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Univariate Logistic Regression

Basic Ideas

Motivation by example: Suppose we wish to examine the relationship between
age and coronary heart disease (CHD). Some data relating CHD and age are (taken
from Chapter 1 of Hosmer book):

Age CHD Age CHD Age CHD Age CHD
20 0 35 0 44 1 55 1
23 0 35 0 44 1 56 1
24 0 36 0 45 0 56 1
25 0 36 1 45 1 56 1
25 1 36 0 46 0 57 0
26 0 37 0 46 1 57 0
26 0 37 1 47 0 57 1
28 0 37 0 47 0 57 1
28 0 38 0 47 1 57 1
29 0 38 0 48 0 57 1
30 0 39 0 48 1 58 0
30 0 39 1 48 1 58 1
30 0 40 0 49 0 58 1
30 0 40 1 49 0 59 1
30 0 41 0 49 1 59 1
30 1 41 0 50 0 60 0
32 0 42 0 50 1 60 1
32 0 42 0 51 0 61 1
33 0 42 0 52 0 62 1
33 0 42 1 52 1 62 1
34 0 43 0 53 1 63 1
34 0 43 0 53 1 64 0
34 1 43 1 54 1 64 1
34 0 44 0 55 0 65 1
34 0 44 0 55 1 69 1

While age is a continuous variable, CHD is not, so that the linear regression methods
we have used so far are not appropriate.
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To see why linear regression is not appropriate, let’s examine a scatter plot.

# Enter the data

> age <- c( 20, 23, 24, 25, 25, 26, 26, 28, 28, 29, 30, 30, 30,

30, 30, 30, 32, 32, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36,

37, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 42, 42, 43, 43,

43, 44, 44, 44, 44, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49,

49, 50, 50, 51, 52, 52, 53, 53, 54, 55, 55, 55, 56, 56, 56, 57, 57,

57, 57, 57, 57, 58, 58, 58, 59, 59, 60, 60, 61, 62, 62, 63, 64, 64,

65, 69)

> CHD <- c( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1,

0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0,

0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0,

1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1,

1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1)

# Scatter plot

> plot(age, CHD)
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While we can see some patterns using this scatter plot (for example, notice that there
are increasingly more points on top compared to on bottom as age increases), it is
far from optimal.

One way around this may be to group age by decades, say, and look at CHD rates
within these decades.

# Prepare age decade data, count how many we have in each decade:

# Create a blank variable to be filled in later

> age.decade <- rep(NA, 5)

> for (i in 1:5) { age.decade[i]

<- length(age[age > ( 10*(i+1) -1) & age < ( 10*(i+2))])}

> age.decade

[1] 10 27 28 25 10

# Calculate the corresponding percentages from the CHD variable:

# Create a blank variable to be filled in later

> chd.prop <- rep(NA, 5)

# Create an index to sum over, based on sums in age.decade

> index.age <- c(0, 10, 37, 65, 90, 100)

> for (i in 1:5) { chd.prop[i]

<- sum(CHD[(index.age[i]+1):index.age[i+1]])/age.decade[i] }

> chd.prop

[1] 0.1000000 0.1851852 0.3928571 0.7200000 0.8000000

# Create a scatter plot between age as an decade and chd.prop

> plot(2:6, chd.prop, type="b")
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This plot is more usable than the first scatter plot, but is wasteful of information, as
detailed ages are lost. Still it indicates a general trend that CHD rates increase with
age, and is a useful type of plot for descriptive purposes when beginning to model.

Looking at the plot may also remind us of the shape of the inverse logit function.

Recall that the logit function is defined by

f(x) = logit(x) = log
(

x

1− x

)
with graph
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Also recall that the inverse logit function is given by

f(x) = inv.logit(x) =
exp (x)

1 + exp (x)

with graph
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It therefore looks reasonable to use logistic regression to model the effect of age on
CHD rates. In general, logistic regression is a “first-line” model for dichotomous
outcome data, just as linear regression is used for continuous outcomes or Poisson
regression for count outcomes. Other options not discussed in this course includes
probit models.

To use the logistic model, we need to decide what “x” needs to be in the equations
for the logit and inv.logit functions.

