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Course EPIB-621 - Data Analysis for the Health Sciences

Assignment 2 - Solutions

1. Consider the data below (available as dosedat.txt on the course web site):

dose <- c(4, 4, 2, 8, 5, 5, 5, 6, 7, 5, 5, 5, 3, 4, 7, 5, 6, 4,

9, 7, 5, 5, 1, 8, 3, 5, 3, 2, 5, 6, 6, 9, 6, 2, 5, 3, 7, 4, 6,

3, 5, 4, 5, 2, 3, 6, 8, 6, 5, 5, 4, 1, 5, 6, 3, 6, 3, 4, 3, 4,

9, 2, 8, 4, 7, 9, 1, 5, 3, 5, 7, 7, 6, 5, 3, 8, 7, 5, 4, 8)

weight.gain<- c(8.1, 13.7, 1.9, 20.9, 11.7, 17.5, 19.9, 17.9, 23.6, 6.7,

20.2, 15.5, 5.2, 11.5, 16.9, 15.5, 9.9, 15.1, 21.6, 19.7, 16.8, 16.2,

3.7, 25.1, 11.7, 14.7, 18.6, 13.2, 18.8, 20, 17.8, 25.9, 13.9, 8.6,

11.8, 10.7, 21.3, 16.7, 18.8, 7.7, 16.6, 12.2, 15.5, 6, 9, 15.2, 26.5,

23, 10.7, 7.6, 13.7, 4, 16.7, 17.2, 12, 20, 14.1, 7.2, 7, 7.5, 25.7,

8.3, 23.7, 6.6, 18.7, 24.8, 8.2, 21.2, 6.9, 20.5, 14, 18.9, 16.6, 18,

12.3, 17.5, 20.7, 15.9, 9.3, 20.5)

The data come from an experiment including 80 subjects, each taking a drug that is
supposed to increase weight. We will analyze the effects of the different dosages on
the weights. The weight gains are in pounds, while the dosages are in milligrams.
The subjects each took the drug for a period of one year.

Answer the following questions using R:

(a) Draw a scatter plot to visually examine the association between the dosage (x-
axis) and weight gain (y-axis). Does there (visually) appear to be a relationship?

plot(dose, weight.gain)
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(b) State the regression line for these data, that is, provide the best values for the
intercept (α) and slope (β) of the least squares (also maximum likelihood) line.

> output <- lm(weight.gain ~ dose)

> summary(output)

Call:

lm(formula = weight.gain ~ dose)

Residuals:

Min 1Q Median 3Q Max

-8.2072 -2.4866 0.5928 2.0091 8.5341

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.804 1.071 2.618 0.0106 *

dose 2.421 0.199 12.167 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Residual standard error: 3.497 on 78 degrees of freedom

Multiple R-Squared: 0.6549, Adjusted R-squared: 0.6505

F-statistic: 148 on 1 and 78 DF, p-value: < 2.2e-16

So estimated intercept = 2.804, estimated slope = 2.421.

(c) State the estimate of the residual standard deviation, σ.

From above output, Residual standard error = 3.497.

(d) Provide the 95% confidence intervals for the intercept and slope values you
calculated in part (b).

> confint(output)

2.5 % 97.5 %

(Intercept) 0.6712874 4.936310

dose 2.0246058 2.816771

(e) Suppose the next subject that enters the study is given a dosage of 5 mg. What
is your prediction for the weight gain for this (individual) subject? Provide the
95% confidence interval around this individual estimate.

> newdata <- list(dose=5)

> predict.lm(output, newdata=newdata, interval = "predict")

fit lwr upr

[1,] 14.90724 7.901501 21.91298

(f) What is your prediction for the mean weight gain for a large group of subjects,
all given a dosage of 5 mg? Provide the 95% confidence interval around this mean
estimate.

> predict.lm(output, newdata=newdata, interval = "confidence")

fit lwr upr

[1,] 14.90724 14.12881 15.68567
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Notice how much narrower this is compared to interval in part (f), as expected.

