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Simple Univariate Inference for Common Situations

As you have probably seen in your previous classes and in your experience, many
data analyses begin with very simple univariate analyses, using models such as the
normal (for continuous data), and the binomial (for dichotomous data).

Here we will see how analyses typically proceeds for these simple models from a
Bayesian viewpoint.

As usual in Bayesian analyses, aside from a data model (by which I mean the
likelihood function), we need a prior distribution over all unknown parameters in
the model. Thus, here we consider “standard” likelihood-prior combinations for
these simple situations.



Bayesian Inference For A Single Normal Mean

Example: Consider the situation where we are trying to estimate the mean dias-
tolic blood pressure of Americans living in the United States from a sample of 27
patients. The data are:

76, 71, 82, 63, 76, 64, 64, 74, 70, 64, 75, 81, 75, 78, 66, 62, 79, 82, 78, 62, 72, 83,
79, 41, 80, 77, 67.

[Note: These are in fact real data obtained from an experiment designed to estimate
the effects of calcium supplementation on blood pressure. These are the baseline
data for 27 subjects from the study, whose reference is: Lyle, R.M., Melby, C.L.,
Hyner, G.C., Edmonson, J.W., Miller, J.Z., and Weinberger, M.H. (1987). Blood
pressure and metabolic effects of calcium supplementation in normotensive white
and black men. Journal of the American Medical Association, 257, 1772–1776.]

From this data, we find x = 71.89, and s2 = 85.18, so that s =
√

85.18 = 9.22

Let us assume the following:

1. The standard deviation is known a priori to be 9 mm Hg.

2. The observations come from a Normal distribution, i.e.,

xi ∼ N(µ, σ2 = 92), for i = 1, 2, . . . , 27.

We will again follow the three usual steps used in Bayesian analyses:

1. Write down the likelihood function for the data.

2. Write down the prior distribution for the unknown parameter, in this case µ.

3. Use Bayes theorem to derive the posterior distribution. Use this posterior
distribution, or summaries of it like 95% credible intervals for statistical
inferences.

Step 1: The likelihood function for the data is based on the Normal distribution,
i.e.,

f(x1, x2, . . . , xn|µ) =
n∏
i=1

1√
2πσ

exp(−(xi − µ)2

2σ2
) =

(
1√
2πσ

)n
exp(−

∑n
i=1(xi − µ)2

2σ2
).

Step 2: Suppose that we have a priori information that the random parameter
µ is likely to be in the interval (60,80). That is, we think that the mean diastolic



blood pressure should be about 70, but would not be too surprised if it were as
low as perhaps 60, or as high as about 80. We will represent this prior distribution
as a second Normal distribution (not to be confused with the fact that the data
are also assumed to follow a Normal density). The Normal prior density is chosen
here for the same reason as the Beta distribution is chosen when we looked at the
binomial distribution: it makes the solution of Bayes Theorem very easy. We can
therefore approximate our prior knowledge as:

µ ∼ N(θ, τ 2) = N(70, 52 = 25). (1)

In general, this choice for a prior is based on any information that may be available
at the time of the experiment. In this case, the prior distribution was chosen to
have a somewhat large standard deviation (τ = 5) to reflect that we have very little
expertise in blood pressures of average Americans. A clinician with experience in
this area may elect to choose a much smaller value for τ . The prior is centered
around µ = 70, our best guess.

We now wish to combine this prior density with the information in the data to
derive the posterior distribution. This combination is again carried out by a version
of Bayes Theorem.

posterior distribution =
prior distribution × likelihood of the data

a normalizing constant

The precise formula is

f(µ|x1, . . . , xn) =
f(µ)× f(x1, . . . , xn|µ)∫+∞

−∞ f(µ)× f(x1, . . . , xn|µ) dµ
(2)

In our case, the prior is given by the Normal density discussed above, and the
likelihood function was the product of Normal densities given in Step 1.

Using Bayes Theorem, we multiply the likelihood by the prior, so that after
some algebra, the posterior distribution is given by:

Posterior of µ ∼ N

(
A× θ +B × x, τ 2σ2

nτ 2 + σ2

)

where

A = σ2/n
τ2+σ2/n

= 0.107

B = τ2

τ2+σ2/n
=.893



n = 27
σ = 9
τ =
√

25 = 5
θ = 70, and
x = 71.89

Hence µ ∼ N(71.69, 2.68), so that graphically, the prior and posterior distribu-
tions are:

The mean value depends on both the prior mean, θ, and the observed mean, x.

Again, the posterior distribution is interpreted as the actual probability density of µ
given the prior information and the data, so that we can calculate the probabilities
of being in any interval we like. These calculations can be done in the usual way,
using normal tables. For example, a 95% credible interval is given by (68.5, 74.9).



