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 ABSTRACT

The SAS system is known not to support any
more or less developed Bayesian method. At the
same time a Bayesian framework is the ideal
environment for resolving the problem of model
selection uncertainty (which is important for
getting proper inference based on the model),
though at a price of very complex and time-
consuming algorithms.  In this presentation,
which is a continuation of our SUGI’2000
paper, the possibility of avoiding the
complexities of fully developed Bayesian
methods is discussed. A Bayesian-like approach
to resolving the problem of model selection
uncertainty in PROC LOGISTIC and PROC
GENMOD is developed, while staying
completely within the maximum-likelihood
methodology. Only standard elements of the
output are used, such as the likelihood, the
Akaike information criterion, and the Schwarz
information criterion, etc., or some equivalent
R2 measures discussed in the above mentioned
Shtatland, Moore & Barton (2000). The
proposed approach uses some averaging and
improves the model selection process by taking
model uncertainty into account. The average of a
(usually small) number of ‘good’ models is
often better than any one model alone. The
improvement is seen in terms of the quality of
predictions, more realistic confidence intervals,
etc. Applications to some medical studies are
discussed.

MODEL SELECTION AND INFERENCE:
FREQUENTIST APPROACH

Model selection is a fundamental task in data
analysis, widely recognized as central to good
inference. It is also a very complex matter, so it
is not surprising that there is no definitive
breakthrough in this field and still there is no
widely accepted model building strategy. At the
same time in the research community there is a
clear need for such a strategy. Many researchers
come to the conclusion that the appropriate
model selection criteria should be specified in
the protocol for any study, including clinical
trials (Lindsey & Jones (1998)), and that model
selection should be considered an integral part
of inference. Until recently the relationship
between model selection and inference was a
one-way street: first, we search for a reasonable
model (optimal or sub-optimal in some
meaning) and then, conditioning on a single
choice, we make statistical inference
(confidence intervals, etc.). In other words, we
proceed in our inference as if our chosen model
were the true one, which is almost always
incorrect. As a result, we ignore the model
uncertainty uncovered in the search,
underestimate the total uncertainty, and work
with too narrow confidence intervals. In short,
we can be overly optimistic, which is
dangerous.  
 



MODEL SELECTION: LIKELIHOOD
RATIO TEST AND STEPWISE
REGRESSION

Currently, there are two basic approaches to
model selection in SAS PROC LOGISTIC: the
classical approach based primarily on the
likelihood ratio test (LRT) and the approach
based on the family of information criteria such
as the Akaike information criterion (AIC),
Schwarz or Bayesian information criterion (SIC
or BIC). The classical approach through LRT,
though still being widely used, is unsatisfactory
because of three basic disadvantages:
   a) It works only if nested models are              
       compared;
   b) Asymptotic Chi-Square approximation       
      may be poor for small sample sizes;
   c) LRT is inconsistent: inherently it favors     
      larger models unduly.
The most popular implementation of the LRT
idea is stepwise selection which is realized in
both multiple linear regression and logistic
regression cases and which, in principle, can be
implemented in generalized linear modeling as a
whole.  

In SAS PROC LOGISTIC, the most commonly
used model selection methods are three
automatic procedures: forward selection,
backward elimination, and stepwise regression
which is, essentially, a combination of the
previous two. Ideally, we expect that the final
model selected by each of these procedures
would be the same. This does often happen, but
it is not 100% guaranteed. All of them are based
on the ‘importance’ of a covariate defined in
terms of the statistical significance of the
coefficient of the variable (Hosmer &
Lemeshow, pp. 106-107). Significance is
assessed via the likelihood ratio chi-square test,
and at any step in the stepwise procedure the
most important covariate will be the one that
produces the largest change in the log-likelihood

relative to model without the covariate  (in other
words, the one that would result in the largest
likelihood ratio statistic). Also, the most
important explanatory variable is the one with
the smallest P-value. However, it is well known
that the P-values used in stepwise selection
procedures are not P-values in the traditional
hypotheses testing context. They should be
rather thought of as indicators of relative
importance among explanatory variables.