(g) Suppose the exact dosage values are not available, but all we know are whether
the dose was high ( > 5mg) or low (≤ 5mg). Create a new variable based on dose,
called dose.dichot that is equal to 0 for low dose subjects, and is equal to 1 for
high dose subjects. Run a linear regression of weight.gain on this newly created
variable. How do the point estimates of the slopes from the two different models
compare? Can you explain any differences in the two sets of parameter estimates?

# Create a blank vector to store new variable

dose.dichot <- rep(NA, length(dose))

# If smaller than or equal to 5, change NA to 0

> dose.dichot[dose <= 5] <- 0

# If larger than 5,

> dose.dichot[dose > 5] <- 1

# Check that it has worked

> dose.dichot

[1] 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0

[51] 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1

# Run regression

> output <- lm(weight.gain ~ dose.dichot)

> summary(output)

Call:

lm(formula = weight.gain ~ dose.dichot)

Residuals:

Min 1Q Median 3Q Max

-10.23137 -3.60637 -0.03137 3.73785 9.06863

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.1314 0.6453 18.798 < 2e-16 ***

dose.dichot 7.7410 1.0719 7.222 2.97e-10 ***
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---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.609 on 78 degrees of freedom

Multiple R-Squared: 0.4007, Adjusted R-squared: 0.393

F-statistic: 52.16 on 1 and 78 DF, p-value: 2.969e-10

When dose is continuous, slope was interpreted as a gain of about 2.4 pounds for
every unit dose increase. When dichotomous, when changing from below 5 to above
5, gain is about 7.7 pounds. Below 5, average was about 3.5, and above 5, average
was about 7. So, changing from below to above 5 results in an average change of
about 3.5 units so, from continuous model, expect a change of about 3.5*2.4 = 8.4,
not far off from dichotomous estimate of 7.7

2. There is a data set called satisfaction.txt on the course web site. There are four
variables in this data set, defined as follows:

(Y ) satisfaction: patient satisfaction with hospital services
higher numbers indicate greater satisfaction

(X1) age: patient’s age at hospital admission
(X2) severity: severity index, higher numbers are more severe cases
(X3) anxiety: anxiety index, higher numbers indicate more anxiety

(a) Create histograms of all four variables. Note the general features of each
variable.

# Read in the data set

satis.dat <- read.table(file="g:\\assignments\\satisfaction.txt", header=T)

# Make variables names directly accessible

attach(satis.dat)

# Run the histograms

hist(age)

hist(severity)

hist(anxiety)

hist(satisfaction)
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All look very reasonable, except that anxiety is a bit skewed. Will keep this in
mind, but note that no assumptions need hold about normality of any of these
fouor variables, it is just he residuals that must be normal.

(b) Use the pairs function to look at scatter plots of all possible pairs of variables.
Summarize your findings.
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> pairs(satis.dat)

Almost all variables seem linearly related to each other, must keep a sharp eye out
for confounding.

(c) Fit a linear regression for each variable separately. Report all parameter esti-
mates with confidence intervals.

# regression for AGE

> output <- lm(satisfaction ~ age)

> summary(output)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 119.9432 7.0848 16.930 < 2e-16 ***

age -1.5206 0.1799 -8.455 9.06e-11 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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> confint(output)

2.5 % 97.5 %

(Intercept) 105.664793 134.221548

age -1.883076 -1.158131

# Regression for Anxiety

> output <- lm(satisfaction ~ anxiety)

> summary(output)

Call:

lm(formula = satisfaction ~ anxiety)

Residuals:

Min 1Q Median 3Q Max

-20.369 -9.606 -1.946 9.212 31.631

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 146.449 15.304 9.569 2.55e-12 ***

anxiety -37.117 6.637 -5.593 1.33e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.33 on 44 degrees of freedom

Multiple R-Squared: 0.4155, Adjusted R-squared: 0.4022

F-statistic: 31.28 on 1 and 44 DF, p-value: 1.335e-06

> confint(output)

