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Course EPIB-621 - Data Analysis for the Health Sciences

Assignment 5

1. Recall again the data set used for assignment 4 called drugfree.txt. To remind
you the variables contained in this data set are described in the table below:

Description Code Variable Name
Age at Enrollment Years age
Beck Depression Score at 0.000-54.000 beck
Admission
IV Drug Use History 1 = Never, ivhx
at Admission 2 = Previous

3 = Recent
Number of Prior Drug 0-40 ndrugtx
Treatments
Subject’s Race 0 = White race

1 = Other
Treatment Randomization 0 = Short treat
Assignment 1 = Long
Remained Drug Free 1 = Remained Drug drug.free
for 12 Months Free

0 = Otherwise

We previously used this data set to crudely investigate confounding, but now that
we have learned about the bic.glm function, we can investigate this use further, as
well as see what final model(s) can be used for best predictions.

(a) Run bic.glm on this data set, and report what variables were selected to be
in the best model. Recall that you need to load the BMA program first, before
running the bic.glm command. Remember also to declare the inhx variable as a
factor before you run the regressions. Report the analysis summary, which includes
the best five models, and the model probabilities associated with each of these five
models.

(b) Output the maximum likelihood estimators from the top 14 models along with
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the SEs from these models. Looking down the columns for each model, do you see
any evidence for confounding? If so, report on which variables may be confounded.

(c) Report your “best” (i.e., model averaged) prediction for someone who is aged
30, has a beck depression score of 10, has a recent history of IV drug use, is white,
no prior drug treatment, and had a short treatment scheme.

2. The risk of a heart attack increases with age, but varies from country to country
depending on local habits. The data set heart.txt provides the age and heart
attack data (heart = yes/no = 1/0). The data are structured such that the first
100 subjects are from country 1, the second 100 are from country 2, and so on,
so that the last 100 are from country 5. Therefore, no country variable needs to
be defined. Use WinBUGS to create a hierarchical logistic regression model. The
first level (individual patient level) regression should depend on a random intercept
coefficient which is different for each country, and a fixed age coefficient, which is
considered as constant across countries. All prior distributions should be normal,
including the hierarchial distribution on the intercepts.

(a) Run this model in WinBUGS, and report the results from all coefficients,
including the random effect (hierarchical) intercepts.

(b) Create lines such as

diff12 <- step(alpha[1]- alpha[2])

diff13 <- step(alpha[1]- alpha[3])

and so on to estimate the probability that one country’s rate (after adjusting for
the effect of age) is different from another country’s rates. Since we have five
countries, you will need to add 10 such lines. Run the program, and report these
probabilities. [To save running time, you can run parts (a) and (b) as one program.]

3. There exists drugs or other treatments that are known to work for some subjects
but not for others. Sometimes the reason for this can be ascertained, but not
always. This can happen, for example, if an as yet undiscovered gene affects
response to the substance. In clinical trials of these substances, any effects are
typically reported as an average over responders and non-responders.

One example of a substance that seems to work for some subjects but not others
is calcium supplementation for reduction in blood pressure; some subjects seem to
respond, some do not. While the reason is not at this time known, we will suppose
that there is an undiscovered gene responsible for this effect.
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Suppose that a multi-centre clinical trial will be carried out to estimate the effect of
calcium supplementation on lowering blood pressure. Two towns will participate,
A and B. Suppose that the gene tends to be present in town A, but not town B.

Download the data file “calcium.txt” from the course web page. [While there, you
might want to also download calcium.missing.txt, which will be used later.]

(a) Using WinBUGS, do a simple linear regression of blood pressure reduction
on calcium intake. Report the average effect of calcium supplements, with 95%
credible interval. Note that once you note the pattern of which subjects come from
which town, you do not need the town variable.

(b) Do separate linear regressions within each town. Compare the effects of calcium
in town A versus town B. Note that you can do all of this within a single WinBUGS
program, by simply looping twice, once over the first 300 subjects, all from town A,
and then over the next 300 subjects, all from town B. By creating a new parameter
such as

beta.calcium.a - beta.calcium.b

you can directly monitor the difference in effects of calcium supplementation be-
tween the two towns.

