Reshaping Data

The command **contract** *varlist* creates a dataset with an observation for each combination of the variables in *varlist*. The variable _freq is the frequency of each combination.

- . use lbw1, clear
- . contract race smoke
- . list
- . tab race smoke [fw=_freq]

Expand has the opposite effect

- . expand _freq
- . tab race smoke

The **collapse** command can also be used to generate aggregated datasets

```
. use lbw1, clear
. collapse (mean) bwt, by(race smoke)
```

This generates a dataset that contains mean birthweight for each combination of smoking and race

Wide versus long data (**reshape**)

Overview

long

		- 4 - 4		wia	е	
1	J	STUD			c+ub1	c+uh7
				1	SLUDI	SLUDZ
1	1	4.1	reshape			
1	2	4.5	<>	1	4.1	4.5
2	1	3.3		2	3.3	3.0
2	2	3.0				

To go from long to wide:

Long form:

patient	sex	agegrp	when	bp
1	Male	30-45	Before	143
1	Male	30-45	After	153
2	Male	30-45	Before	163
2	Male	30-45	After	170
3	Male	30-45	Before	153
3	Male	30-45	After	168

. reshape wide bp, i(patient) j(when)

Wide form:

patient	bp1	bp2	sex	agegrp
1	143	153	Male	30-45
2	163	170	Male	30-45
3	153	168	Male	30-45

. sysuse bpwide, clear

Wide form:

patient	sex	agegrp	bp_before	bp_after
1	Male	30-45	143	153
2	Male	30-45	163	170
3	Male	30-45	153	168

- . rename bp_before bp1
- . rename bp_after bp2
- . reshape long bp, i(patient) j(timeper)

Long form:

patient	timeper	sex	agegrp	bp
1	1	Male	30-45	143
1	2	Male	30-45	153
2	1	Male	30-45	163
2	2	Male	30-45	170
3	1	Male	30-45	153
3	2	Male	30-45	168

Descriptive Analysis

Categorical Variables:

Two-way contingency tables (cross tables) using **tabulate** and **table**

- . use lbw1, clear
- . tab smoke ht, col chi2

```
bysort race: tab smoke ht, col chi2tab smoke ht race, row col
```

table smoke ht, c(mean bwt)table smoke ht, c(freq mean bwt max bwt)

Continuous Variables:

```
. summarize bwt, detail
. centile bwt, centile(25 50 75 99)
```

Summary statistics for numeric variables categorized by another variable

- . tabstat age lwt bwt, by(race)
- . tabstat age lwt bwt, by(smoke) stat(n mean sd semean median)

To display the statistics columnwise and control the display format:

```
. tabstat age lwt bwt, by(smoke) stat(n mean sd p25 p75) col(stat)
format(%8.2f)
```

Histograms:

- . histogram bwt
- . hist bwt, frequency normal

. hist bwt, percent normal by(smoke)

Q-Q plots:

. qnorm bwt

Boxplots:

. graph box bwt, over(smoke)

Oneway analysis of variance (comparison of means between two or more groups):

. oneway bwt race

T-tests to compare means of a normally distributed variable between two groups (under the assumption of equal and unequal variances):

- . ttest bwt, by(smoke)
- . ttest bwt, by(smoke) level(99)
- . sdtest bwt, by(smoke)
- . ttest bwt, by(smoke) unequal

Nonparametric tests:

. ranksum bwt, by(smoke)

Several other nonparametric tests are available under the menu: Statistics \rightarrow Summaries, tables and tests \rightarrow Nonparametric tests of hypotheses

Risk ratios and Odds Ratios:

Cohort data (without censoring): estimate relative risk and risk difference using **cs** case_var exp_var

. cs low smoke

You can stratify and obtain the Mantel-Haenszel weighted risk-ratio estimates

```
. cs low smoke, by(ht)
```

Case-control data:

- . cc ht smoke
- . cc ht smoke, by(race)

tabodds to study the effect of multiple exposure levels in a case-control study

- . tabodds ht race, or
- . tabodds ht race, or base(2)
- . tabodds ht race, adjust(smoke)

Immediate commands to perform calculations (does not use data in memory)

Treatment	Died	Survived	Total
А	4	10	14
В	7	3	10
Total		13	24

Using **tabi**, enter the data for each row separated by \

. tabi 4 10 \ 7 3, chi2 exact

csi is the immediate form of ci and cci the immediate form of cc

	Exposed	Unexposed
Event	7	12
No event	19	21

. csi 7 12 19 21

. cci 7 12 19 21

Using Stata as a calculator with **display**

. display 2*c(pi)*7

To find the p-value from a chi-squared test:

. display chi2tail(1, 3.84)

Confidence Intervals:

Use the **ci** and **cii** (the immediate form of **ci**) commands to calculate confidence intervals for means, proportions, and rates.

- . ci bwt, level(99)
- . ci smoke, binomial

Normal distribution: cii N mean SD

. cii 372 37.58 16.51

Binomial distribution: **cii** N events, binomial

. cii 153 40, binomial