2.5 % 97.5 %

(Intercept) 115.60527 177.2936

anxiety -50.49204 -23.7413

# Regression for Severity

> output <- lm(satisfaction ~ severity)

> summary(output)

Call:

lm(formula = satisfaction ~ severity)
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Residuals:

Min 1Q Median 3Q Max

-23.203 -10.840 -1.113 10.342 30.843

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 183.0770 24.3249 7.526 1.95e-09 ***

severity -2.4093 0.4806 -5.013 9.23e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.91 on 44 degrees of freedom

Multiple R-Squared: 0.3635, Adjusted R-squared: 0.3491

F-statistic: 25.13 on 1 and 44 DF, p-value: 9.23e-06

> confint(output)

2.5 % 97.5 %

(Intercept) 134.053360 232.100550

severity -3.377845 -1.440724

(d) Fit a multiple linear regression for all three variables. Report all parameter
estimates with confidence intervals.

> output <- lm(satisfaction ~ severity + anxiety + age)

> summary(output)

Call:

lm(formula = satisfaction ~ severity + anxiety + age)

Residuals:

Min 1Q Median 3Q Max

-18.3524 -6.4230 0.5196 8.3715 17.1601

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 158.4913 18.1259 8.744 5.26e-11 ***

severity -0.4420 0.4920 -0.898 0.3741

anxiety -13.4702 7.0997 -1.897 0.0647 .

age -1.1416 0.2148 -5.315 3.81e-06 ***
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---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.06 on 42 degrees of freedom

Multiple R-Squared: 0.6822, Adjusted R-squared: 0.6595

F-statistic: 30.05 on 3 and 42 DF, p-value: 1.542e-10

> confint(output)

2.5 % 97.5 %

(Intercept) 121.911727 195.0707761

severity -1.434831 0.5508228

anxiety -27.797859 0.8575324

age -1.575093 -0.7081303

Comparing univariate to multivariate outputs, all parameter estimates have changes
by a substantial amount. As we guessed, there is considerable confounding be-
tween the three independent variables. We cannot accurately gauge the indepen-
dent contributions of these three variables, but the model may still lead to good
predictions. We would need a more carefully designed (non-observational) study to
separate out the effects of our three independent variables.

(e) Plot a histogram of the residuals from the model with all three variables in-
cluded. Does it look like any assumptions are being violated?

hist(output$residuals)
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Residuals look reasonable, maybe slightly higher tails, but probably not a serious
problem.

(f) Create a scatter plot of the residuals against each of the X variables (so three
plots). Comment on what these plots indicate.

> plot(age, output$residuals)

> plot(severity, output$residuals)

> plot(anxiety, output$residuals)



12

All graphs look perfect, no assumptions violated in any obvious way.

3. There is a data set called assign2num3.txt on the course web site. There are
five variables in this data set, simply called x1, x2, x3, x4, and y. The x’s are
all independent variables, while y is the outcome.

(a) Create histograms of all five variables. Note the general features of each vari-
able.

> hist(x1)

> hist(x2)

> hist(x3)

> hist(x4)

> hist(y)

All look quite reasonably normally distributed (although not required, remember



13

that just residuals need be normally distributed in linear regression).

(b) Create a correlation matrix of all five variables. Summarize your findings.

> cor(matrix(c(x1,x2,x3,x4,y), ncol=5, byrow=F))

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000000 0.248993086 0.08829612 0.3827424 0.297735846

[2,] 0.24899309 1.000000000 0.02996272 -0.2603426 -0.002912261

[3,] 0.08829612 0.029962716 1.00000000 0.7959049 0.866829221

[4,] 0.38274239 -0.260342647 0.79590490 1.0000000 0.915386033

[5,] 0.29773585 -0.002912261 0.86682922 0.9153860 1.000000000

Among independent variables, very high correlations between x3 and x4, and mod-
erately high between x1 and x4. Since x3 and x4 also highly correlated with the
outcome y, expect some confounding, at least between x3 and x4.

