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in fact much of the material will become clear only during the
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Principles of Inferential Statistics in Medicine — EPIB-607 — 4 credits

Instructor: Lawrence Joseph
Email address: Lawrence.Joseph@mecgill.ca (best way to reach me)
Home page: http://www.epi.mcgill.ca/ Joseph/
Telephone: 934-1934 X 44713
Address: Division of Clinical Epidemiology
Montreal General Hospital
1650 Cedar Avenue '
Room L10 509
H3G 1A4

Course Objectives: To provide consumers/producers of biomedical research with basic prin-
ciples of statistical inference applicable to clinical and epidemiologic research so that they can:
(i) understand how statistical methods are used by others, (ii) apply them in their own research
(iii) use them as a base for more advanced biostatistics courses.

Content: See detailed two page outline, pages 5 and 6.

Place and Time: September 4 to December 9, 2003. Tuesdays 9:00-11:00 AM (Room 1/12
Anatomy and Dentistry Building) and Thursdays 9:00-11:00 AM (Room Room 1/12 Anatomy and
Dentistry Building).

Assessment: Assignments 5 x 2% each = 10%, Midterm Examination = 30%, Project = 15%,
Final Examination = 45%.

Please note that both exams are open book.

Textbooks:
e Moore D and McCabe G. Introduction to the Practice of Statistics, Fourth Edition. 2002.
Freeman and Company.

e Armitage P, Berry G and Matthews J. Statistical Methods in Medical Research, Fourth
Edition. 2001. Blackwell Scientific Publications.

e Colton T. Statistics in Medicine. 1974. Little Brown.
Equipment: Scientific hand calculator (with square root, log and exponential functions).

Prerequisites: Differential and integral calculus.

Midterm Exam: Thursday October 23, 9:00 AM to 11:00 AM, Room 1/12.
Final Exam: Tuesday December 9, 9:00 AM to 12:00 PM, Room TBA.
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‘Principles of Inferential Statistics in Medicine

Other textbooks of interest

e B. Rosner. Fundamentals of Biostatistics. Duxbury 1994. Another basic book on bio-
statistics, with lots of examples.

e Michael Oaks, Statistical Inference. Epidemiology Resources, 1990. Ezcellent overview of
the meaning of statistical tests, and different schools of statistical inference.

¢ G. Friedman, A Primer of Epidemiology. McGraw-Hill, 1974. A quick introduction to
epidemiology.

e Bailar, J.C. and Mosteller F. (Eds.) Medical uses of Statistics. From the NEJM series
on statistics.

e Moore D. Statistics: Concepts and Controversies. Freeman, 1985. Presents ideas of
statistics, rather than techniques. Nontechnical introduction to statistics.

e Ingelfinger, J. and Mosteller, et al. Biostatistics in Clinical Medicine. Macmillan 1983.
Statistics are explained through single patient management.

o E. Lehmann and H. D’Abrera . Nonparametrics: Statistics based on ranks. Prentice Hall,
1998. Rewised Edition of the classic text on nonparametric statistics.

e Sprent P. Applied nonparametric statistical methods. Chapman Hall, 1989. A another
more applied nonparametrics book.

e Gelman, A. et al. Bayesian Data Analysis. Chapman and Hall, 1995. An introductory
book on Bayesian analysis.

e Rosenberg L, Joseph L, Barkun A. Surgical Arithmetic: Epidemiological, Statistical and
Outcomes-Based Approach to Surgical Practice. Landes Biosciences, 2000. Chapter 2
of this book is an attempt to put (almost) the entire 607 course into a single 50 page
book chapter, with separate chapters on diagnostic tests and regression. Introductory book
on many issues of interest to epidemiology students, including statistics, basic epidemi-
ology, decision analysis, clinical trials, survival analysis, meta-analysis, and technology
assessment.



Statistical Project

You are asked to find three instances of the use of statistical methods. One
of the sources should be a journal article, one should be from a newspaper
or magazine, and the last could be from any source (can again use a journal,
newspaper or magazine article, but can also be from advertising, etc.). For
each, provide a concise (maximum three DOUBLE SPACED pages each, but can
be less) commentary on each. At least two of the three should relate to the
use of statistics in medicine, but application to another area is allowed for one
of the articles.

Your comments can include an explanation of the methods and calculations,
the assumptions required by the methods, and, most importantly, comments
on whether the major conclusions follow from the data and methods presented.
You should take into consideration the source, for example, one cannot expect
a brief newspaper article to have a complete description of the methods when
reporting about a medical finding.

This project counts for 15% of the final grade for the course, so that each article
is worth about 5%. In assessing the quality of the exercise, I will consider
the extent to which you demonstrate understanding of important statistical
concepts via the examples, and your judgement in evaluating the conclusions.
Credit will also be given for ingenuity in the use of the available information.
For example, if an article provides only a p-value, you may be able to derive
an approximate confidence interval, which would usually be more informative
(for reasons we will see during the course).

Deadline: The exercise is due on Thursday, November 27, 2003, although I
would strongly encourage you to collect items of interest throughout the term
to avoid the end-of-term rush.

Please hand in complete copies of all articles on which the exercises are based.




Principles of Inferential Statistics in Medicine

Course Outline — EPIB-607, September — December 2003

calculations and power

General Area Specific Topics Dates | Colton Moore and McCabe | Armitage and Berry
1 Introduction - course description Sept 4 | Chapter 1 | Not covered. Chapter 1
and evaluation pp 1-7 pp 1-7
— introduction to
statistical analysis in
medicine
— math background
2 | Data Summaries | — types of data Sept 9 | Chapter 2 | Chapter 1 Chapter 1
and Descriptive | — histograms - pp 1144 | pp 1-55 pp 8-46
Statistics — stemplots Sept 11 & Ch2. 106-112
— boxplots Boxplots
— means and
— medians stemplots
— variance not
— relocating/rescaling covered.
3 Probability - laws of probability Sept 16 | Chapter 3 | Chapter 1 Chapter 2
and — discrete and - pp 63-92 | pp 63-78 pp 47-82
Probability continuous random Sept 23
Distributions variables Chapter 3 Chapter 19
— expectation and PP 260-269 pp 692-698
variance of r.v.’s
— diagnostic tests Chapter 4
and conditional pp 279-352
probabilities
— Bayes Theorem Chapter 5
— Normal distribution pp 365-383
— area under Normal
curve Diagnostic tests
- binomial distribution and Poisson
— Normal approximation not covered.
to the binomial
— Poisson distribution
4 Inference — random sampling Sept 25 | Chapter 4 | Chapter 5 Chapter 4
Concerning — hypothesis testing - pp 99-146 | pp391-400 pp 83-112
Means for means Oct 16 pp 137-141
- type I and type II Chapter 6
errors pp 415-479 Chapter 6
— p-values pp 165-174
— confidence intervals Chapter 7
for means pp 491-543 Chapter 16
— t distribution PP 528-538
— paired and unpaired
samples
— Bayesian inference Bayes not | Bayes not
— sample size covered covered

Midterm Exam: Thursday October 23, 2003, 9:00 AM - 11:00 AM, Room 1/12, Dentistry and
Anatomy Building. Tuesday October 21, 2003 will be used as a review day, to go over old exams

and answer questions.
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Course Outline — EPIB-607, September — December 2003

— other types of
regression

— Pearson’s correlation
— Spearman’s
correlation

General Area | Specific Topics Dates | Colton Moore and McCabe | Armitage and Berry
5 Inference — hypothesis testing Oct 28 | Chapter 5 Chapter 8 Chapter 4
concerning for proportions - pp 151-183 | pp 571-595 pp 112-137
proportions — sample size Nov 11
and calculations and power Chapter 6
counts — paired and unpaired pp 175-179
samples
— x2-test to Chapter 19
compare 2 or more pp 667-676
proportions Bayes,
— Fishers exact test Mantel- Fishers exact
— Bayesian inference Haenzel, test, Bayes,
— Bayesian inference counts, Mantel-
— Mantel-Haenzel relative Haenzel, relative
to combine 2 x 2 risk and risk, odds
tables odds ratios and counts
— relative risk and ratio not not covered.
odds ratios covered.
— inference for
count data
6 | Nonparametric | — sign test Nov 13 | Chapter 7 Chapter 14 Chapter 10
Statistics — Rank sum test - pp 219-226 | (On CDROM) pp 272-285
— Wilcoxon signed Nov 18 | Sign test pp 1-26
rank test and CI Chap 7 553-559
~ CI for median not covered.
7 Regression — difference between Nov 20 | Chapter 6 Chapter 2 Chapter 7
and regression and - pp 189-214 | pp 126-168 pp 187-207
Correlation correlation Nov 27
- scatter plots Chapter 10 Chapter 16
— linear regression pp 657-691 pp 538-543
— least squares method
— estimation of
parameters in regression
- Bayesian inference
in regression Bayes Bayes
~basic design not not
in regression covered covered

Final Exam: Tuesday December 9, 2003, 9:00 AM - 12:00 PM, Room TBA. Tuesday December 2,
2003 will be used as a review day, to go over old exams and answer questions.




WHY STUDY STATISTICS IN MEDICINE?
® Medicine and Epidemiology are
becoming increasingly quantitative.
e Knowledge of statistics is required to
design experiments that will

satisfactorily answer medical questions.

® To understand medical literature.

CANADA POST SHOWS IMPROVEMENT

Percentage of the first class mail delivered on time:

December 1989 June 1990
85% 95%
N, = 1000 N, = 2000

Overall for the six months: 91.6%
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DESCRIPTIVE STATISTICS

> graphs
RAW
> averages, variances
DATA.
> categorize
INFERENTIAL STATISTICS

RAW | ——> | SUMMARY| ——> Draw conclusions
—> about a population
DATA DATA from a sample




URNAL — EMERSON AND COLDITZ

NETM, 1983, Volumed®, po. 709-713.

711

Table 2. Statistical Content and Accessibility of Journal Articles.

PROCEDURE " —

</ No statistical methods or
descriptive statistics only

 t-test

S Contingency tables

</ Non-parametric tests

</ Epidemiologic statistics

< Pearson correlation

V4 Simple linear regression
Analysis of variance

< Transformation

</ Non-parametric correlation
Life table
Multiple regression

~ Multiple comparisons
Other methods

Adjustment and stand-
ardization

Multiway tables

J Power
Other survival analysis
Regression for survival
Cost—benefit analysis
Sensitivity analysis
Totals:

Article-methods used
Articles

ARTICLES

CONTAINING

METHODS

no. (%)

443 (58)

179 (24)
112 (15)
45 (6)
39 (5)
55 (7)
37 (5)
33 (4)
26 (3)
15 (2)
24 (3)
19 (3)
13 (2)
17 (2)
13 (2)

12 (2)
13 (2)
11 (1)
6 (1)
6 (1)
2(0)

1120

ACCUMULATED
BY ARTICLE

no. (%)

443 (58)

509 (67)
551 (73)
571 (75)
585 (77)
598 (79)
621 (82)
636 (84)
650 (86)
662 (87)
674 (89)
686 (90)
698 (92)
708 (93)
718 (95)

728 (96)
737 (97)
747 (98)
753 (99)
758 (100)
760 (100)

760

ACCESSIBILITY

BY ARTICLE-

METHOD

(%)

(40)

(56)
(66)
(70
(73)
(78)
(81)
(84)
(87)
(88)
(90)
(92)
(93)
(94)
(96)

(97)
(98)
(99)
(99)
(100)
(100)




Si4 THE. NEW ENGLAND JOURNAL OF MEDICINE

Aug. 23, 1990

MYOCARDIAL ISCHEMIA CAUSED BY DISTAL CORONARY-ARTERY CONSTRICTION IN
STABLE ANGINA PECTORIS

GruseppE Puprra, M.D., AtTitio Maseri, M.D., F.R.C.P., Juax CarLos Kaski, M.D.,
ALFREDO R. Garassy, M.D., Stavros Gavrieripes, M.D., GrRanam DaviEs, M.D.,, F.R.C.P,
AND Fiutepo Crea, M.D.