None of these automatic procedures are
foolproof and numerous warnings are issued to
use them with care. When using stepwise
selection techniques we capitalize on chance
because we perform many significance tests to
compare different combinations of explanatory
variables. As a result, completely unrelated
variables can be chosen by chance alone, and a
thorough analysis is needed that examines the
substantive importance of the variables in
addition to their statistical significance. Any
stepwise selection identifies candidates for a
model based solely on statistical grounds. A
common modification of the stepwise selection
procedure is to begin with a model which
already contains some known important
covariates (option=INCLUDE) irrespective of
their statistical significance.

As a whole, the stepwise selection approach is
a very convenient and powerful technique.
Unfortunately, it is too often misused especially
when researchers rely heavily on the result of
the stepwise search as a single choice without
further exploratory analysis.  According to
Breiman (1992) such a usage has long been “ a
quiet scandal in the statistical community”. Note
that stepwise techniques and LRT as a whole do
not address overfitting or underfitting problems.
As a result, a stepwise model choice could be
biased. It does not provide confidence intervals
with the proper coverage. Confidence intervals
produced with a stepwise procedure are falsely
narrow, and cross-validation or bootstrapping



techniques are usually needed to get more
realistic results. Unfortunately, these techniques
are not implemented in SAS.

MODEL SELECTION AND
INFORMATION CRITERIA

To overcome the disadvantages of  LRT
mentioned above, the information criteria family
was introduced. The basic idea behind the
information criteria is penalizing the likelihood
for the model complexity – the number of
explanatory variables used in the model. The
most popular in this family are the Akaike
information criterion (AIC) and Schwarz
information criterion ( SIC). AIC must be
credited with being the first widely known
measure that attempts to address the divergent
requirements of model complexity and
estimation accuracy (fit, likelihood). AIC and
SIC can be defined in two different forms. The
“smaller-is-better” form is defined by the
equations:

  AIC = - 2logL(M) + 2*K
                                                          (1)
  SIC = - 2logL(M) + (logN)*K

where logL(M) and logL(0) are the maximized
log likelihood for the fitted model and the “null”
model containing only an intercept term, N is the
sample size and K is the number of covariates
(including an intercept). The “larger-is-better”
form uses the equations:

  AIC = logL(M) – K
                                                      (2)
  SIC =  logL(M) – (logN/2)*K

Having these two forms seems confusing
especially if they are implemented
simultaneously in the same procedure (SAS
PROC MIXED, for example). Using both forms
can be explained by statistical tradition. In any

case, there is no problem in it since (1) and (2)
are related to each other by a one-to-one
mapping. We can add that the most general form
of AIC-type information criteria is 

  IC(c) = - 2logL(M) + c*K            (3)

If c = 0, (3) is equivalent to the classical
likelihood statistic. If c = 1, (3) is equivalent to
the GLIM goodness-of-fit procedure based on
plotting the deviance against degrees of freedom
(Smith and Spiegelhalter (1980)). If
c = 2, IC is identical to AIC. And lastly, if c =
logN, (3) is equivalent  to SIC. The question of
what value of parameter c to choose is not easy.
Atkinson (1981) suggests that the range between
2 and 5 or 6 may provide “a set of plausible
initial models for further analysis”.

AIC and SIC have some optimal properties
providing certain justification for choosing these
information criteria out of the entire family (3). 
AIC is based on the errors of prediction ground
and as such has some minimax properties for
prediction over the experimental region, but
larger values of c may be required for
extrapolation (Atkinson (1981)). Striving
predominantly for good prediction, AIC may
tend to select too many covariates. From the
prediction standpoint, occasionally retaining an
unnecessary covariate is preferable to
occasionally omitting a necessary one. It is
known (Stone (1977)) that c = 2 is
asymptotically equivalent to a cross-validation
criterion – a very important property of AIC.
Unlike AIC, the Bayesian Information Criterion
is consistent: the probability of choosing
incorrectly the bigger model converges to 0. SIC
arises automatically out of the minimum coding
approach (Dawid (1992)). Also important is
that AIC and SIC can be used in model
comparison of nested as well as non-nested
models (unlike LRT)). Some applied
statisticians strongly believe that in the future
the emphasis will shift from studying the effect