(c) Fit a linear regression for each variable separately. Report all parameter esti-
mates with confidence intervals.

# To save space, just keep a short summary here:

----------------------------------------

> summary(lm(y ~ x1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9483 0.7714 2.526 0.01315 *

x1 2.2608 0.7323 3.087 0.00263 **

> confint(lm(y ~ x1))

2.5 % 97.5 %

(Intercept) 0.4175347 3.479050

x1 0.8076639 3.713919

----------------------------------------

> summary(lm(y ~ x2))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8547 0.8080 2.295 0.0238 *

x2 -0.0229 0.7945 -0.029 0.9771
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> confint(lm(y ~ x2))

2.5 % 97.5 %

(Intercept) 0.2511867 3.458181

x2 -1.5995134 1.553704

----------------------------------------

> summary(lm(y ~ x3))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7703 0.4026 4.397 2.79e-05 ***

x3 7.1082 0.4130 17.210 < 2e-16 ***

> confint(lm(y ~ x3))

2.5 % 97.5 %

(Intercept) 0.9713439 2.569258

x3 6.2886100 7.927863

----------------------------------------

> summary(lm(y ~ x4))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9417 0.3251 5.973 3.74e-08 ***

x4 2.9706 0.1320 22.510 < 2e-16 ***

> confint(lm(y ~ x4))

2.5 % 97.5 %

(Intercept) 1.296667 2.586826

x4 2.708681 3.232456

----------------------------------------

All variables except x2 look quite important for predicting y.

(d) Fit a multiple linear regression for all four independent variables. Report all
parameter estimates with confidence intervals.

> summary(lm(y ~ x1 + x2 + x3 + x4))

Call:

lm(formula = y ~ x1 + x2 + x3 + x4)

Residuals:

Min 1Q Median 3Q Max

-5.71806 -1.32390 0.05233 1.39824 5.37983
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9774 0.2226 8.884 4.00e-14 ***

x1 -1.1334 0.3256 -3.481 0.000756 ***

x2 2.2104 0.3256 6.789 9.68e-10 ***

x3 0.8798 0.5403 1.628 0.106777

x4 3.1163 0.2512 12.404 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.219 on 95 degrees of freedom

Multiple R-Squared: 0.9268, Adjusted R-squared: 0.9237

F-statistic: 300.6 on 4 and 95 DF, p-value: < 2.2e-16

> confint(lm(y ~ x1 + x2 + x3 + x4))

2.5 % 97.5 %

(Intercept) 1.5355179 2.4192057

x1 -1.7796997 -0.4870124

x2 1.5640535 2.8566859

x3 -0.1928776 1.9524767

x4 2.6175167 3.6150511

(e) Compare the simple linear regression (univariate) results from part (c) to the
multivariate results in part (d). Summarize your findings.

Note the very high degree of confounding, as evidenced by large changes in point
estimates and their CIs (as just one example, look at the change in point estimate of
x3!). On the other hand, the model fits extremely well, with R2 = 0.92. So, model
will likely yield good predictions, but because of confounding, hard to separate out
effects of individual variables.

4. Consider the kidney data set on the course web site. The variables in that data
set are defined as follows:

(Y ) creatinine clearance: a measure of kidney function
(X1) creatinine concentration: more easily measured than clearance

(X2) age: patient’s age in years
(X3) weight: weight in Kg

Creatinine clearance is an important measure of kidney function that is difficult to
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measure, as it requires 24 hour urine collection. We would like to see if creatinine
clearance can be predicted from creatinine concentration, age and weight.

(a) Create histograms of all four variables. Note the general features of each
variable.

# Read in data set from file

> kidney <- read.table("c:\\temp\\kidney.txt", header=T)

# Allow easier access to individual variables in the kidney data set

> attach(kidney)

# Create histograms

> hist(creat.clear)

> hist(creat.conc)

> hist(age)

> hist(weight)
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Much non-normality, but we will see how the residuals turn out later.