Abstract Background. In patients with stable coronary
artery disease, the ischemic threshold for the production
of effort-related angina is often quite variable. Although
this feature is commonly attributed to changes in the cali-
ber of coronary arteries at the site of stenosis, it couid also
be caused by the constriction of distal vessels, collateral
vessels, or both. :

Methods. In order to test this hypothesis, we studied
11 patients with stable angina, total occlusion of a single
coronary artery that was supplied by collateral vessels,
normal ventricular function, no evidence of coronary-
artery spasm, and no other coronary stenoses. These
conditions precluded the modulation of coronary flow by
vasomotion at the site of the coronary stenosis.

Results. The ischemic threshold — assessed by mul-
tiplying the heart rate by the systolic blood pressure at a
1-mm depression of the ST segment during exercise test-
ing — increased by 19 percent after the administration
of nitroglycerin (P<0.05) and decreased by 18 per-
cent after the administration of ergonovine (P<0.01). Am-

Statistical Analysis

bulatory electrocardiographic monitoring of the patients
when not receiving treatment detected 73 ischemic epi-
sodes that, in keeping with the history, showed varia-
tions of 25 to 52 beats per minute in the heart rate at
a 1-mm depression of the ST segment; 12 episodes ot
sinus tachycardia exceeded the lowest ischemic heart rate
by a mean (=SD) of 22=13 beats per minute without ST-
segment depression. Furthermore, 21 ischemic episodes
occurred at a heart rate more than 25 beats per minute
below that at a 1-mm depression of the ST segment during
exercise testing. Delayed and reduced filling of collateral
and collateralized vessels associated with depression of
the ST segment similar to that observed during ambula-
tory monitoring was detected on angiographic evaluation
after the intracoronary administration of ergonovine in
three patients.

Conclusions. We propose that the constriction of distal
coronary arteries, collateral vessels, or both may cause
myocardial ischemia in patients with chronic stable angi-
na. (N Engl J Med 1990; 323:514-20.)

Continuous data are presented as means =SD. Statistical analy-
sis was performed with Student’s t-tests for paired and unpaired
data, as appropriate. A value of P<0.05 was considered to indicate

statistical significance.

gL v
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EXPOSURE TO HOUSE-DUST MITE ALLERGEN (Der p I) AND THE DEVELOPMENT OF
ASTHMA IN CHILDHOOD

A Prospective Study

. Ricaarp Sporix, M.R.C.P, Stepuex T. Horgate, M.D., F.R.C.P,,
Tromas AE. Pratts-Micts, M.D., Pu.D., anp Jeremy J. Cocswerr, M.D., F.R.C.P.

Abstract Background and Methods. Children with
asthma commonly have positive skin tests for inhaled al-
lergens, and in the United Kingdom the majority of oider
children with asthma are sensitized to the house-dust
mite. In a cohort of British children at risk for allergic dis-
ease because of family history, we investigated prospec-
tively from 1978 to 1989 the relation between exposure to
the house-dust mite allergen (Der p 1) and the develop-
ment of sensitization and asthma.

Results. Of the 67 children studied in 1989, 35 were
atopic (positive skin tests), and 32 were nonatopic. Of
the 17 with active asthma, 16 were atopic (P <0.005), ali of
whom were sensitized to the house-dust mite, as judged
by positive skin tests and levels of specific IgE antibodies
(P<0.001). For house-dust samples collected from the
homes of 59 of the children in 1979 and from 65 homes in

1988, the geometric means for the highest Der p | expo-
sure were, respectively, 16.1 and 16.8 ug per gram of
sieved dust. There was a trend toward an increasing de-
gree of sensitization at the age of 11 with greater exposure
at the age of 1 (P = 0.062). All but one of the children with
asthma at the age of 11 had been exposed at 1 year of age
to more than 10 ug of Der p | per gram of dust; for this
exposure, the relative risk of asthma was 4.8 (P = 0.05).
The age at which the first episode of wheezing occurred
was inversely related to the level of exposure at the age of
1 for all children (P = 0.015), but especially for the atopic
children (r = —0.66, P = 0.001).

Conciusions. In addition to genetic factors, exposure
in early childhood to house-dust mite allergens is an im-
portant determinant of the subsequent development of
asthma. (N Engl J Med 1990; 323:502-7.)

Comparisons between the clinical groups were made by nonpara-
metric methods. Contingency tables were analyzed by the chi-
square method and a two-tailed Fisher’s exact test. Data sets were
analyzed by Spearman’s rank-correlaton test. Relative risk was
calculated as the ratio of prevalence of disease among exposed
children to the prevalence of disease among unexposed children, as .
described by Schlesselman.?® The significance of the relative risk
was calculated by the chi-square test. The relation between expo-
sure and sensitization to mites was analvzed for linear trend in the

proportion of sensitive children.”
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Principles of Inferential Statistics in Medicine

-

Mathematical Background

QUESTIONS:

a) What is a function?

b) Why do we need functions in statistics?

a) What is the derivative of a function?

b) Why do we need derivatives in statistics?

b) Why do we need indefinite integrals in statistics?

(
(b)
(a)
(b)
3. (a) What is the indefinite integral of a function?
(b)
(a) What is the definite integral of a function?
(b)

b) Why do we need definite integrals in statistics?

Note: The following are very non-rigorous definitions designed to suit the purpose
of our course. Refer to any calculus textbook for the exact definitions and/or more
information.

1. (a) For our purposes, a function assigns a unique numerical value to each number in a
specified set. For example, the function

flz) =12% —oc0 <z < +o0

assigns the value 22 to each z, —00 < z < +o00. Thus z = 1 is assigned the value 1, z = 2 is
assigned the value 4, and z = —2.1 is assigned the value +4.41, etc. A function is defined over
a set of values, which here is the set of all real numbers.

Functions are often easily understood by looking at the graph of the function.
Graph of the function y=x*x

y=x"2
0 2 4 6 8
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(b) Functions are used in statistics to describe probability (density) functions (among many
other things). We will discuss probability functions starting in Section 3 of the course, but we
can look ahead now to some examples:

(i) The Uniform probability (density) function describes the experiment of choosing a
random number between 0 and 1. The function is

1, 0<z<1
f(z) = { 0, otherwise,

and the graph is shown below:

Graph of the Uniform Density

0.8

04

probability density

0.0

-1.0 00 05 10 15 20

X

(ii) The standard Normal probability (density) function is used extensively in virtually
every discipline where statistics are used, including medicine. The function is

1 z?
f(z) = —=ezxp 5 , =00 < T < +00

Ver

and the graph is shown below:

Graph of the Normal Density

04

0.2

probability density

0.0
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2. (a) The derivative of a function measures the slope of the tangent line to the graph of the
function at a given point. For example, if

flz) =22,

then the derivative is given by
fi(z)=2xx.

For example, this means that the slope of the tangent line at the point z = 2 (with f(z) = y = 4)
is2x2=4.

Graph of the function y=x*x

y=x"2

0 2 4 6 8
D4

You may recall the following useful facts relating to derivatives:

1. The slope of a line is a measure of how quickly the function is rising or falling
as z increases in value.

2. If a function has a maximum or minimum value, the the derivative is usually
equal to 0 at that point. In the above, the function has a minimum at z = 0,
where the value of the derivative is zero.

(b) Derivatives will be used when maximum likelihood estimators are discussed, in Section 4
of the course.
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3. (a) The indefinite integral is a synonym for “anti-differentiation”. In other words, when we
calculate the indefinite integral of a function, we look for a function that when differentiated,
returns the function under the integral sign. For example, the indefinite integral of the function
f(z) = z? is given by the

/dexz %xx?’

because the derivative of % x 3 is 2.

(b) Indefinite integrals are used in many places in statistics, but we will see them only
in the context of regression. When we want to look at the probability density of a regression
coefficient, for example, we use a definite integral to go from a joint density (many variables at
once) to a marginal density (of a single variable).

4. (a) The definite integral of a function is the area under the graph of that function. This
area can be approximated directly from the graph, but exact mathematical formulae are also
available from calculus. For example, the area under the the curve ranging from -1 to +2 of
the function f(z) = z? is given by the following definite integral formula:

Graph of the Uniform Density

>
i 2 @ /
N © '8 e /
<>< 2 Q"e&:OL
il < p—i Vj \/
> S o] /
~ 3 /
° o 7 _
o o L -l
-3 -2 -1 0 1 2 3 -1.0 00 05 10 15 20
X X

(b) The area under a curve of a probability density function gives the probability of getting
values in the region of the definite integral. For example, supposed we wished to calculate the
probability that in choosing a random number between 0 and 1 (Uniform density function)
the particular number we choose falls between 0.2 and 0.4. This is calculated by the definite
integral

0.4

0.4
/ ldz = z| = 04-02 = 0.2,
0.2

We will also see definite integrals in the context of calculating means and variances of random
variables. -~

0.2
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- "SHOULD WE SCARE THE
OPPOSITION BY ANNOUNCING
OUR MEAN HEIGHT OR LULL THEM
BY ANNOUNCING OUR MEDIAN
HEIGHT ?°
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"":Boy deﬂes Iong odds
to find marrow donor

N CANADIAN PRESS

Coh "SIDNEY. B.C: — A. chtona-area‘
- |7 couple whose son is stricken with an | .
- - often-fatal blood disease is overjoyed
“"that a continent-wide search for. a
- bone-marrow donor-has been success-
. .ful.— defying 250,000-to-one odds.