of a single covariate (after correction for
confounders) to building prognostic models for
individual cases. See in Van Houwelingen
(1997): “Maybe Akaike’s information criterion
will take over completely from the P-values…
This asks for a different view on statistical
model building.” Thus, we see that strong
properties of AIC and SIC are often mutually
complementary: SIC is consistent - AIC is not,
AIC is good in prediction - SIC is better in
extrapolation, SIC often performs better when
the true model is very simple - for relatively
complex models AIC is consistently more
accurate. The philosophy underlying AIC is that
“truth” is high-dimensional, requiring many
(possibly infinitely many) explanatory
variables. By contrast, working with SIC we
assume that a true model is low-dimensional
(Buckland, Burnham, and Augustin, (1997)). An
applied researcher has to be capable of
maneuvering between “AIC-SIC truths” and
reconciling them. Below we give an example of
such heuristic reconciling. If we want to avoid
overfitting a model, we should use more
conservative criteria, such as SIC, sometimes at
the cost of underfitting a model for finite
samples, which leads to a significant increase in
bias. If we want to avoid uderfitting a model,
then we should use more liberal AIC. We will
see below that AIC and SIC are also mutually
complementary from a different, Bayesian
analysis standpoint.

Summarizing, we come to the following
conclusions. First, AIC and SIC have some
optimal mutually complementary properties, and
on this ground should be chosen out of the entire
family of information criteria  (this choice is
implemented in SAS PROC REG, PROC
LOGISTIC and PROC MIXED). Second, there
is no single information criterion which will
play the role of a panacea in model selection.
As a whole, information criteria resolve (at
least partly) some problems related to the
classical LRT approach:

(a) Information criteria work in both nested
and non-nested cases;

(b) Information criteria are not tests of
significance. As such, they do not indicate
that the better of two models is
“significantly better”. But at the same time,
they do not depend on asymptotic Chi-
Square approximations which may be poor
for small sample sizes. Although,
asymptotically, the use of AIC is
equivalent to a stepwise procedure with a
critical level of 15.7% (Lindsey & Jones
(1997));

   (c) At least some of the information criteria    
       (SIC, for example) are consistent.

Information criteria, originally designed
specifically for prediction purposes in time
series, are much more wildly used now.
Regarding their use in biostatistics and health
care applications see Van Houwelingen (1997)
and Lindsey & Jones (1998).

There are two serious problems related to the
information criteria. First, they are not
automated. Second, it is still assumed that we
will come to a single model: AIC-optimal or
SIC-optimal, etc. The first problem is technical.
If we have p = 10 possible explanatory
variables (which is a comparatively small
number), then there are K = 210 = 1024 possible
models to compare. If p=20 (which is rather
moderate), then the number of possible models
is about one million. Thus, finding the best AIC
or SIC model by complete enumeration is
usually impractical, and we need some
shortcuts. One of the possible solutions to this
problem is to use the stepwise selection method
with the level of significance for entry
SLENTRY close to one, for example
SLENTRY=0.95. In this case we will get most
likely the sequence of models starting with the
null model (with the intercept only), and ending
with the full model with all explanatory
variables included. The models in this sequence



will be ordered in the way maximizing the
increment in likelihood at any step. Note that we
use the stepwise procedure in a way different
from the one typically used. Instead of getting a
single stepwise pick for a small SLENTRY,
say, 0.05, we are planning to work with the
whole sequence of K models and calculate AIC
and SIC for them. Thus, instead of comparing
the values of AIC or SIC for 1024 models we
have to do this for 10 models (10 vs. 1000 and
20 vs. 1000000). This is a huge gain in
efficiency. Moreover, the behavior of AIC or
SIC on this sequence is very simple and easy to
interpret: when the number of covariates grows,
the values of both AIC and  SIC decrease then
increase with one minimum. And this minimum
corresponds exactly to the AIC or SIC-pick.

The second problem related to the information
criteria is much deeper because it is connected
to our tradition of selecting a single model,
optimal or sub-optimal according to some
unique chosen criterion. To overcome this
limitation, we have to turn to the Bayesian
approach.