(b) Use the pairs function to examine the univariate relationships between all pairs
of variables. Note the main feature(s) for each pair.

> pairs(kidney)
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All three independent variables seem related to the outcome of creatinine clearance,
with creatinine concentration most strongly related, as expected. Does not look like
there will be very strong confounding.

(c) Fit a linear regression for each variable separately. Report all parameter esti-
mates with confidence intervals.

# Again, here are the short versions:

------------------------------------------

> summary(lm(creat.clear ~ creat.conc))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 154.662 9.861 15.684 2.72e-16 ***

creat.conc -55.560 7.437 -7.471 2.04e-08 ***

> confint(lm(creat.clear ~ creat.conc))

2.5 % 97.5 %

(Intercept) 134.54987 174.77358

creat.conc -70.72768 -40.39169

------------------------------------------

> summary(lm(creat.clear ~ age))
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 150.7189 13.7365 10.972 3.34e-12 ***

age -1.1704 0.2343 -4.996 2.17e-05 ***

> confint(lm(creat.clear ~ age))

2.5 % 97.5 %

(Intercept) 122.703239 178.7346052

age -1.648168 -0.6926269

------------------------------------------

> summary(lm(creat.clear ~ weight))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.9685 29.7995 0.838 0.4085

weight 0.8304 0.4046 2.053 0.0486 *

> confint(lm(creat.clear ~ weight))

2.5 % 97.5 %

(Intercept) -35.808047133 85.745032

weight 0.005332115 1.655520

------------------------------------------

As expected, all three variables are associated with the outcome. Note that age and
creatinine concentration are inversely related, which weight is positively associated
with the outcome.

(d) Fit a multiple linear regression for all three independent variables. Report all
parameter estimates with confidence intervals.

> summary(lm(creat.clear ~ creat.conc + age + weight))

Call:

lm(formula = creat.clear ~ creat.conc + age + weight)

Residuals:

Min 1Q Median 3Q Max

-28.668 -7.002 1.518 9.905 16.006

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 120.0473 14.7737 8.126 5.84e-09 ***
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creat.conc -39.9393 5.6000 -7.132 7.55e-08 ***

age -0.7368 0.1414 -5.211 1.41e-05 ***

weight 0.7764 0.1719 4.517 9.69e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 12.46 on 29 degrees of freedom

Multiple R-Squared: 0.8548, Adjusted R-squared: 0.8398

F-statistic: 56.92 on 3 and 29 DF, p-value: 2.885e-12

> confint(lm(creat.clear ~ creat.conc + age + weight))

2.5 % 97.5 %

(Intercept) 89.8316641 150.262902

creat.conc -51.3925186 -28.486135

age -1.0259506 -0.447584

weight 0.4248746 1.127963

Comparing univariate to multivariate regression outputs, some small confounding
between age and creatinine concentration, but all three variables remain indepen-
dently important in the multiple regression model.

(e) Examine the residuals from the model, both via a histogram, and via scatter
plots of each independent variable against the residual.

> hist(summary(lm(creat.clear ~ creat.conc + age + weight))$residuals)
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Histogram shows skewed residuals, they are not very close to normally distributed.
Model is imperfect, but probably quite useful (note that R2 = 0.84 which is very
high). Depending on how much acuracy is required, this prediction equation may
or may not be accurate enough to replace measurement of creatinine clearance.

(f) Make a prediction of creatinine clearance for an individual aged 50 years old,
with weight 80 Kg, and with creatinine concentration of 1.00. Report both the
prediction and the confidence interval for the prediction.
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# For an individual:

output <- lm(creat.clear ~ creat.conc + age + weight)

datanew <- list(age=50, weight=80, creat.conc = 1)

> predict(output, newdata=datanew, interval="prediction")

fit lwr upr

[1,] 105.3831 79.28422 131.4819

# For the mean prediction:

> predict(output, newdata=datanew, interval="confidence")

fit lwr upr

[1,] 105.3831 99.71974 111.0464

Note that individual prediction has the wider interval, as expected.