We will now repeat the analysis of this clinical trial, but using data sets cal-
cium.missing.txt, which contains some missing data.

(c) Using only the first 400 subjects in the database (i.e., those without any missing
data), use a linear regression model to estimate the effect of calcium supplemen-
tation. Compare your answer to that obtained in part (a).

(d) Now use multiple imputation to adjust your answer in part (c). Using all
subjects in the data set calcium.missing.txt, impute the missing data on the effects.
Use a separate prediction equation for each of town A and town B. Now compare
your answer to both parts (a) and (c). Has multiple imputation removed the
bias in the estimated coefficient (which represents the average effect of calcium
supplementation in these two towns)?

4. Generate a simulated linear regression data set in R that follows the following
model (sample size = 100):

y = 2 + 5 ∗ x, σ = 1, x ∼ normal(0, 1)

To do this, use lines such as:
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x <- round(rnorm(100, mean=0, sd=1),2)

y <- round(rnorm(100, mean = 2 + 5*x, sd=1),2)

Note that since we are using random numbers, everyone in the class will be using a
slightly different data set. I rounded everything to 2 decimal places, which makes
for cleaner data sets without losing too much precision.

(a) Plot x versus y.

(b) Use R to run a standard linear regression of x versus y. Provide the estimates
and 95% confidence intervals for the intercept and slope (see R class notes if you
forget how to do this, and recall that approximate 95% intervals can be derived
from the point estimates ±1.96 times the standard error for each parameter). Are
they close to their theoretical values (of 2 and 5, respectively)?

(c) Now we will add some measurement error to the x values. In particular, we
will create a measurement error version of x using the R command

x.error <- round(rnorm(100, mean=x, sd=2),2 )

Note that the measurement error version of x is centered at the true value of x,
but has random noise about the observation. This is typical of measurement error
seen when data are generated by an unbiased but imprecise measuring tool. Plot
x.error versus y, and note any differences from your plot in part (a).

(d) Rerun the linear regression again, but this time using x.error rather than x.
Compare the results (point estimates and confidence intervals) you obtain here
with those obtained in part (b), and note any differences.

(e) Before leaving R, save your data sets for use in WinBUGS in problem 5. To
do this, use commands such as:

x.list <- list(x=x, y=y)

xerror.list <- list(x.error = x.error, y=y)

dput(x.list, file = "c://temp//x.txt")

dput(xerror.list, file = "c://temp//xerror.txt")

You will use the first data set in the (a) of question 5, and the second data set in
parts (b) and (c) of question 5.
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5. In this question we will analyse the same two data sets as were used in question
4, but now using WinBUGS, with and without correcting for possible measurement
error.

(a) Run a straightforward WinBUGS program for the linear regression of x versus
y (see class notes of simple WinBUGS programs if you do not recall how to do
this). Provide the point estimates and 95% credible intervals for the intercept and
slope. Compare these to your estimates in part (b) of question 4 (they should be
quite similar).

(b) Repeat part (a), but now using x.error versus y. Provide the point estimates
and 95% credible intervals for the intercept and slope. Compare these to your
estimates in part (d) of question 4 (again, they should be quite similar).

(c) Now, we will modify the simple linear regression model to account for any
measurement error. To the basic linear regression model (from part (a), NOT part
(b), because we want to estimate the true relationship with x, not the one with
measurement error variable x.error!), add a line such as:

x.error[i] ~ dnorm(x[i], tau.error)

You will also need to add a line for the prior for tau.error, and for x[i]. As usual,
we will define tau.error in terms of sigma.error, and put a uniform prior on sigma.
Use the following lines:

tau.error <- 1/(sigma.error*sigma.error)

sigma.error ~ dunif(1, 5)

to indicate that it is known that the measurement error variance is between 1 and
5 (real value, recall, was SD=2).

Run this model, and report the point estimates and 95% credible intervals for the
intercept and slope. Compare these to your estimates in part (b) of question 5
. . . has the model correctly adjusted for the measurement error?