- Doctors told.Brian and Barbara
* Delbrouck last week that a 52-year-
- old woman in the U.S. has marrow
- matching that of their 2-year-old son,
-1 Shane, who has aplastic anemia. The,
: \ -boy’s marrow- was rated semi-rare. " .
“"_iDoctors plan to delay the: ‘trans-
S plant however; because Barbara Del-.
w-brouck is expecting a baby in October _|
Z that has a 75-per-cenLchance of:hav-.
;;_1_n marrow compatlble to ShanesJZL :

What are the real odds?
1 person was recruited: 1/250,000=0.000004
2 persons were recruited: 0.000008
10 persons were recruited: .0000399992
lOO'persons were recruited: .0003999228
1000 persons were recruited: .0039929351
10,000 persons were recruited: .0392106073
iO0,000 persons were recruited: .3296819238
%50,000 persons were recruited: .6321229463

l,—(‘jO0,000 DEersons were recruited: .9816848366
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Descriptive Statistics

Blood Pressure Data (Sorted)

Blood Pressure Data

Age
Category | O=M, 1=F

Age

25

27

7
41

a7

42

41

81

51

51

61

Diastolc
Pressure

47

47

51

61

70

kAl

74
74
74
74

75

76

78

87
87

87

91

100

101

108
108

115

Patient #

26

17

18

11

37
12

25

41

21

14

19
13

16

31

42
24

47

10

28

27
18

10

12
13
14
15
16
17
18
19

21

24

25

27
28

3

37

41

47

51

51

42

41

41

61

42
7

51

25

27

37

&1

%

87

74
61

101

74

74

7

S

115

47

105
103

87
47

a7

104

o1

74

108

Pationt #

10
11
12
13
14
15
16
17
18
19

21

24
25

27
28

31

37

4

a7

3 Jo-
o

Mu @35
< O
mwmm
8 9%
8= -

5§



22

DATA CLEANINGg

In 1985 British scientists reported a hole in the ozone layer of the earth’s atmo-
sphere over the South Pole. This is disturbing, since ozone protects us from cancer-
causing ultraviolet radiation. The British report was at first disregarded, since it was
based on ground instruments looking up. More comprehensive observations from
satellite instruments looking down had shown nothing unusual. Then, examination
of the satellite data revealed that the South Pole ozone readings were so low that
the computer software used to analyze the data had automatically suppressed
these values as erroneous outliers! Readings dating back to 1979 were reanalyzed
and showed a large and growing hole in the ozone layer that is unexplained and
possibly dangerous.® Computers analyzing large volumes of data are often pro-
grammed to suppress outliers as protection against errors in the data. As the
example of the hole in the ozone layer illustrates, suppressing an outlier without
investigating it can keep valuable information out of the sight. a

Caivin and Hobbes By B#l Watterson
M FlLLING QUT SEE, THEY ASKED HOW MUCH MONEX
A READER SURNEN T SPEND ON GUM EAXH WEEK, 0L

WROTE, “3$500." FOR MY AGE, I AT
"A37 AND WHEN THEY ASKED WHAT MY
FANOR\TE FLANOR 1S, I WROTE
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SEORUAG $9014 EAM) AQ IGNOLIRIEM 5861 O
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Boxplots of Male vs Female Blood Pressure Scatterplot of age vs Pressure
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Stemplots of Age and Blood Pressure

> stem{pressure} > stem({age)
N = 50 Median = 76.5 N = 50 Median = 44
Quartiles = 69, 96 Quartiles = 40, 52
4 : 377 2 57
5 : 159 3 24
6 : 12266899 3 56778889
7 : 0012344445678, 4 00112222334444
8 : 347779 4 55689
9 : 01256689 5 01112223
10 : 01234588 5 556678899
11 : 5 6 11

> stem(MaleP) > stem(Mage)

N = 23 Median = 74 N = 23 Median = 43
cuartiles = 62, 92 Quartiles = 37, 52

4 7 3 24

5 159 3 567788

6 12268 4 1223344

7 444567 4 5

8 3 5 1223

9 02566 5 679

10 23

> stem{Fage)
> stem{FemaleP) -

N = 27 Median = 48
N = 27 Median = 87 Quartiles = 41, 55
Quartiles = 70, 100

2 57

4 : 37 3

5 : 3 89

6 : 699 4 0012244
7 : 0012348 4 5689

8 : 47779 ) 0112

9 : 189 5 556889
10 014588 6 11
11 5

25
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Early detection and treatment of hyperlipidemia:
physician practices in Canada

CAN MED ASSOC J 1990; 143 (9)

Terry N. Tannenbaum, MD, MPH; John S. Sampalis, PhD; Renaldo N. Battista, MD, ScD;
Ellen R. Rosenberg, MD; Lawrence J oseph, PhD
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counselling patient to diet sheet patient to
yourseif a dietitian only a lipid
specialist
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Fig. 1: Frequency of use by primary care physicians of
methods for providing dietary therapy for hyperlipidemia.
Horizontal lines from top to bottom represent 100th, 75th,
SOth, 25th and 0 percentiles of responses; 25th and 75th
percentiles form top and bottom frame of box, 50th percen-
tile being within box. :



Six Types of Data

1. zero—one, dichotomous, attribute data

)

S Ov i W

. unordered data

.ordered classification data
.ranked data

.numerical discrete data

. numerical continuous data

L3
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Principles of .Inferential Statistics in Medicine

Some common and useful mathematical notation

Referring to data.

Particular values of the variable X in a given data set are usually referred to using lower case
letters with subscripts. For example, if the data set X = {34, 43, 56,52, 38} is given, where X
may refer to the age of a group of five patients, then z3 = 56 refers to the age of the third
data point in the data set. In general, the i** data point is referred to by the notation z;. The
number of subjects in a data set, or the sample size, is often notated by n. In the above, n = 5.

Thus we can say that we have observed the data z;, 1=1,2,...,5.

Sums and Products:

The notation Y refers to the sum of a group of numbers. Thus we can write

n
Z$i=$1+$2+"'+l‘n_1+$n.

i=1
In the above example,

5

i=1

Similarly, the notation [] refers to the product of a group of numbers. Thus we can write

n
[Mzi=z1 x32 x -+ X Zp_y X Ty
=1

In the above example,

5
Iz =71 x 29 x 73 x 24 x 25 = 34 x 43 x 56 x 52 x 38 = 161, 779, 072.

i=1



Median

To compute the median of a distribution:

1 Arrange all observations in order of size, from smallest to largest.

2 If the number 7 of observations is odd, the median M is the
center observation in the ordered list. The location of the
median is found by counting (n + 1)/2 observations up from the
the bottom of the list.

3 If the number n of observatons is even, the median M is the
average of the two center observations in the ordered list. The
Jocation of the median is again found by counting (n + 1)/2
observations up from the bottom of the list.

Mean

If n observations are denoted by Xy, X2, -+ T their mean Is
_ L ‘
x=—(x1—'.-x2—.-'---1-x,,)

n

or in more compact notation

=iy (1.1)
n G
Varjance and standard deviation
The variance of n observations Xy, %z, - - - X, IS
- l - -— P~
§ == Ux, = %) + (x, =X+ "+ (x, — )]
or more compactly
. 1
F=—g L&A (1.2)
The standard deviaton s is the square root of the variance s°.

Computing formula for the variance* If you do statistical calculations
with a basic calculator, you will need to know alternative formulas that are
designed for easier calculation of such quantities as s>, Equation 1.2 is the
defining formula for the variance. That is, this equation shows how s° mea-
sures spread about the mean. But Equation 1.2 is awkward to use because
you must first subtract the mean X from each individual observation. A bit
of algebra shows that an equivalent formula is

. 1 .1 2
5‘=n_1\:2x;—;(z.ti>] (1.3)

This is a computing formula for the variance; it obscures the meaning of s*
but leads to much shorter calculations. Equation 1.3 uses the basic quantities
3 x;and A which can be obtained quicklyona calculator with a memory

and a square burtton without the need to write down intermediate results.
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Numerical Descriptive Statistics ot Blood Pressure Data

All Cases

Pressure Age Sex | Agecat
Number of Cases 50 50 50 50
Minimum 43 25 0 3
Maximum 115 61 1 6
Average 80 45.8 0.54 4.6
Standard Dev 17.9 8.8 05 | 082

" Variance 320.8 77.7 025 | 085
Males

Pressure Age Sex
Number of Cases 23 23 23
Minimum 47 32 0
Maximum 103 59 0
Average 75.6 44 0
Standard Dev 16.6 7.9 0
Variance 275.2 62.5 0

Females

Pressure Age Sex
Number of Cases 27 27 27
Minimum 43 25 1
Maximum 115 61 1
Average 83.9 47.3 1
Standard Dev 18.4 9.4 0
Variance 338.7 88.1 0




Table 1: Baseline Patient Characteristics.
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ge - YT (mean = SD)
=54
Male
Female
ype of surgery
Tipial ostectomy
Unicompartmental arthroplas<ty
3jicompartmental arthroplastTy
Tvpe of anesthesia
General
Zpidural
Rzason for knee surgery
Ostecarthritis
Rheumatoid arthritis
Complication of prosthesis
Knee pain -
ivascular necrosis of bone
cemented prosthesis
Operation time - min (mean = SD)
Tourniquet time during
operation - min (mean % SD)
Post-operative continuous passive
motion - days (mean = SD)
pays to completion of
study (mean = SD)
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Why divide bv n — 1 instead of n?

Suppose that the population consists of only n = 4 members, with values {1,2,3,4}. Then the

true mean of the population is
4= 1424344 _

1 2.5,

and the true population variance is

o (1-252+(2-25)2+ (3252 + (425 _

2
4 5

so that the true standard deviation is

c=ve2=v/1.25~1.118.

Now suppose that we cannot view the whole population, but instead take a sample of size two.
Below we list all of the possible samples that we could take from this population, together with
the calculations for mean and variance, where we calculate the variance and standard deviations
both with divisors n - 1 and n:

sample | sample mean | sample var (o-1) sample sd (n-1) var (n) sd (n)

(z1,22) | T= g——l""';"" 52 = E@=F) HzaoF) ;i'l”"” 2 s=v3s% 530p = (zy—8) HaaZ) 24(za=32) Spop = \/;g
(1,2) 1.5 0.5 0.707 0.25 0.5
(1,3) 2.0 3.0 1414 1.0 1.0
(1,4) 2.5 4.5 2.212 2.25 1.5
(2,3) 25 0.5 0707 0.25 05
2.4 3.0 2.0 1414 1.0 1.0
(3,4) 3.5 0.5 0.707 0.25 0.5
2.1) 15 0.5 0.707 0.95 0.5
(3,1) 2.0 2.0 1.414 1.0 1.0
(4,1) 2.5 4.5 2.212 2.25 1.5
(3,2) 2.5 0.5 0.707 0.25 0.5
(4,2) 3.0 2.0 1.414 1.0. 1.0
(4,3) 3.5 0.5 0.707 0.25 0.5
(1,1) 1 0 0 0 0
(2,2) 2 0 0 0 0
(3.3) 3 0 0 ) 0
(4,4) 4 0 0 0 0
avg 2.5 1.25 1.118 .625 791

Hence, on average, the divisor n— 1 gives the correct estimate, while the divisor n underestimates
the value.
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F\

-~ ’
Mode Median

Medlan and mode

Figure 5-1 The mode and median of a frequency distribution. The mode
is the point at which the frequency curve attains its highest value. The
median is the point that divides the area under the curve into two equal
farts 1o the left and to the right of it The median is the center point of
any symmetric frequency curve. This normal curve is highest at the
center, so the center point s also the mode.