MODEL SELECTION AND THE
BAYESIAN APPROACH

It is well known (see Draper (1995), Chatfield
(1995), Kass & Raftery (1995)) that the
Bayesian approach with averaging across the
models is the most natural environment for
resolving the problem of model selection
uncertainty, superior to bootstrapping. Note that
neither the Bayesian approach nor bootstrapping
are implemented in SAS. It is also known that
the fully developed Bayesian approach has two
disadvantages. First, it is assumed that we know
the prior distributions while they are usually
unknown, and any assumptions about these
distributions “are not checkable, however many
data are collected” (according to Nelder
(1999)). This is a very important disadvantage
that deters many statisticians from becoming

Bayesians. The second disadvantage is a
technical one: the difficulty of calculating the
Bayes factors (the Bayes factor in the simple vs.
simple hypothesis testing setting can be defined
as the odds in favor of one model over the
competing model) and the number of terms for
Bayes averaging which can be enormous (Kass
and Raftery (1995)). Many methods were
proposed to overcome these problems: the
Occam’s window approach, to minimize the
number of models for averaging; the Markov
Chain Monte Carlo method, to average all the
models;  the intrinsic Bayes factor approach of
Berger and Pericchi; the fractional Bayes factor
method of O’Hagan, etc. (see Kass and Raftery
(1995)). All these methods are very complex
technically, and have not yet resolved the
problem. Also, all these techniques are
unavailable for SAS users.

Fortunately, there exists a “shortcut” method that
allows us to resolve the problem of unknown
priors on one hand and the formidable
calculations on the other hand. It can be done by
using AIC and SIC simultaneously. As shown in
Kass and Raftery (1995) (see also Akaike
(1983)), model comparisons based on  AIC are
asymptotically equivalent to those based on
Bayes factors under the assumption that the
precision of the priors is comparable to that of
the likelihood (in other words, only if the
information in the prior increases at the same
rate as the information in the likelihood). This
situation is considered not very typical, though
not impossible (Kass and Raftery (1995), Carlin
and Louis (1996), pp.48-49). Much more usual
is the situation when the prior information is
small relative to the information provided by the
data. In this case SIC should be used. According
to Kass and Wassermam (1995),  exp(-SIC / 2)
provides a surprisingly good approximation to
the Bayes factor when the amount of information
in the prior is equal to that in one observation
(at least when comparing nested models). Thus,
AIC and SIC can emulate the Bayesian approach



in the two extreme and opposite situations:
when the priors are as important as the
likelihood (i.e. the data), and when the priors
are almost of no importance at all. This is one
more example of AIC and SIC being mutually
complementary, this time from a Bayesian
standpoint. It emphasizes a particular
significance of AIC and SIC in the family of
information criteria, and suggests that we have
to pay special attention to the segment of the
stepwise sequence between SIC and AIC. We
call this segment the AIC-SIC window. By the
way, we can always add to this segment some
models that are substantially important. It
should be reminded that both stepwise
regression and information criteria are based
solely on the statistical grounds. By using the
AIC-SIC window we get some important
benefits of the Bayesian approach without its
disadvantages. There is a variety of ways to use
the AIC-SIC window. If we need a quick and
reasonably reliable prediction, we can use the
largest model in this window: the AIC-optimal
model. If we are interested in the best model for
description and interpretation, we can use the
smallest model: the SIC-pick. According to
Kass and Wasserman (1995), SIC may be
preferable to the fully Bayesian techniques: the
intrinsic Bayes factors of Berger and Pericchi 
and the fractional Bayes factors of O’Hagan.
Kass and Raftery (1995) think that SIC may be
used for reporting scientific results with other
analyses omitted but serving as background
support. But we can also use AIC-SIC window
in a purely Bayesian way – through averaging. 
The promising Bayesian model averaging
approach to coping with model uncertainty
should appeal not only to Bayesians, but also to
any “broad-minded” statistician. The key to the
success of this approach lies in not having to
choose the single best model but rather in
averaging over a variety of plausible competing
models (Chatfield (1995)). We can average the
models from the AIC-SIC window with weights

wk=exp(-AICk /2) / Σ exp(-AICi /2)    (4)
or

wk = exp(-SICk /2) / Σ exp(-SICi /2)    (5)

We would like to emphasize one more time that
working with the AIC-SIC approach has
important advantages over the fully developed
Bayesian approach. Prior distributions are
usually unknown and can only be hypothesized.
This is a major problem.  Bayesian factors are
inherently sensitive to errors of specification of
prior distributions. This is another major and
very serious limitation. The AIC-SIC window
approach works without reference to any prior
distribution.  Still another difficulty is that
Bayesian methods may lead to intractable
computational problems. All widely available
statistical packages (including SAS) use
classical frequentist methods. Besides the fact
that the fully developed Bayesian approach is
unavailable in SAS, we can add that some areas
of research such as clinical trials and
epidemiology are especially resistant to
Bayesian methods (Freedman (1996)). The AIC-
SIC window approach is much simpler in terms
of computation. It uses only standard elements of
the PROC LOGISTIC, such as likelihood,
stepwise selection, AIC, SIC, etc. augmented by
some relatively simple calculations.  