The inverse.logit function will give us the probabilities of events (e.g. CHD) we need,
while the logit function will give us the linear function that relates outcomes to the
covariates. In general, the equations are:

Let π(x) represent the probability of an event (e.g. the dependent variable, CHD)
that depends on a covariate (e.g. independent variable, age). Then, using an inv.logit
formulation for modeling the probability, we have:

π(X) =
eβ0+β1X

1 + eβ0+β1X
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To obtain the logit function from this, we calculate:

logit[π(x)] = ln

[
π(X)

1− π(X)

]

= ln

 eβ0+β1X

1+eβ0+β1X

1− eβ0+β1X

1+eβ0+β1X



= ln

 eβ0+β1X

1+eβ0+β1X

1
1+eβ0+β1X


= ln

[
eβ0+β1X

]
= β0 + β1X

To summarize, the two basic equations of logistic regression are:

π(X) =
eβ0+β1X

1 + eβ0+β1X

which gives the probabilities of outcome events given the covariate value X, and

logit[π(X)] = β0 + β1X

which shows that we are really dealing with a standard linear regression model,
once we transform the dichotomous outcome by the logit transform. This transform
changes the range of π(x) from 0 to 1 to −∞ to +∞, as usual for linear regression.

Similar to linear regression, the above equation represents the mean or expected prob-
ability, π(X), given X. As this is an average, we expect an error. Again analogously
to linear regression, we have an error distribution, but rather than a normal distribu-
tion, we use a binomial distribution, to match the dichotomous outcomes . The mean
of the binomial distribution is π(X), and the variance is π(X)(1− π(X)) (recall the
properties of the binomial distribution).
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Interpretation of the coefficients β0 and β1 in logistic

regression

Interpretation of the intercept, β0: If X = 0, then we have

π(x) =
eβ0

1 + eβ0

Therefore, β0 sets the event rate, through the above function, when the covariate
value is equal to zero.

For example, if β0 = 0, then

π(x) =
eβ0

1 + eβ0
=

e0

1 + e0
=

1

1 + 1
= 0.5

So, positive values of β0 give “probability intercepts” greater than 0.5, while
negative values of β0 give “probability intercepts” less than 0.5

Interpretation of the slope, β1: Consider the effect on the probability of an event
as X changes by one unit. Suppose in particular that X changes from X0 to
X0 + 1.

When X = X0, we have:

logit[π(X0)] = β0 + β1X0

On the other hand, when X = X0 + 1, we have:

logit[π(X0 + 1)] = β0 + β1(X0 + 1)

Subtracting the above two terms, we have:

logit[π(X0 + 1)]− logit[π(X0)] = β0 + β1(X0 + 1)− β0 + β1(X0) = β1

From the definition of the logit function, we have:

logit[π(X0 + 1)]− logit[π(X0)] = β1

log[
π(X0 + 1)

1− π(X0 + 1)
]− log[

π(X0)

1− π(X0)
] = β1

log

 π(X0+1)
1−π(X0+1)

π(X0)
1−π(X0)

 = β1

log [OR] = β1
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The steps above follow from the definition of the logit function and the definition
of an odds ratio. The term OR represents the odds ratio for a change of one
unit in the independent X variable.

Taking the exponential of both sides of the equation, we get:

exp(log [OR]) = exp(β1)

which implies

OR = exp(β1) = eβ1

Basic result:

The coefficient β1 is such that eβ1 is the odds ratio for a unit change
in X.

If we change X by two units, then the OR for a two unit change is e2β1 =
(
eβ1

)2
,

and so on. In general, for a change of z units, the OR = ezβ1 =
(
eβ1

)z
.

Estimating β0 and β1 given a data set

As discussed above, the distribution associated with logistic regression is the binomial.
For a single subject with covariate value xi, the likelihood function is:

π(xi)
yi

(1− π(xi))
1−yi

For n subjects, the likelihood function is:

n∏
i=1

π(xi)
yi

(1− π(xi))
1−yi

To derive estimates of the unknown parameters β0 and β1, we need to maximize this
likelihood function. We follow the usual steps, including taking the logarithm of the
likelihood function, taking partial derivatives with respect to β0 and β1, and setting
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these two equations equal to zero, to form a set of two equations in two unknowns.
Solving this system of equations gives the maximum likelihood equations.

We omit the details here (no easy closed form formulae), and will rely on statistical
software to find the maximum likelihood estimates for us.

Inferences typically rely on SE formulae for confidence intervals, and likelihood ratio
testing for hypothesis tests. Again, we will omit the details, and rely on statistical
software.