Figure 5-3 The mean and median of a skewed distribution. The mean is

located farther toward the long tail of a skewed frequency curve than is
the median

%
B
[1\

Figure 5-2 The mean of a frequency distribution. The mean is the cen
of gravity of the frequency curve, the point about which the curve wou

balance on a pivot placed be

neath it.
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Principles of Inferential Statistics in Medicine

Relocating and rescaling numbers

Suppose that we have a set of data, X = {z1,22,...,Z,}, which has mean ¥ and variance s?, or
standard deviation s. If we transform each value in X by adding or multiplying by a constant,
what happens to the mean and standard deviation of the “new” transformed sample? Call the
new transformed variable Y=f(X), and refer to the following table:

Type of transformation New mean | New standard deviation
Original (no transformation) | T s
Y=X

Add the constant a T+a S
Y=X+4a

Multiply by the constant b bXT bxs
Y=bxX

Add then Multiply bx (T+a) bxs
Y=bx(X+a)

Multiply then Add (bXT)+a bxs
Y=0bxX)+a

These rules can all be “proved” using basic algebraic results.

Note: All of the above also applies to a population from a distribution, where X is a random
sample from the population or density, and u and o2, the population mean and variance replaces
their data equivalents, T and sZ.

The above formulae are used at various places in biostatistics. One of the most common uses is

in “standardizing” a variable, which means transforming it to have a mean of 0 and a standard

deviation (and variance) of 1. Using the third rule above, if X has a mean ux and a standard

deviation of ox, then letting a = —ux and b = i, we will have

X - 175'¢
ox

Y =

which has py = 0 and oy = 1.
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TORONTO ~ While the de-

: experiencing a true brain

‘drain to the U.S. has gone on for

‘years, the creator of a Web site

‘thinks she has an easy way for peo-

-ple to discuss what’s alluring and

-frightening about moving south.

" With real-life stories on the brain

.drain, Martha Fusca said she be-

-lieves www.canadasbraindrain.ca

.can determine what it takes to en-

‘tice a Canadian to move to the U.S.

. “We want to find out what’s so in-
triguing about the U.S.,” said Fusca,
:president of Stornoway Communi-
.cations. “People should be talking
.and thinking about the issue in an
-interactive setting.”

. Visitors are asked to fill out a

Ry

:likes. of workmg in Canada or the

‘U.S. For instance, would:a $10,000..

* “pay hike persuade you- to move )
- south? How about $20,0007: v

bate over whether Canada is

The results, says Fusca,. wﬂl pro;
vide a more accurate picture of how

-the average Canadian sees the issue -

and what lures Canadians south. .
Preliminary results, tabulated m

‘real time by a built-in calculator;. .
show that three of every 10 respon- -

dents would consider moving if of-..
fered $20,000 more than they make -

now. Nine out of every 10 woul o

move if given $900,000 more:.. ..: %=
Fourteen per-cent of respondents-.
who have thought about moving
stay because they like Canada’s.
“conservative” attitude, whereas 27.:
per cent said they. like the more
“risk-taking” attitude of -Ameri---
cans. Another 30 per cent say they

" preferCanada’sethnicmix. - . -
.questionnaire about likes and dis- _

Fusca said the survey will painta

 Montrey! G}a;&{f'& ,

SP"\.I\J 2000

; - ryan Berard’ sNanonalHodgeyngue

: career came toa sudden and iragicend -

. Saturday night and I canonly hope that .

. hlsmlsfortlmevn]lleadmeNHLtoadopt

mandatoryfaclalpromcbonforeveryp]ayen
«-The Toronto defenceman lost the sight in his

nghteyewhenhewasstruckbyOt- .
tawa’s Marian Hossa’s stick. Hossa re-
. ceived adouble -minor penalty for high-
sticking on the play but; by all accounts,
this was an accident. Hossa went to take
ashot, missed the puck and hit Berard
in the face. He was rushed to hospital,
but emergency surgery performed
overnight failed to save hissight. -
. While doctors said there was a slim
chance Berard would regain his sight, a -
promlsmgwreerlsovermmanaweekaﬂ:er L

'Berardszsrdblrthday:

Thehopenowxsthatthlsmcxdentwi[lmovethe

NHL and the NHL Players’ Association to take
the necessary steps to require that all players
wear proper facial protection. Their neglect to do
so in the past borders on the criminal.

. If you think that’s an overstatement, consider
the view of Emile J. Therien, the president of
the Canada Safety Council. In a telephone conver-

clearer plcture of how Canadians

PAT HICKEY

. feel about brain drain than previous
sstudies because of thelarge number
-of Internet users. She expects the"
- sample size will be large enough to'
-surpass earlier studm witbm acou-
p]eofweekg.’ L S
T “We hope the s survey wi]l provide
. us with thé wherewithal of what"
+kind of policy government should -
put in place,” said Fusca. “We have
_talented peopIe and we want to keep
them here.” .

The site; born out of a documen-
tary produced by Fusca in 1999 of-
fers data on subjects such a$ green’
‘cards, immigration-lawyers and
.~ costs of living, health care and taxa-
tion in the two countries. Visitors.-
can also have their say on the gite’s
d:scussmn forum. Tere

. But while Fusca wants to learn
more about the supposed brain

- drain, she says she’s not oblivious to

4 _ BACKT.
Make visors mandatory

Cn e

satmnfromOttawayesterdayThenensaldthJs .
g was an issue of safety in the workplace.Inany 3
_ other industry, workers are required to wear pro-
tective equipment and the employer is liable if he
. doesn’t enforce the use of that equipment. :
_. This isnot a kneejerk reaction by Therien.He |
he’s eminently qualified tospeakonthe | f
subject. His son, Chris, is adefenceman | -
with the Philadelphia Flyers. Emile and
. his wife, Pat, have long beeni concerned
because, as he so eloquently put it yes-
terday' “My du.mmy doesn’t wear a vi-

sor”

equipment prevents injuries.

. Please see HICKEY, Page C2

o T ewye % ey
? o gt TN,

Chris Thenen is among the majority,
of the plavers in the NHL who don't :
Mwsors despite the fact that tere
are dozens of facial and eye injuries each season.
tatistics compiled by the team physicians in the
NHL show that 95 per cent of those injuries are
suffered by players who don’t wear visors, despi
the overwhelming statistical evidence that this

stat:stics that show Canada is gam- ‘
. ing more brains than it’slosing. . =

Statistics Canada reported in May '

" that Canada receives far more high-

ly- educated immigrants from
abroad every year than it loses. For
every university grad who moved to-
the U.S., four came to Canada the
" report said. -

““We’re not savmg Canadxans are

_‘leaving in droves, but there are a
. signiﬁmnt number going,” shesaid. :

Between 22,000 and 35,000 Canadi-

. "ans moved annually to the United

" States in the ’90s, including about
10,000 university graduates, Stat1$-

-tics Canada said.

Fusca has toyed with the idea of
moving south but her attachment to
Canada, a country she came to from
Italyasachild,istoostrong. *. . -

“I hope the site encourages people
to stay in Canada,” she said. “Ilove
this country somuch.” -

R
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Vision in Bedard’s right eyei;n doubt. PageC2
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stmate Impo
parameters in the data
or test hypotheses.

QOverview
Daia |
!
0.351045 0.167443 0.806822 0.681163'
0.263435 0.518008 0.819722 0.174277
0.965841 0.039968 0.464851 0.168796
0.640615 0.104137 0.291631 0.781728
Daia
0.35 0.17 0.81 0.68
0.26 0.52 0.82 0171
0.96 0.04 0.46 0.17
0.64 0.10 0.29 0.78
Mean=  0.452127 !
i SD=  0.296678 |
Binomial
Nomal
Chi-Square
Regression

Data
Cleaning

Summarize the
Data

Form Probability
Models

Use Probability
Mcedels
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Populations and Samples

Real Worla

0r

C Ona(,‘oJrua\
Co (m\xﬁor\

Notation: Letters from the Greek alphabet (i, o, 7, etc.) will be used to
denote the true population values. These values are typically unknown, and
are the parameters of the probabilistic model. “Ordinary” letters (Z, s, p)
will indicate the corresponding sample quantities.
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Rules of Probability

The sample space, S, is the collection of all possible outcomes of an experiment.
An event, E, is any subset of the sample space. If we let E be any event, then we
have the following rules of probabilities:

1.
2.

3.

0 < P(E) <1, for any event E.
P(S)=1

(Addition rule) If E and F are disjoint events, then
P(E or F)= P(E)+ P(F).

(Complement Rule) For any event E, P(E®) =1 — P(E)

(Multiplication Rule) If events E and F are independent, then
P(E and F) = P(E) x P(F).

€ F

Conditional Probability

The conditional probability of event E given that event F' has happened, is defined

to be

P(E and F)

P(BIF) = =1

This is interpreted as “Given that F has occurred, calculate the probability E will
also occur.” Note that we can also write

P(E and F) = P(F) x P(E|F),

even if E and F are not independent.
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§Om€ (E. X a,mffzs

The Probabiiity of surviving a certain transplant operation is 0.5. If a patient
survives the operation, the probability that his or her body.will reject the
transplant within a month is 0.2. What is the probability of surviving both of
these critical stages?

If 40 percent of the mice used in an experiment will become very aggressive
within one minute after having been administered an experimental drug, find
the probability that exactly six of fifteen mice which have been administered
the drug will become very aggressive within one minute, using

(a) the formula for the binomial distribution;

(b) TableL.- '

(S What s +he e rac-‘rac{ ny moac '7{’ mice

hat will bocome a._.’jri!t\‘vé? Voariarncd :

In a certain community, 8 percent of all adults over 50 have diabetes. If a

hc‘alth service in this community correctly diagnoses 95 percent of all persons

with diabetes as having the disease and incorrectly diagnoses 2 percent of all

persons without diabetes as having the disease, find the probabilities that

(a) the community health service will diagnose an adult over 50 as having
diabetes; : :

(b) a person over 50 diagnosed by the health service as having diabetes
actually has the disease.

~

C, there are the respective

I
- ——

Associated with three diseases A. 5B, and re th
chances .20, .30, and .50 of being hospitalized. If an mdxv1dua-l has all
three diseases (4. B, and C) and if these exert their influences indepen-
dently, what is the chance of his being hospitalized?

S e

An investigator develops a screening test for cancer. He uses this
screening test on known cancer patients and known noancancer patieats,
and he finds the test has a 5 percent false positive rate (i.e., positive test
results for noncancer patients) and a 20 percent false negative rate (i.e.,
negative test results for cancer patients). He is now going to apply this
test 10 a population in which he knows 2 percent have undetected cancer.
Using Bayes’ theorem, find the chance that someone with 2 positive test
actually has cancer; also, find the chance that someone with a negative
. test actually has cancer. In considering the use of this test, what other

(nonstatistical) issues are relevant?