(g) Overall, what can you conclude about the ability of the three independent
variables to predict the outcome?

Reasonable prediction for means, total interval width about ±5, but poorer predic-
tions for individuals, very wide intervals. Probably good model to predict rough
means, but cannot replace individual measurements. Perhaps increasing the sam-
ple size would help in predicting means, but model is not likely to be good enough
for individual predictions.

5. Consider the data set plasma.txt on the course web site. The data consist
of plasma levels of a polyamine (plasma variable Y ), against age in children (X
variable, age = 0 indicate a new born).

(a) Create histograms for both variables. Note the general features of each variable.

# Read in the data

> plasma.dat <- read.table("c:\\joseph\\courses\\621\\assignments\\plasma.txt",

header=T)

# Allow variables to be available outside of data frame

> attach(plasma.dat)

> hist(age)
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> hist(plasma)

Note the skewed distribution for plasma, and only five choices for age.

(b) Create a scatter plot of age versus plasma. Does the relationship seem linear?

> plot(age, plasma)
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No, does not look particularly linear, values near zero too high.

(c) Transform the Y variable with a log transform. In other words, rather than Y ,
create a log(Y ) = log(plasma). The logarithm should be to the base e. Re-create
the scatter plot, but now plotting age versus log(plasma). Does the relationship
now seem more linear?

> log.plasma <- log(plasma)

> plot(age, log.plasma)
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Looks much more linear after log transform.

(d) Fit a linear regression for age versus log(plasma). Report all parameter esti-
mates with confidence intervals.

> summary(lm(log.plasma ~ age))

Call:

lm(formula = log.plasma ~ age)

Residuals:

Min 1Q Median 3Q Max

-0.269416 -0.081471 0.006032 0.064236 0.387206

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.61302 0.04983 52.44 < 2e-16 ***

age -0.23552 0.02034 -11.58 4.51e-11 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1439 on 23 degrees of freedom

Multiple R-Squared: 0.8535, Adjusted R-squared: 0.8472

F-statistic: 134 on 1 and 23 DF, p-value: 4.509e-11
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> confint(lm(log.plasma ~ age))

2.5 % 97.5 %

(Intercept) 2.5099316 2.7161014

age -0.2776001 -0.1934316

(e) Provide an interpretation of the β coefficient calculated in (d).

As age changes by one unit, log.plasma changes by -0.236, on average. This holds
over the range from ages 0 to 4.

(f) As a child ages from 3 to 4 years old, on average, by how much does their
plasma (not log(plasma)) change?

# Need to predict log plasma for each age, and take exponentials

# to go back to original scale. Once on original scale, subtract.

> age3 <- exp(2.61302 - 0.2776001*3)

> age4 <- exp(2.61302 - 0.2776001*4)

> age3

[1] 5.931159

> age4

[1] 4.493445

> age3-age4

[1] 1.437715

So there is a decrease of about 1.4 in plasma as a child ages from 3 to 4, on average.

6. Consider the data set called assign2num6.txt. This data set consists of a y
outcome variable and a matrix x with 5 columns, each column representing a
potential predictor variable for y. Read the data into R (either by using the scan
command, or just cut and paste from the web site directly into R).

(a) Create a scatter plot for each, using commands such as

plot(x[,1], y)

Do you see any relationships between y and any of the columns of x?
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No relationships are seen (except maybe for x5), the graphs are:

(b) Now run a linear regression with outcome y, using all five variables in the
matrix x, i.e., using a command such as

a<-lm(y ~ x[,1] + x[,2] + x[,3] + x[,4] +x[,5] )

No need to report the results here, this will be used in part (c).

(c) Now again plot the residuals of this model against the fitted values, using your
model in (b). Do you see any pattern?

Plot is:
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Looks like the residuals are saying “R is fun” with a frame around them!


