confidence intervals, although there
is a separate function called confint that will produce confidence intervals
following just about any regression analysis.

> confint(regression.out)

2.5 % 97.5 %

(Intercept) 651.6540 813.0350

flor -359.1138 -199.2855

It is instructive to see how these are done by hand as well: We have seen
the formulae for CIs above, and R provides all of the info needed by these
formulae, so that confidence intervals can be obtained “manually”. This can
be done on a hand calculator, but of course it is easier to do this in R itself:

The printout above gives us the three numbers we need to construct the con-
fidence interval, namely the coefficient estimates, the standard errors for each
parameter, and the degrees of freedom. The same three numbers are also
needed for hypothesis tests about regression coefficients, although these will
be used only rarely in this course (and, of course, the summary output above
already gives you the p-values!).

Note that if we want a 95% confidence interval, the critical value for 19 degrees
for freedom is given by

> qt(0.975, df= 19)

[1] 2.093024
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So, we calculate:

> 732.34 + c(-1, 1) * qt(0.975, df= 19) * 38.55

[1] 651.6539 813.0261

as the 95% CI for the intercept α, and

> -279.20 + c(-1, 1) * qt(0.975, df= 19)* 38.18

[1] -359.1117 -199.2883

as the CI for the slope β.

Clinical interpretation: At a 0 concentration level for fluoride, “we are confi-
dent that” the true DMF level is between 651.7 and 813.0. For each rise of
one unit in fluoride, “we are confident that” the DMF level decreases by an
amount somewhere between -359.1 and -199.3.

Because we will be calculating confidence intervals so often in this course, it is
worthwhile to spend a few minutes to automate the above process, all in one
function. First, notice this about how regression in R works:

> summary(regression.out)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 732.3445 38.55211 18.996224 8.103719e-14

flor -279.1996 38.18119 -7.312492 6.198645e-07

> summary(regression.out)$coefficients[1:8]

[1] 7.323445e+02 -2.791996e+02 3.855211e+01 3.818119e+01

[5] 1.899622e+01 -7.312492e+00 8.103719e-14 6.198645e-07

So, of interest to us are coefficients [1], [2], [3], and [4], corresponding to the
coefficient values for α and β, and their standard errors. Thus, we can create
the following new function in R:

regression.with.ci <- function(regress.out, level=0.95)

{
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################################################################

# #

# This function takes the output from an lm #

# (linear model) command in R and provides not #

# only the usual output from the summary command, but #

# adds confidence intervals for intercept and slope. #

# #

################################################################

usual.output <- summary(regress.out)

t.quantile <- qt(1-(1-level)/2, df=regress.out$df)

intercept.ci <- summary(regress.out)$coefficients[1]

+ c(-1, 1) * t.quantile * summary(regress.out)$coefficients[3]

slope.ci <- summary(regress.out)$coefficients[2]

+ c(-1, 1) * t.quantile * summary(regress.out)$coefficients[4]

output <- list(regression.table = usual.output, intercept.ci = intercept.ci,

slope.ci = slope.ci)

return(output)

}

Note that this returns exactly the same results as we calculated previously,
either “manually” or using confint:

> regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = dmf ~ flor)

Residuals:

Min 1Q Median 3Q Max

-152.825 -94.305 1.575 56.495 322.575

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 732.34 38.55 18.996 8.1e-14 ***

flor -279.20 38.18 -7.312 6.2e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Residual standard error: 127.3 on 19 degrees of freedom

Multiple R-Squared: 0.7378, Adjusted R-squared: 0.724

F-statistic: 53.47 on 1 and 19 DF, p-value: 6.199e-07

$intercept.ci

[1] 651.654 813.035

$slope.ci

[1] -359.1138 -199.2855

Suggestion: Cut and paste this function into your version of R, to have this
available for future analyses (or wait for the more general multivariate version
discussed in the next lecture).

(d) Again, we have enough information in the R outputs to plug into the
prediction formulae given above, but it is very easy to make predictions in R.
First, fitted values are immediately available for all X values (fluoride, in this
case), once a regression is run:

> flor

[1] 1.9 2.6 1.8 1.2 1.2 1.2 1.3 0.9 0.6 0.5 0.4 0.3 0.0

0.2 0.1 0.0 0.2 0.1 0.0 0.1 0.1

> regression.out$fitted.values

1 2 3 4 5 6 7

201.865194 6.425445 229.785158 397.304942 397.304942 397.304942 369.384978

8 9 10 11 12 13 14

481.064834 564.824726 592.744690 620.664654 648.584618 732.344510 676.504582

15 16 17 18 19 20 21

704.424546 732.344510 676.504582 704.424546 732.344510 704.424546 704.424546

However, we notice that the value 1.5 is not on the original list, so we use:

> predict.lm(regression.out, newdata=data.frame(flor=1.5))

[1] 313.5450

(e) We can also get confidence intervals for these predictions:
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> predict.lm(regression.out, newdata=data.frame(flor=1.5), interval="prediction")

fit lwr upr

[1,] 313.5450 33.39467 593.6954

> predict.lm(regression.out, newdata=data.frame(flor=1.5), interval="confidence")

fit lwr upr

[1,] 313.5450 227.1223 399.9678

The first interval is a prediction for the “next town” with a fluoride concen-
tration of 1.5, while the second interval is the confidence interval for the mean
prediction (i.e., for an infinite number of towns, each with value 1.5 . . . note
that second interval is much smaller than first).

(e) The residuals are always immediately available:

> regression.out$residuals

1 2 3 4 5 6 7

34.134806 239.574555 22.214842 -139.304942 -116.304942 -94.304942 -46.384978

8 9 10 11 12 13 14

-138.064834 -152.824726 -148.744690 -64.664654 3.415382 -59.344510 26.495418

15 16 17 18 19 20 21

1.575454 -10.344510 56.495418 67.575454 77.655490 118.575454 322.575454

so we can graph them:

> hist(regression.out$residuals)

> plot(dmf.data$flor, regression.out$residuals)

> abline(h=0)
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Note that the fit is actually quite poor, the function is not linear. A quadratic
model (i.e., with a flor squared term) may fit better, and we will return to this
example later.