——

Testany drug on six patients. {f none of the patieats shows remission. rziect the drug. Under
this program, 3 drug which producss remissions in 20 percent of 2 iarge populadoa of
patients has about 3 chancesin 4 of passing the screea. whiie one with 2 3 percent remussion

rate has nearty nine chances in ten of passing the s¢mel. Prapy o .ﬂ& ‘—\LG e

Two Statements. -

-
~

41
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Binomial Distribution
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S/Q 3/57

. : N! 1 1w
Pr{X heads in N flips} = m(i)x(l - 3)(N X)

More generally,

NI

m(”)x(l — 7)N=X)

Pr{X successes in N trials} =

TTT



43

802 Table C Binomial probabilities

Entry is PIX = k) = (Z)pk(l — ek
p
n k .01 .02 .03 .04 .05 .06 .07 .08 .09
S o | oso1  oe0s 9409 o216 o025 8836 8649 Bdcs Bl
1 .0198 0392 .0582 0768 .0950 L1128 .1302 .1472 .1638
2 .OOQI .0004 .0009 0016 .0025 .0036 .0049 .0064 .0081
3 0 9703 9412 9127 .8847 .8574 .8306 .8044 7787 7536
1 .0294 0576 .0847 .1106 1354 .1590 .1816 .2031 2236
2 .0003 .0012 .0026 .0046 .0071 .0102 0137 0177 .0221
3 .0001 .0001 .0002 .0003 .0005 .0007
4 0 9606 9224 .8853 .8493 8145 7807 7481 7164 .6857
1 .0388 .0753 .1095 1416 1715 .1993 2252 .2492 2713
2 .0006 .0023 .0051 .0088 0135 0191 .0254 .0325 .0402
3 .0001 .0002 .0005 .0008 .0013 .0019 .0027
4 .0001
5 0 9510 .9039 :8587 .8154 7738 7339 6957 .6591 .6240
1 .0480 0922 .1328 .1699 .2036 2342 2618 .2866 .3086
2 .0010 .0038 .0082 .0142 .0214 .0299 .0394 .0498 .0610
3 .0001 .0003 .0006 L0011 .0019 .0030 .0043 .0060
. 4 0001 .0001 .0002 .0003
5
6 0 9415 .8858 .8330 7828 .7351 .6899 .6470 .6064 .5679
1 0571 .1085 .1546 1957 2321 2642 2922 3164 .3370
2 .0014 .0055 .0120 .0204 .0305 .0422 .0550 .0688 .0833
3 .0002 .0005 0011 .0021 .0036 .0055 .0080 .0110
4 .0001 .0002 .0003 .0005 .0008
5
6
7 0 9321 .8681 .8080 7514 .6983 .6485 6017 .5578 5168
1 .0659 .1240 .1749 2192 2573 .2897 .3170 .3396 .3578
2 .0020 .0076 0162 .0274 .0406 .0555 0716 .0886 .1061
3 .0003 .0008 .0019 .0036 .0059 .0090 0128 0175
4 .0001 .0002 . .0004 .0007 0011 .0017
5 0001 .0001
6
7
0 .6096 .5596 5132 4703
1
2
3
4
5
6
7
8




LtLl ' Table C (Continued) 803
Entry is P(X = k) = (2)pk(l ~ pp-k
. P
09 n k .10 15 .20 25 .30 35 40 45 .50
3281 2 0 | .8100 7225  .6400  .5625  .4900  .4225 3600  .3025  .2500
1638 1 | .1800 2550  .3200  .3750  .4200  .4550  .4800  .4950  .5000
081 2 | 0100 .0225  .0400  .0625  .0900  .1225  .1600  .2025  .2500
Zggg 3 0 | .7290  .6141  .5120  .4219  .3430 2746 2160  .1664  .1250
2 1 | .2430 3251  .3840 4219  .4410 4436  .4320  .4084  .3750
221 2 | .0270  .0574  .0960  .1406 - .1890  .2389 2880  .3341  .3750
3007 3 | .0010 .0034 .0080 .0156  .0270  .0429  .0640  .0911  .1250
5857 4 0 | .6561  .5220  .4096  .3164  .2401  .1785  .1296  .0915  .0625
2713 1 | 2916  .3685  .4096  .4219  .4116  .3845  .3456  .2995  .2500
0402 2 | .0486  .0975  .1536  .2109  .2646  .3105  .3456  .3675  .3750
027 3 | 0036 .0115  .0256 .0469  .0756  .1115  .1536  .2005  .2500
0001 4 | .0001  .0005 .0016 .0039  .0081  .0150  .0256  .0410  .0625
6240 5 0 | .5905  .4437 3277 2373  .1681  .1160  .0778  .0503  .0313
3086 1 | .3280 3915 4096  .3955  .3602  .3124  .2592  .2059  .1563
0610 2 | 0729 1382 2048 2637  .3087  .3364  .3456  .3369  .3125
0060 3 | .0081  .0244  .0512  .0879  .1323  .1811 2304 2757  .3125
0003 4 | .0004 .0022 .0064 .0146  .0284  .0488  .0768 .1128  .1562
5 0001  .0003  .0010  .0024  .0053  .0102  .0185  .0312
5679 6 0 | 5314 3771 2621  .1780  .1176  .0754  .0467  .0277  .0156
3370 1 | .3543 3993  .3932  .3560  .3025  .2437  .1866  .1359  .0938
0833 2 | 0984 1762 2458 2966  .3241  .3280  .3110  .2780  .2344
0110 3 | .0146  .0415  .0819  .1318  .1852  .2355  .2765  .3032 ' .3125
0008 4 | .0012 .0055 .0154  .0330  .0595  .0951  .1382  .1861  .2344
5 | .0001  .0004 .0015  .0044  .0102  .0205  .0369  .0609  .0937
6 0001  .0002  .0007  .0018  .0041  .0083  .0156
5168 7 0 | .4783  .3206  .2097  .1335  .0824  .0490  .0280  .0152  .0078
3578 1 | 3720 3960  .3670  .3115  .2471  .1848  .1306  .0872  .0547 .
1061 2 | 1240 2097 2753 3115 3177 .2985 2613  .2140  .1641
0175 3 | .0230  .0617  .1147 1730  .2269  .2679 2903  .2918  .2734
0017 4 | .0026 0109 0287 0577 .0972  .1442  .1935  .2388  .2734
0001 5 | .0002 .0012 .0043  .0115  .0250  .0466  .0774  .1172  .164l
6 0001  .0004 0013  .0036  .0084  .0172  .0320  .0547
7 0001  .0002  .0006 .0016  .0037  .0078
‘ggg? 8 0 | .4305 2725  .1678  .1001  .0576  .0319  .0168  .0084  .0039
g 1 | .3826  .3847 3355 2670  .1977  .1373  .0896  .0548  .0313
e 2 | .1488 2376  .2936  .3115  .2965  .2587  .2090  .1569  .1094
-8321 3 | .0331  .0839  .1468  .2076  .2541 2786  .2787  .2568  .2188
10002 4 | .0046 .0185  .0459  .0865  .1361  .1875  .2322 2627  .2734
- 5 | .0004 .0026 .0092  .0231  .0467  .0808  .1239  .1719  .2188
6 0002 .0011  .0038 .0100  .0217  .0413  .0703  .1094
7 0001  .0004  .0012  .0033  .0079 0164  .0312
8 0001  .0002  .0007  .0017  .0039




Binomial Distribution in Practice

The assumptions behind the use of the binomial distribution may not always
be perfectly satisfied in practice. For example:

Let X represent the number of females in four children, among all couples in
Canada with exactly four children.

The “Real World” data and the data predicted by a binomial distribution
model with = = 4 are:

X | Predicted | Observed
Proportion | Proportion

0 0.0625 0.08

1 0.25 0.26

2 0.375 0.31

3 0.25 0.27

4 0.0625 0.08

For the predicted scores, we have used:

4!
Pr{X =k} = 81 — 7))k

(4 —k)!
where 7 = 0.5 and £ =0, 1,2, 3, 4.

Why do you think that the observed values differ (slightly) from those pre-
dicted by a binomial model? Which assumption of the binomial model may
be violated here?

45



46

It’s easy to lie
with statistics

- OTTAWA — In the early 1950s, Darrell Huff

.wrote a book called How to Lie With Statistics.

beIt’s‘still a classic exposure of tricks with num-
IS. Caean -t Do il oL

. Hutf.m;maskedatheermm lu_rkihg in averages. -

A man with his head in a hot oven and his feet in
a freezer may be suffering the tortures of the
damned. But on average he’s quite comfortable,
- Huff pointed out the wrong conclusions pro-
duced by biased samples. Literary Digest, for
example, forecast the election of Landon, the
Republican presidential candidate over Roose-
velt, the Democrat, in 1936 by a poll that in-
volved phoning subscribers., -

"The folks who could still afford telephones
and magazines in that Depression year tended

to be Republicans. But there were more Demo-

cratic voters. , o , )
Numbers, Huff showed, can be made to dance

toanyone’s tune by the cunning manipulation of

the base year for comparisons. o
Let’s take a modern example. Last year’s fed-

eral budget deficit was $30.5 billion. You want

that to look bad? Compare it with the

$11.5-billion deficit 10 years earlier. The deficit

has jumped.by 165 per cent ina de(;ade. a7
Hard to tell the truth DR
Do you want to ‘make, the $30.5_billion look

* good? Compare it with the $38.5 billion in
- 1984-85, the Mulroney' governrient’s first year

in power. Suddenly the deficit i§ 20 per ‘cent
down, not 165 per cent up. = o o
Lying with statistics is ridiculously easy. The

- hard thing is telling the truth with statistics. .

The world is a complex and puzzling place.
It’s hard to tell cause from effect. It’s hard to tell
when something is just a coincidence and has
nothing to do with something else.

Take, for instance, the statistics much ban-

died aBout these days about the number of days
kids in various countries go to school in a year.
Canadian schools are open about 185 days com-
pared with 180 in the United States, 226 to 240
in Germany and 243 in Japan.

This is supposed to explain why schooling
isn’t what it used tobe. :

Now I don’t know that it isn’t. Older folks
have been saying that kind of thing for as long as

* I can remember. My own contacts suggest to-

day’s kids are as able to cope with reading, writ-
ing and numbers as I was at their various ages.
But suppose there is a problem. The cause is -

- probably a lot more complicated than the num-

ber of days in the school year. e .
The difficulty of telling the truth with statis-

tics is ‘also’ shown'“irt" attempts ‘to’ debiink ‘the

myth that the 1950s.and 1960s were the “good
old days”.compared with today’s economic con-

- ditions. Of course, things. were far from perfect
" and it’s easy to show that ‘per-capita income or

wealth was lower then, even after allowing for

_ inflation. .

Follow a political line

But it’s hard to capture in statistics the feeling
of hope and confidence of the generation that -
cameout of the Depression of the 1930s and saw
evil put to flight in the 1940s. .

It wasn’t just a matter of what you had or how
much you made. It was the feeling of an unlimit-
ed future. Economic mismanagement and rising
taxes have cost us that future, a loss that cannot
be measured in dollars.

Part of the damage is a loss of confidence in
the people who should be trying to tell us the
truth with statistics.

Statistics Canada still deserves credit for at-
tempting truth-telling within its reduced re-

. sources. But.other agencies of the federal gov-

ernment; and especially the Finance Depart-

- ment, seem to.follow a political line.

* Numbers put out by government agencies are
not wrong. But-a correct number can still be
selected and manipulated to give a misleading’
impression. A

The Goods and Services Tax Consumer infor-
mation Office put out a report the other day
saying that, in the first three months of 1991,
“savings from the elimination of the federal
sales tax are being passed on to consumers.” .