Example: The effect of age of CHD event rates

Let’s see how we can draw inferences about logistic regression parameters using R:

> output <- glm(CHD ~ age, family=binomial)

> summary(output)

Call:

glm(formula = CHD ~ age, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9718 -0.8456 -0.4576 0.8253 2.2859

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***

age 0.11092 0.02406 4.610 4.02e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom

Residual deviance: 107.35 on 98 degrees of freedom

AIC: 111.35

Number of Fisher Scoring iterations: 4

Once again, the standard R glm function does not provide confidence intervals by
default, so we will create our own function:
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logistic.regression.with.ci <- function(regress.out, level=0.95)

{

################################################################

# #

# This function takes the output from a glm #

# (logistic model) command in R and provides not #

# only the usual output from the summary command, but #

# adds confidence intervals for all coefficients. #

# #

# This version accommodates multiple regression parameters #

# #

################################################################

usual.output <- summary(regress.out)

z.quantile <- qnorm(1-(1-level)/2)

number.vars <- length(regress.out$coefficients)

temp.store.result <- matrix(rep(NA, number.vars*2), nrow=number.vars)

for(i in 1:number.vars)

{

temp.store.result[i,] <- summary(regress.out)$coefficients[i] +

c(-1, 1) * z.quantile * summary(regress.out)$coefficients[i+number.vars]

}

intercept.ci <- temp.store.result[1,]

slopes.ci <- temp.store.result[-1,]

output <- list(regression.table = usual.output, intercept.ci = intercept.ci,

slopes.ci = slopes.ci)

return(output)

}

# Test out the function on our output:

> logistic.regression.with.ci(output)

$regression.table

Call:

glm(formula = CHD ~ age, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9718 -0.8456 -0.4576 0.8253 2.2859

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***

age 0.11092 0.02406 4.610 4.02e-06 ***

---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom

Residual deviance: 107.35 on 98 degrees of freedom

AIC: 111.35

Number of Fisher Scoring iterations: 4

$intercept.ci

[1] -7.531374 -3.087533

$slopes.ci

[1] 0.06376477 0.15807752

But this is not really quite enough, because we are usually interested not only in the
coefficients, but also the odds ratios. So, we add an extra line to the function:

logistic.regression.or.ci <- function(regress.out, level=0.95)

{

################################################################

# #

# This function takes the output from a glm #

# (logistic model) command in R and provides not #

# only the usual output from the summary command, but #

# adds confidence intervals for all coefficients and OR’s. #

# #

# This version accommodates multiple regression parameters #

# #

################################################################

usual.output <- summary(regress.out)

z.quantile <- qnorm(1-(1-level)/2)

number.vars <- length(regress.out$coefficients)

OR <- exp(regress.out$coefficients[-1])

temp.store.result <- matrix(rep(NA, number.vars*2), nrow=number.vars)

for(i in 1:number.vars)

{

temp.store.result[i,] <- summary(regress.out)$coefficients[i] +

c(-1, 1) * z.quantile * summary(regress.out)$coefficients[i+number.vars]

}

intercept.ci <- temp.store.result[1,]

slopes.ci <- temp.store.result[-1,]
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OR.ci <- exp(slopes.ci)

output <- list(regression.table = usual.output, intercept.ci = intercept.ci,

slopes.ci = slopes.ci, OR=OR, OR.ci = OR.ci)

return(output)

}

# Run the function for our data:

> logistic.regression.or.ci(output)

$regression.table

Call:

glm(formula = CHD ~ age, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9718 -0.8456 -0.4576 0.8253 2.2859

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***

age 0.11092 0.02406 4.610 4.02e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom

Residual deviance: 107.35 on 98 degrees of freedom

AIC: 111.35

Number of Fisher Scoring iterations: 4

$intercept.ci

[1] -7.531374 -3.087533

$slopes.ci

[1] 0.06376477 0.15807752

$OR

age

1.117307

$OR.ci
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[1] 1.065842 1.171257

So, for each change of one year in age, there is an odds ratio of 1.117, with 95% CI
(1.066, 1.171). So, for a ten year change in age, for example, we raise each of these
values to the power of ten, getting an OR per 10 year change of 1.11730710 = 3.03,
with 95% CI of (1.89, 4.86). This is clearly a very clinically important effect.