EXAMPLES OF USING THE AIC-SIC
WINDOW

We will give two examples of applying the
AIC-SIC window approach. In Barton et al
(2000), the authors study the dependence of
mammography utilization in a prepaid health
care system on socioeconomic factors. PROC
LOGISTIC is used with the number of cases
N = 1667 and the number of models in the
stepwise sequence K = 6. In this example, AIC
and SIC demonstrate a very uncommon consent
and choose as optimal the model with



covariates age, age-squared, and income.
Thus, the AIC-SIC window contains only one
model which makes unnecessary farther work on
choosing a submodel in or averaging over the
window. This is a very atypical situation.

The second example is related to the application
of Poisson regression  (Barton, Moore, Polk et
al (2000)). In this case, the number of cases
N = 992 and the number of the models in the
sequence K = 10. The AIC-optimal model
contains 7 covariates (including the intercept).
The SIC-optimal model is a submodel of the
AIC pick with 4 covariates. The AIC-SIC
window contains 4 models. Note that in this
case SIC may over-penalize, placing too much
weight on parsimony. As a result, the SIC-
optimal model does not contain some
substantially significant explanatory variables.

SAS MACRO FOR AIC-SIC WINDOWS IN
LOGISTIC AND POISSON REGRESSION

With the enhanced capabilities in Version 8 to
output the resulting statistics for many SAS
statistical procedures, it is not difficult to write
a SAS macro for model selection based on the
AIC-SIC window approach which combines the
stepwise selection, information criteria and the
Bayesian averaging approach. The macro will
build the model in three steps:

(1) A stepwise regression (or its PROC
GENMOD analog) with the probability
of entry high  enough to allow
construction of a sequence of models
starting with the null model (the intercept
only) to the full model with all
explanatory variables of interest; 

(2) Comparing the values of AIC and SIC for
each model of the stepwise sequence,
finding the AIC and SIC-optimal models
in this sequence and constructing an 
AIC-SIC window;

(3) Using the AIC-SIC window. If we are

interested in description and
interpretation, then we should use the
simplest model and run the SIC-optimal
regression. If we need a quick but more
or less reliable prediction, we can use
the largest model in this window and run
AIC-optimal regression. If we need a
more accurate prediction, we might use
averaging over the AIC-SIC window.
Kass and Raftery (1995) show that model
averaging by the Occam’s window and
Markov Chain Monte Carlo methods
gives consistently and substantially better
predictions than predictions based on any
one model alone, for several data sets.
We can expect similar effects when using
averaging over the AIC-SIC window.
Note that we can apply the averaging
approach only for large enough data sets
because the Bayesian interpretation of
AIC and SIC is justified only
asymptotically. Note also that Bayesian
averaging does not lead to a simple
model. According to Chatfield (1995),
though “even a simple average is often as
good as anything, the user does not
receive a simple model to describe the
data.” It is interesting to note that the
stepwise pick with the default SLENTRY
of 0.05 (which is typically used) is
usually located half-way between AIC-
optimal and SIC-optimal models. Thus,
the default pick is usually too large for
interpretation and too small for
prediction. Users who trust stepwise
regression blindly have a rather bad
choice for both purposes. It is one more
manifestation of  “a quiet scandal in the
statistical community” (Breiman (1992)).

Thus, before using the macro, the user needs to
clarify the objectives of using the model: either
for data description and interpretation, or for a
quick and simple prediction, or maybe  for a
more accurate prediction. All of these goals can



be achieved using the AIC-SIC window and the
macro based on it.

CONCLUSIONS 

In this paper, we propose a model selection
approach that combines the advantages of
stepwise regression, information criteria and
Bayesian averaging. The basic message of the
paper is that we should not ignore the model
uncertainty uncovered in the search and
underestimate the total uncertainty, and that we
can afford to do this by taking into consideration
only a small number of candidate models.
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