Nowhere in -the document was there a
straight-out admission that the numbers were
from the depth of the second-worst recession
since the 1930s, a time of downward pressure on
prices. This may not be lying. But is it telling the
whole truth? O -




Means and Variances for Probability Distributions
Discrete Case

Suppose that X is a discrete valued random variable taking on values in the
set {a1,a2,...,a,}, with corresponding probabilities {p1,ps,...,pn}. The
ezpected value or mean for a discrete variable is defined to be

= Zai X D; (1)
i=1
The variance of X is defined as
Var(X) = Z(a,— - E(X))2 X p; (2)

i=1

Example 1: Suppose that entering a certain lottery costs $1. The top prize
is $10,000,000, which has a m chance of being won, while second prize

is $100,000, with probablhty of To56881 906 T
What is the expected gain of someone who buys

and third prize is $100, which is won

with a probability of =5
a ticket?

18,424 424

Note that there is a
1 1 1 20974573

13,083,816 1,906,884 18,424 20975724

chance of winning nothing. Using the above formula, we calculate

~ .9999451270

1 1
A Winninee — TSV S Sy x — L
Expected Winnings (10,000,000 — 1) x 13,983, 816 + (100,000 — 1) x 1,906, 884
20974573
+100 = 1) x o= + 0= 1) x Srgrsrad
= 108919 9970183380,

455994
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Example 2: Find the expected value and variance for a binomial random
variable, where there are 10 trials and the probability of sucess on each trial
is m = 0.6.

The set of possible outcomes is
{0,1,2,3,4,5,6,7,8,9,10}.

The probabilities for these outcomes, obtained either directly from binomial
tables, or from the formula for binomial probabilities, are

{ 0.0001048576 ,0.0015728640,0.0106168320,0.0424673280,0.1114767360,
0.2006581248 ,0.2508226560, 0.2149908480, 0.1209323520, 0.0403107840,
0.0060466176 }.

Multiplying these two sets of numbers as in (1) produces E(X) = 6, and
using (2), we find that Var(X) = 2.4.

Note: There are shortcut formule for binomial (and many other) ran-
dom variables. Let X be a binomial random variable with n trials and
probability of success 7. Then:

1. BE(X)=nxm, and

2. Var(X)=nxrmx(l—m)
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Bayes Theorem (Discrete Case)

Suppose we are considering a test for cancer (see Question 5 on a previous
sheet).

Let A = the event that a test is positive.
Let B = the event of actually having cancer.

Suppose we know that:
o P(A|B°) = 0.05, and so P(A%|B°) = 1 — 0.05 = 0.95

e P(A°B) =0.20, and so P(A|B) =1-0.20 = 0.80
e P(B) = 0.02, and so P(B°) = 0.98

(a) What is the probability of cancer given that the test is positive?
(b) What is the probability of cancer given that the test is negative?

We can draw a diagram as below:

S

B B

0.93]

From the diagram, we see that

0.016
= U0 o460
P(BIA) = 5516 70,049
and 0.004
P(B|A) = ' — .0043

0.004 +0.931
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Alternatively, we can use Bayes Theorem, which states:

P(B) x P(A|B)
P(B) x P(A|B) + P(B°) x P(A|B°)

P(B|A) =

Plugging in the numbers, we can check that the solutions are the same. For
example,

P(B) x P(A|B) 0.02 x 0.80

(Bl4) P(B) x P(A[B) + P(B°) x P(A|B°) _ 0.02 x 0.80 + 0.98 x 0.05

Switching the roles of A and A€ in the above formula yields

P(B) x P(A°|B)

P(BIAY) = 5By % B(a1B) + P(B) x P(A95°)

= 0.0043

Note that before the test is performed, the probability that a person has
cancer is 0.02, but that these probabilities are “updated” in a natural
way, once the test results become available.

Bayes Theorem may be generalized to the case where the event B has more

than two possible outcomes, say By, B, ..., Ba.
g( E 2 B 3 B"“ ?"
|
/\ e o0 o />
% Ve Nz d YA
___—d‘__________/
In this case, the Bayes Theorem is
P(B P(A|B;
P(Byd) = — LB X PAIB) o

i1 P(Bi) x P(A|B:)’

We will cover another extension of Bayes Theorem, to the case where B is a
continuous outcome, later in the course.



A DICTIONARY OF
EPIDEMIOLOGY

SECOND EDITION

Edited for the
International Epidemiological Association

John M. Last

BINARY VARIABLE A variable having only two possible values, e.g. on or off, 0 or 1. See
also BrT.

BINOMIAL DISTRIBUTION A probability distribution associated with two mutually exclu-
Slve outcomes, e.g., presence or absence of a clinical or laboratory sign, death, or
survival. The probability distribution of the number of occurrences of a binary
event in a sample of n independent observations. The binomial distribution is used
to model CUMULATIVE INCIDENCE RATES and PREVALENCE RATES. The BERNOULLI DIS-

TRIBUTION is a special case of the binomial distribution with n=1.

PROBABILITY
1. The limit of the relative frequency of an event in a sequence of N random
trials as N approaches infinity, i.e., the limit of

Number of occurrence of the event
N

2. A measure, ranging from zero to 1, of the degree of belief in a hypothesis or
statement.

PRIOR PROBABILITY Probability calculated or estimated from theory or belief, before a
study is done. See BAYES' THEOREM.

PROBABILITY DENSITY The frequency distribution of a continuous random variable.

PROBABILITY DISTRIBUTION For a discrete random variable, the function that gives the
probabilities that the variable equals each of a sequence of pqssible values. Exarq-
ples include the binomial and Poisson distributions. For a continuous random vari-
able, often used synonymously with the probability density function.

PROBABILITY SAMPLE (Syn: random sample) See SAMPLE. )
PROBABILITY THEORY The branch of mathematics dealing with the purely logical prop-

erties of probability. Its theorems underly most statistical methods.



2 p iagnoche Tockg

SENSITIVITY AND SPECIFICITY (of a screening test) Semsitivity is the proportion of truly
dlseasgd persons in the screened population who are identified as diseased by the
screening test. Sensitivity is a measure of the probability of correctly diagnosing a
case, or the probability that any given case will be identified by the test {Syn: true
positive rate).

S[Jeczﬁcit).' is the proportion of truly nondiseased persons who are so identified by
tl:ne screening test. It is a measure of the probability of correctly identifying a non-
diseased person with a screening test (Syn: true negative rate). The relationships
are shown in the following fourfold table, in which the letters g, b, ¢, and d repre-
sent the quantities specified below the table.

Screening test results True status TotaL
Diseased Not diseased

Positive a b at+b

Negative < d c+d

Total a+tc b+d a+btc+d

a. Diseased individuals detected by the test (true positives)

b. Nondiseased individuals positive by the test (false positives)

¢. Diseased individuals not detectable by the test (false negatives)
d. Nondiseased individuals negative by the test (true negatives)

e a pe
Sensitivity = P Specificity = Py

- . .. a
Predictive value (positive test result) = P

. .- . __d
Predictive value (negative test result) = P

FALSE NEGATIVE Negative test result in a subject who possesses the attribute for which
the test is conducted. The labeling of a diseased person as healthy when screening
in the detection of disease. See also SCREENING; SENSITIVITY AND SPECIFICITY.

FALSE POSITIVE Positive test result in a subject who does not possess the attribute for
which the test is conducted. The labeling of a healthy person as diseased when
screening in the detection of disease. See also SCREENING; SENSITIVITY AND SPECIFIC-
ITY.

PREDICTIVE VALUE In screening and diagnostic tests, the probability that a person with
a positive test is a true positive (i.e., does have the disease) is referred to as the
“predictive value of a positive test.” The predictive value of a negative test is the
probability that a person with a negative test does not have the disease. The predic-
tive value of a screening test is determined by the sensitivity and specificity of the
test, and by the prevalence of the condition for which the test is used. See also
SCREENING; SENSITIVITY AND SPECIFICITY.



Test

Test

Test

Diagnostic Tests

Prevalence Rate=10%

Truth
Diseased Non-Diseased
80 90 170
20 810 830
100 900 1000
Prevalence Rate=2%
Truth
Diseased Non-Diseased
16 98 114
4 882 836
20 980 1000
Prevalence Rate=50%
Truth
Diseased Non-Diseased
400 50 450
100 450 550
500 500 1000
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Continuous Diagnostic Tests

Many tests record outcomes on a continuous scale, rather than just provid-
ing “positive” and “negative” test results. Examples include blood pressure,
cholesterol levels, bone mineral density, and blood glucose levels. In this case,
a cut-off limit must be chosen in order to classify individuals into “positive”
or “negative” categories.

NORMAL LIMITs The limits of the “normal” range of a test or measurement, in the sense
of being indicative of or conducive to good health. One way to determine normat
limits is to compare the values obtained when the measurements are made in two
groups, one that is healthy and has been found to remain healthy, the other ili, or
subsequently found to become ill. The result may be two overlapping distributions,
as illustrated. Outside the area where the distributions overlap, a given value clearly
identifies the presence or absence of disease or some other manifestation of poor
health. If a value falls into the area of overlap, the individual may belong to either
the normal or the abnormal group. The choice of the normal limits depends upon
the relative importance attached to the identification of individuals as healthy or
unhealthy. See also FALSE NEGATIVE; FALSE POSITIVE; SENSITIVITY AND SPECIFICITY.

Wy

pu |

g

S NORMAL DIABETIC QUERLAP

3 ! '
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= H
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=z BLOOD GLUCOSE BLOOD GLUCOSE

Hypothetical distribution of normal and diabetic glucose levels.
From Lilienfeld and Lilienfeld, 1979.

Selecting different cut-off values provides different sensitivity and specificity
levels. Note that in this setup, one cannot increase sensitivity without si-
multaneously decreasing specificity, and vice versa. We will see an analogous
situation arising in classical hypothesis testing.
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The Normal Distribution

Germany honors Carl F. Gauss on a 10 Deutsche Mark bill. The Normal
Distribution is often called the Gaussian Distribution. Gauss also may have
been the first to use least squares regression to fit a model to data, among

NGCHE BUNDESBANE

many other accomplishments.

/“%

Banhnote

NORMAL DISTRIBUTION (Syn: Gaussian distribution) The continuous frequency distri-
bution of infinite range represented by the equation

where x is the abscissa, f{x) is the ordinate, w is the mean, [ is the natural logarithm,
2.718 and o the standard deviation.

Tt
=
-]

=
e o

'J.'G‘.v \

ZEHN DEUTSCHE MARK



56

The Normal Distribution

Density:

1 —(z — p)?
f(xiﬂaa):manp <202M)

Area under the Normal curve:

1 - . 2
Pr{a<z <b}=[ Voro ¥ (xwﬂ) da

=




The Normal Distribution

Integration of the Normal density to find area under the curve is difficult (you
may recall from calculus that integration of exp (—z2) is difficult), so specially
constructed tables are usually used. Increasingly, computer programs are used
rather than tables, which provide the areas under the curve using numerical
algorithms devised for this purpose. The next four pages provide examples

of such tables.