Predictions from logistic regression models

As with linear regression, once we fit a logistic regression model, we can make predic-
tions using the fitted equation. To get point estimates, we simply need to plug the
relevant X values into the inv.logit equation, but again we will rely on R:

# First, let’s check what types of outputs are available once

# we have run a logistic regression (which recall we saved

# in the object "output"):

> names(output)

[1] "coefficients" "residuals" "fitted.values" "effects"

[5] "R" "rank" "qr" "family"

[9] "linear.predictors" "deviance" "aic" "null.deviance"

[13] "iter" "weights" "prior.weights" "df.residual"

[17] "df.null" "y" "converged" "boundary"

[21] "model" "call" "formula" "terms"

[25] "data" "offset" "control" "method"

[29] "contrasts" "xlevels"

# See R help on GLM to define all of these, we will see just one here:

# Make predictions for each subject in the data set:

> output$fitted.values

1 2 3 4 5 6 7 8

0.04347876 0.05962145 0.06615278 0.07334379 0.07334379 0.08124847 0.08124847 0.09942218

9 10 11 12 13 14 15 16

0.09942218 0.10980444 0.12112505 0.12112505 0.12112505 0.12112505 0.12112505 0.12112505

17 18 19 20 21 22 23 24

0.14679324 0.14679324 0.16123662 0.16123662 0.17680662 0.17680662 0.17680662 0.17680662

25 26 27 28 29 30 31 32

0.17680662 0.19353324 0.19353324 0.21143583 0.21143583 0.21143583 0.23052110 0.23052110

33 34 35 36 37 38 39 40
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0.23052110 0.25078125 0.25078125 0.27219215 0.27219215 0.29471199 0.29471199 0.31828021

41 42 43 44 45 46 47 48

0.31828021 0.34281708 0.34281708 0.34281708 0.34281708 0.36822381 0.36822381 0.36822381

49 50 51 52 53 54 55 56

0.39438351 0.39438351 0.39438351 0.39438351 0.42116276 0.42116276 0.44841400 0.44841400

57 58 59 60 61 62 63 64

0.47597858 0.47597858 0.47597858 0.50369030 0.50369030 0.50369030 0.53137935 0.53137935

65 66 67 68 69 70 71 72

0.53137935 0.55887652 0.55887652 0.58601724 0.61264546 0.61264546 0.63861714 0.63861714

73 74 75 76 77 78 79 80

0.66380304 0.68809096 0.68809096 0.68809096 0.71138714 0.71138714 0.71138714 0.73361695

81 82 83 84 85 86 87 88

0.73361695 0.73361695 0.73361695 0.73361695 0.73361695 0.75472490 0.75472490 0.75472490

89 90 91 92 93 94 95 96

0.77467399 0.77467399 0.79344462 0.79344462 0.81103299 0.82744940 0.82744940 0.84271622

97 98 99 100

0.85686593 0.85686593 0.86993915 0.91246455

# So plot age versus fitted value for age:

> plot(age, output$fitted.values)

Next, we will extend these methods to more than one independent variable.
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A Note On Study Designs

Random Sampling: So far, we have assumed our data have arisen from a simple
random sample. In this case, logistic regression models and their inferences
follow immediately.

Cohort Studies: Cohort studies typically select subjects to follow at random, and
so are an example of random sampling. We select subjects (and hence their
covariates, like age) at the start of the study, and follow them to see if they
eventually have an event (like CHD). So, as in a random sample, the logistic
regression model and its inferences follow immediately.

Case-Control Studies: Here we select cases and controls first (for example, find
subjects with and without CHD), and the “randomness” is not in the eventual
outcome (CHD), but in what their covariates are (e.g., age). So, this design is
“backwards” from a standard cohort study. Nevertheless, it can be shown that
standard logistic regression models and the usual inferences can be used, the
theory involving two consecutive applications of Bayes’ Theorem. See Chapter
7 of Hosmer and Lemeshow for full details

Matched Studies: Logistic regression can once again be used, but with no intercept,
and with the data being manipulated such that each matched pair becomes a
single data point. The matched pairs are only useful if one of the subjects has an
event, and the other does not. See Chapter 7 of Hosmer and Lemeshow for full
details (this material is beyond the scope of this introductory course). In short,
logistic regression can be used here as well, but for data that are manipulated,
and with no intercept in the model.