Bayesian Inference For Binomial Proportion

Suppose that in a given experiment x successes are observed in N independent
Bernoulli trials. Let θ denote the true but unknown probability of success, and
suppose that the problem is to find an interval that covers the most likely locations
for θ given the data.

The Bayesian solution to this problem follows the usual pattern, as outlines in the
previous handout on “Elements of Bayesian Inference”. Here we consider only the
first five steps, so that we ignore the decision analysis aspects. Hence the steps of
interest can be summarized as:

1. Write down the likelihood function for the data.

2. Write down the prior distribution for the data.

3. Use Bayes theorem to derive the posterior distribution. Use this posterior
distribution, or summaries of it like 95% credible intervals for statistical
inferences.

For the case of a single binomial parameter, these steps are realized by:

1. The likelihood is the usual binomial probability formula, the same one used
in the frequentist analysis,

L(θ|x) = Pr{x successes in N trials} =
N !

(N − x)! x!
θx(1− θ)(N−x).

In fact, all one needs to specify is that

L(θ|x) = Pr{x successes in N trials} ∝ θx(1− θ)(N−x),

since N !
(N−x)! x! is simply a constant that does not involve θ. In other words,

inference will be the same whether one uses this constant or ignores it.

2. Although any prior distribution can be used, a convenient prior family is
the Beta family, since it is the conjugate prior distribution for a binomial
experiment. A random variable, θ, has a distribution that belongs to the
Beta family if it has a probability density given by

f(θ) =

{
1

B(α,β)
θα−1(1− θ)β−1, 0 ≤ θ ≤ 1, α, β > 0, and

0, otherwise,
.



[ B(α, β) represents the Beta function evaluated at (α, β). It is simply the
normalizing constant that is necessary to make the density integrate to one,
that is, B(α, β) =

∫ 1
0 x

α−1(1 − x)β−1dx.] The mean of the Beta distribution
is given by

µ =
α

α + β
,

and the standard deviation is given by

σ =

√
αβ

(α + β)2(α + β + 1)
.

Therefore, at this step, one needs only to specify α and β values, which
can be done by finding the α and β values that give the correct prior mean
and standard deviation values. This involves solving two equations in two
unknowns. The solution is

α = −µ (σ2 + µ2 − µ)

σ2

and

β =
(µ− 1) (σ2 + µ2 − µ)

σ2

3. As always, Bayes Theorem says

posterior distribution ∝ prior distribution × likelihood function.

In this case, it can be shown (by relatively simple algebra) that if the prior
distribution is Beta(α, β), and the data is x successes in N trials, then the
posterior distribution is Beta(α + x, β +N − x).

Example: Suppose that a new diagnostic test for a certain disease is being in-
vestigated. Suppose that 100 persons with confirmed disease are tested, and that
80 of these persons test positively.

(a) What is the posterior distribution of the sensitivity of the test if a Uniform
Beta(α = 1, β = 1) prior is used? What is the posterior mean and standard
deviation of this distribution?

(b) What is the posterior distribution of the sensitivity of the test if a Beta(α =
27, β = 3) prior is used? What is the posterior mean and standard deviation of
this distribution?

(c) Draw a sketch of the prior and posterior distributions from both (a) and (b).

(d) Derive the 95% posterior credible intervals from the two posterior distributions
given above, and compare it to the usual frequentist confidence interval for the



data. Clearly distinguish the two different interpretations given to confidence
intervals and credible intervals.

Solution:

(a) According to the result given above, the posterior distribution is again a Beta,
with parameters α = 1 + 80 = 81, β = 1 + 20 = 21. The mean of this distribution
is 81/(81 + 21) = 0.794, and the standard deviation is 0.0398.

(b) Again the posterior distribution is a Beta, with parameters α = 27 + 80 =
107, β = 3 + 20 = 23. The mean of this distribution is 107/(107 + 23) = 0.823,
and the standard deviation is 0.0333.

(c) See Below.

(d) From tables of the beta density (contained in many books of statistical tables)
or software that includes Bayesian analysis, the 95% credible intervals are (0.71,
0.86) from the Beta(81,21) posterior density, and (0.75, 0.88) from the Beta(107,23)
posterior density. The frequentist 95% confidence interval is (0.71, 0.87).

Note that numerically, the frequentist confidence interval is nearly identical to the
Bayesian credible interval starting from a Uniform prior. However, their interpreta-
tions are very different. Credible intervals are interpreted directly as the posterior
probability that θ is in the interval, given the data and the prior distribution. No
references to long run frequencies or other experiments are required. On the other
hand, confidence intervals have the interpretation that if such procedures are used
repeatedly, then 100(1−α)% of all such sets would in the long run contain the true



parameter of interest. Notice that there can be nothing said about what happened
in this particular case, the only inference is to the long run. To infer anything
about the particular case from a frequentist analysis involves a “leap of faith.”