Probability

Table entry is
probability at
. or below z.
z
Standard normal probabilities
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

—3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
—-3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
—-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
—-2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
—2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
—-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
—2.6 .0047 .0045 .0044 .0043 0041 .0040 .0039 .0038 .0037 .0036
—-2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
—-2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
—-2.3 .0107 .0104 0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
—-2.2 .0139 .0136 0132 .0129 0125 0122 .0119 .0116 .0113 .0110
—-2.1 .0179 .0174 .0170 .0166 0162 .0158 .0154 .0150 .0146 .0143
-2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
-1.9 .0287 .0281 0274 .0268 L0262 .0256 .0250 .0244 .0239 .0233
—-1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
-1.7 .0446 .0436 0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
—-1.6 .0548 .0537 .0526 0516 .0505 .0495 .0485 .0475 .0465 .0455
-1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
—1.4 .0808 0793 .0778 0764 0749 0735 .0721 .0708 .0694 .0681
-1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
—-1.2 1151 1131 112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
—-1.1 .1357 .1335 1314 1292 1271 .1251 11230 .1210 .1190 1170
-1.0 .1587 .1562 1539 .1515 .1492 .1469 .1446 .1423 .1401 1379
—-0.9 .1841 .1814 .1788 1762 1736 1711 .1685 .1660 .1635 1611
—0.8 2119 .2090 .2061 .2033 .2005 1977 .1949 .1922 .1894 .1867
—-0.7 .2420 .2389 .2358 .2327 .2296 2266 2236 2206 2177 .2148
—0.6 2743 .2709 .2676 .2643 2611 .2578 .2546 .2514 .2483 .2451
-0.5 .3085 .3050 3015 .2981 .2946 2912 .2877 .2843 .2810 2776
—-0.4 3446 .3409 3372 3336 .3300 .3264 3228 3192 3156 3121
—0.3 .3821 .3783 .3745 .3707 3669 .3632 .3594 .3557 3520 .3483
—-0.2 4207 4168 4129 4090 .4052 .4013 3974 .3936 .3897 .3859
—0.1 .4602 .4562 .4522 .4483 .4443 .4404 4364 4325 .4286 4247
—0.0 .5000 4960 .4920 4880 .4840 .4801 4761 4721 4681 .4641

D7



Probability

Table entry is
probability at
= or below z.
Z
Standard normal probabilities
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.5000 .5040 .5080 5120 .5160 .5199 .5239 .5279 .5319 .5359
.5398 .5438 .5478 5517 5557 .5596 .5636 .5675 5714 5753
.5793 .5832 5871 .5910 .5948 .5987 .6026 .6064 .6103 6141
6179 6217 6255 .6293 .6331 .6368 .6406 .6443 .6480 6517
.6554 .6591 .6628 .6664 .6700 6736 6772 .6808 .6844 6879
.6915 .6950 .6985 7019 7054 .7088 7123 7157 .7190 7224
7257 7291 7324 7357 7389 7422 7434 .7486 7517 7549
.7580 7611 7642 7673 7704 7734 7764 7794 .7823 7852
.7881 7910 .7939 7967 7995 .8023 .8051 .8078 .8106 .8133
8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
.8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
.8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
.8849 .8869 .3888 .8907 .8925 .8944 .8962 .8980 .8997 9015
.9032 .9049 9066 .9082 .9099 9115 9131 9147 9162 9177
9192 9207 9222 9236 .9251 9265 .9279 .9292 .9306 9319
.9332 9345 9357 .9370 .9382 .9394 .9406 9418 .9429 .9441
.9452 .9463 9474 .9484 .9495 .9505 9515 9525 .9535 .9545
.9554 9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 9633
.9641 9649 .9656 .9664 9671 .9678 .9686 .9693 .9699 .9706
.9713 9719 9726 9732 9738 .9744 .9750 9756 9761 9767
9772 9778 .9783 .9788 9793 .9798 .9803 .9808 9812 9817
.9821 .9826 .9830 .9834 9838 .9842 9846 .9850 .9854 9857

9861 9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
.9893 .9896 .9898 .9901 .9904 9906 .9909 9911 9913 9916
9918 .9920 9922 .9925 9927 .9929 9931 9932 .9934 .9936
9938 9940 .9941 .9943 .9%45 .9946 .9948 .9949 .9951 .9952
.9953 .9955 .9956 .9957 .9959 .9960 .99%61 .9962 .9963 9564
.9965 .9966 19967 .9968 .9%69 9970 9971 9972 .9973 .9974
.9974 .9975 9976 9977 9977 9978 .9979 9979 .9980 9981
.9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
.9987 .9987 9987 .9988 .9988 .9989 .9989 .9989% .9990 .99%0
.9990 9991 19991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
.9993 .9993 .9994 9994 .9994 .9994 .9994 .9995 9995 .9995
.9995 .9995 .9995 9996 .9996 .9996 9996 .9996 .9996 9997
.9997 .9997 .9997 .9997 9997 .9997 .9997 .9997 .9997 .9998
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This table shows
the shaded areas

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0]1.000 .992 984 976 968 960 952 .944 936 .928
0.1 .920 912 904 897 .889 .881 .873 .865 .857 .849
02| .841 .834 826 .818 .810 .803 .795 .787 779 .72
0.3 .764 757 749 741 734 726 719 .71l .704 697
041 .689 682 674 .667 660 .653 .646 638 631 .624
05| .617 610 .603 .596 .589 .582 .575 .569 .562 .555
0.6} .549 542 535 529 522 516 .509 503 497 490
0.7 .484 478 472 465 459 453 447 441 435 430
0.8} 424 418 412 407 4001 395 .390 .384 379 373
09| .368 363 .358 352 347 342 337 332 327 322
1.0 317 312 308 303 298 .294 289 285 280 .276
L 271 267 263 258 254 250 246 .242 238 234
1.2} 230  .226 222219 215 211 208 204 .20t (197
1.3} .194  .190 187 .184 180 177 174 171 (168 165
L4 162 159 156 .153  .150 .147 .144 142 139 136
1.5 134 131 129 (126  .124 121 119 (116 .114 112
1.6 | .110 107 .105 .103 .10} 099 .097 .095 .093  .09!
1.7y .089 087 .085 .084 .082 080 .078 .077 .075 .073
1.8]1 .072 070 .069 .067 .066 .064 .063 .061 .060 .059
1.9 | .057 056 .055 .054 052 .051 .050 .049 .048 .047
20| .046 044 043 042 041 040 .039 .038 .038 .037
2r} .036 035 034 .033 .032 .032 .03l .030 029 .029
12 .028 .027 .026 026 .025 .024 .024 .023 .023 .022
23] .021 .02t .020 .020 019 .019 .018 .018 .017 .017
241 .016 .016 .016 .015 .0i5 .0l14 .014 .014 013 .013
254 .012  .012 012 011 .011 .01t .010 .010 .010 .0I0
26 ] .009 009 .009 009 .008 .008 .008 .008 .007 .007
27 .007 007 .007 006 .006 .06 .006 .006 .005 .005
287 .005 .005 .005 005 .005 .004 .004 .004 .004 .004
29| .004 004 .004 .003 .003 .003 .003 .003 .003 .003
3.0 | .003
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Table Al. Areas in one tail of the standard normal curve

This table shows
the shaded area

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 | .500 496 492 488 484 480 476 472 468 .464
0.1 | 460 456 452 448 444 440 436 433 429 425
0.2 | .421 417 413 409 405 401 .397 .394 390 .386
0.3 | .382 .378 .374 371 367 .363 .359 .356 352 .348
04 | .345 341 337 334 330 326 .323 319 316 312
0.5 ] .309 305 302 .298 295 291 .288 .284 .281 .278
06 | .274 .271 268 264 .261 .258 255 .251 .248 245
0.7 | 242 239 236 233 230 .227 .224 221 218 215
0.8 | .212 209 206 203 200 .198 .195 .192 .189 .187
09 | .184 181 .179 .176 .174 .17t .169 .166 .l64 .16l
1.0 1 .159 .156 .154 152 .149 (147 145 .142 .140 .138
1.1 | .136  .133 131 129 .127 125 123 .12t 119 (117
1.2 {115 113 1 .109 0 .107 106 (104 102 100 .099
1.3 | 097 .095 .093 .092 .090 .089 .087 .085 .084 .082
1.4 ] .081 079 078 .076 075 .074 .072 .07t .069 .068
1.5 1.067 .066 .064 063 .062 .061 .059 .058 .057 .056
1.6 | .055 .054 .053 .052 .051 .049 .048 .048 .046 .046
1.7 }1.045 .044 043 .042 .041 040 .039 .038 .038 .037
1.8 | .036 .035 .034 .034 .033 .032 .03t .031 .030 .029
1.9 |.029 028 .027 .027 .026 .026 .025 .024 .024 .023
20 |.023 .022 .022 .021 .021 .020 .020 .019 .019 .018
2.1 |.018 .017 .017 .017 .0t6 .016 .015 .0I5 .015 .014
2.2 |.014 .014 013 013 .013 .012 .012 .012 .01t .01l
23 |.01t .010 .010 .010 .010 .009 .009 .009 .00% .008
24 |.008 .008 .008 .008 .007 .007 .007 .007 .007 .006
25 |.006 006 .006 .006 .006 .005 .005 .005 .005 .005
26 |.005 005 .004 .004 004 .004 .004 .004 .004 .004
27 |.003 .003 .003 .003 .003 .003 .003 .003 .003 .003
28 ].003 002 .002 .002 .002 .002 .002 .002 .002 .002
29 |.002 .002 .002 .002 .002 .002 .002 .001 .001 .00l
3.0 | .001

raca



THE 68-95-99.7 RULE

In any normal distribution:

* 68% of the observations fall within o of the mean p.
« 95% of the observations fall within 2o of p.
« 99.7% of the observations fall within 3o of p.

68% of data 3

95% of data

L 99 7% of datat

-3 -2 -1 0 1 2 3
FIGURE 1.16 The 68-95-99.7 rule for normal distributions.

STANDARD NORMAL DISTRIBUTION

If a variable X has a normal distribution with mean p and standard
deviation ¢, then the standardized variable
X—p

o

has the normal distribution N(0, 1) with mean 0 and standard devi-
ation 1. This is called the standard normal distribution.

Z =

(1.5)




éz. Exam,,f’ei 0n NOY‘YVLa/ tm ‘p@réﬂuf

5.23

5.29

5.41

The law requires coal mine operators to test the amount of dust in the
atmosphere of the mine. A laboratory carries out the test by weighing
flters that have been exposed to the air in the mine. The test has a
standard deviation of o = 0.08 milligram in repeated weighings of the
same flter. The laboratory weighs each filter 3 times and reports the
mean result. What is the standard deviation of the reported result?

Judy’s doctor is concerned that she may suffer from hypokalemia (low

potassium in the blood). There is variation both in the actual potassium

level and in the blood test that measures the level. Judy’s measured

potassium level varies according to the normal distribution with o = 3.8

and o = 0.2. A patient is classified as hypokalemic if the potassium level

is below 3.5.

(a) If a single potassium measurement is made, what is the probability
that Judy is diagnosed as hypokalemic?

(b) If measurements are made instead on 4 separate days and the mean
result is compared with the criterion 3.5, what is the probability that
Judy is diagnosed as hypokalemic?

A study of working couples measures the income X of the husband and

the income Y of the wife in a large number of couples in which both

partners are employed. Suppose that you knew the means pix and py and

the variances o2 and 0% of both variables in the population.

(@) Isit reasonable to take the mean of the total income X + Y to be
pix + py? Explain your answer.

(b) Isit reasonable to take the variance of the total income to be ox+ 03?
Explain your answer.

;.43  The number of accidents per week at 2 hazardous intersection varies with
mean 2.2 and standard deviation 1.4. This distribution is discrete and so

is

certainly not normal.

(a) Let X be the mean number of accidents per week at the intersection

during a year (52 weeks). What is the approximate distribution of
according to the central limit theorem?

(b) What is the approximate probability that X is less than 2?
(c) What is the approximate probability that there are fewer than 100

5.45

accidents at the intersection in a year? (Hint: Restate this event in
terms of X.)

The level of nitrogen oxide (NOX) in the exhaust of a particular car
model varies with mean 1.4 g/mile and standard deviation 0.3 g/mile.
A company has 125 cars of this model in its fleet. If % is the mean NOX
emission level for these cars, what is the level L such that the probability
that X is greater than L is only 0.01?



Means and Variances for Probability Distributions

Continuous Case

Suppose that z is a continuous valued random variable taking on values in
the range (—o0, +00), with probability density function f(z). The expected

value or mean for a continuous variable is defined to be

The variance of z is defined as

Var(z) = o? = /_j(z _B(X))? x f(z) dz

Example 1: The Uniform Distribution. Suppose that

f(x):{l, 0<z<1

0, otherwise,

Then using (1),




b

Similarly, using (2), the variance is

Var(z) = /+°°(x ~ E(X))? x f(z) do

-0

+1 ]_2
- =)*x1ld
/o(x 3 v

{

1 1
= —z4+2)d
O(m x—|-4) oo
o ls 1, +1
= T -7+ 7|,
_ Lt Lt r 1 08333333
T3 24 12 7 )

Thus the standard deviation of a Uniform random variable is \/’1% = (0.288675.

Example 2: Find the expected value and variance for a Normal random
variable, with parameters x and ¢2.

By definition, the density is

1 1(z — p)?
exp(———u), —00 < T < +00.
o2ro 2 o2

Thus, using (1), we have

E(z) = /+Ooa:><f(a:) iz

oo 1 1(z ~p)?
——— ) d
/—oo 2ro eXp( 2 o2 ) ¥

= u (after much algebraic manipulations)




Similarly, using (2)

<00
Var(z) =

+00

— V2no

= o2 (after much algebraic manipulations)

(6 - B(X)) x f(z) da
(@ — p)? %

L
/

Note: The two parameters for a Normal distribution, x and o2, are
in fact the true mean and variance for that distribution. This is not
always the case. For example, the Uniform has two parameters, a and b,
marking the ends of the interval (so that a = 0 and b = 1 in the above),
but these parameters are not directly the mean and variance, although
they are related. For another example, a Gamma distribution, another
very common distribution in medicine, has two parameters, o and 3,
but the mean is & x 8, and the variance is o x 2.

65
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Sums of Random Variables

Let X and Y be two arbitrary random variables. Then:

1. E(X +Y)=E(X)+E(Y).

Var(X +Y) =Var(X) + Var(Y), if X and Y are independent.
E(aX +bY)=aFE(X)+bE(Y).

Var(aX +bY) = a*Var(X) + b?Var(Y), if X and Y are independent.

ook L

IfX ~ N(ux,0%),and Y ~ N(p,y, ¢%),and X and Y are independent,
then (X +Y) ~ N(ux + py, 0% + o%).

Some examples:

1. X ~N(0,1), Y ~ N(3,4), and X and Y are independent, then
X +Y ~ N(3,5).

2. If X1,X3,...,Xn~ N(0,1), independent, then
S Xi=X1+Xo+ 4+ Xn~ N(0,n).
i=1
3. ...and then
1C& 1 1
> X = n(X1+X2+ -4+ X,) ~ N(0, ;).

T =1
4. If X1,Xs,...,Xn~ N(u,0?), independent, then

oXi=X1+Xo+ -+ Xp o~ N(np,no?).
i=1

5. ...and then

g
;E:Xz— (X14+ Xa+---+ Xn) ~ N(u,
=1

).



The central limit theorem

The sampling distribution of ¥ is normal if the underlying populati<_:>n
itself has a normal distribution. What happens when the population dis-
tribution is not normal? It turns out that as the sample size increases, the
distribution of ¥ becomes closer to a normal distribution. This is true no
matter what the population distribution may be, as long as the population
has a finite standard deviation ¢. This famous fact of probability theory
is called the central limit theorem.* For large sample size n, we can regard
X as having the N(u, /+/n) distribution.

I. The mean of the sam
population mean, p.

2. The SD of the sampling distribution of means is g/ Vn.

3. The shape of the sampling distribution of mea

pling distribution of means is the same as the

3 If the distribution of x is normal, so will be the distribution of %. Much more

importantly, even if the distribution of x is not normal, that of % will become
closer and closer to the normal distribution with mean # and variance ¢%/n as
n gets larger. This is a consequence of a mathematical result known as the central

limit theorem, and it accounts for the central importance of the normal distribu-
tion in statistics.
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Normal Approximation to the Binomial Distribution

Recall that the formula for the binomial distribution is given by

NI

o = mE

Pr{X successes in N trials} =

We can either calculate this directly, by plugging numbers in the above for-
mula, or look up the result in tables of the binomial distribution. What
happens, however, if we wish to know the probability of getting X = 80 or
more successes in N = 150 trials, with # = 0.67 Binomial tables do not
generally go that high, and calculations seem infeasible, as, for example, 150!
is a 263 digit number, and 0.6%0 is a very small number, and most calcula-
tors/computer programs do not handle these numbers very well. In addition,
one would have to sum 70 of these numbers to get the final answer.

As the graphs on the previous page seems to indicate, we can approximate
the binomial probabilities by a Normal distribution, and then look up the
probabilities using tables of Normal probabilities. We proceed as follows:

1. Find the mean and variance of the binomial distribution of interest. In
the above example,

p=Nxm=150x0.6=90

and
e?=Nxnx(1-n)=150x 0.6 x 0.4 = 36.

2. Then perform the following calculation:

Pr{z > 80|binomial(150,0.6)}

It

Pr{z > 79.5|binomial(150,0.6)}
~ Pr{z > 79.5|N(90,36)}

_ Pr{x—690 5 79.56— 90|N(90736)}
= Pr{Z > —1.75|Z ~ N(0,1)}
0.9599

The change from 80 to 79.5 is called the continuity correction, and it is used
to make the approximation slightly more accurate. Without the continuity
correction, in this example, the probability would have been 0.9525.

#
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The final answer is usually quite similar with or without the continuity cor-
rection, but there is one place where it is absolutely crucial, as the example
below illustrates.

Find the probability of exactly X = 80 successes out of N = 150 trials, where
m = 0.6.

Using the same logic as above, without the continuity correction, we have

Pr{z = 80|binomial(150,0.6)} =~ Pr{z = 80|N(90,36)}
z—90 80— 90

Pr{Z = —1.6667|Z ~ N(0,1)}
= 0,

since the probabilty that a Normal variable equals any number exactly is zero.

However, with the continuity correction, we have

Pr{z = 80|binomial(150,0.6)} = Pr{79.5 < z < 80.5|binomial(150,0.6)}
~ Pr{79.5 <z < 80.5|N(90,36)}
79.5 - 90 < z — 90 < 80.5 —

90
= N(90, 36
Pr{i—— < —5— < —(—IN(90,36)}
= Pr{-175< Z < —1.5833|Z ~ N(0,1)}
= 0.9599 — .9430

= (.0169.

The exact answer, using the binomial formula, is 0.01659816, so that the
approximation is correct to 3 decimal places.
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Poisson Distribution

Suppose that we would like to calculate probabilities relating to numbers
of cancers over a given period of time in a given population. In principle,
we can consider using a binomial distribution, since we are talking about
numbers of events in a given number of trials. However, the numbers of
events may be enormous (number of persons in the population times the
number of time periods). Furthermore, we may not even be certain of the
denominator, but may have some idea of the rate (per year, say) of cancers
in this population from previous data. In such cases, where we have COUNTS
of events through time rather than counts of “successes” in a given number
of trials, we can consider using the POISSON distribution. More precisely, we
make the following assumptions:

1. The probability of an event (say, a cancer) is proportional to the time
of observation. We can notate this as Pr{ cancer occurs in time ¢} =
A X t, where A is the rate parameter, indicating the event rate in units
of events per time.

2. Two events cannot occur simultaneously.

3. The event rate A is constant through time (homogeneous Poisson pro-
cess).

4. Events (cancers) occur independently.

If all of these assumptions are true, the we can derive the distribution of the
number of counts in any given period of time. Let u = )\ x ¢ be the rate
times time, which is the Poisson mean number of events in time ¢. Then the
Poisson distribution is given by:

T

e tu
z!

Pr{ z events occur in time t} =

where e = 2.71828. .., and z! denotes factorial of z (same as in the binomial
distribution).

It is quite easy to prove that both the mean and the variance of the Poisson
distribution are equal to 4. Optional exercise: Try to prove this using
the formulae of page 47.



probability

0.2 0.4

0.0

Poisson Examples

1. Let’s look at the graphs of Poisson distribution with different values for
4 (note that the Poisson is a DISCRETE distribution, which takes on positive
integer values only, 0,1,2,3,...):

Poisson, mean = 1 Poisson, mean = 10

15

Poisson, mean = 100

(=]
o~
<
2> >
z £ 3
a S | S |
g ] l l l | .5
“ Ll Ll
| ' . . . . . . g ... | l | I | g [ [ mlll“lm
2 4 6 8 10 [¢] S 10 15 20 60 80 1
count count

Note as with many distributions, larger values of i mean the shape goes
towards a normal distribution.

2. How are the values in the above graphs calculated?

. —-110

Pr{0 events occur in time t with p =1} = ¢ o= 1/e = 0.3679
11!

Pr{1 event occurs in time t with p =1} = o= 1/e =0.3679
112

Pr{2 events occur in time t with p =1} = —— =10.1839
£—1007 909

Pr{99 events occur in time t with 4 =100} = —55r 0.0398

There is a normal approximation to the Poisson, using a continuity correction
as in the binomial:

Pr{99 events occur in time t with p = 100}
= Pr{98.5 <z < 99.3]z ~ N(100,100)}
- PT{98.5 — 100 <z< 99.5 - 100
10 10
= Pr{-0.15< z < -0.05|z ~ N(0,1)} = 0.0397 = 0.0393

3. Suppose the number of sudden deaths due to myocardial infarction in
Quebec is 250 per year. What is the probability that there will be exactly
135 deaths in the next six months?

Solution: Let t = 1, t_I}gl b= 250. If t = 0.5, then u = 125. Using the
Poisson distribution, &—32— = 0.0232. Exercise: check this using the

normal approximation (should get 0.0239).

00

Mmllllmm,....

count
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min(xl v---xn)l

Dis. Weibull
-

X1+"'+xn

Xl."'xn

Geometric

Lognormal [«

B oo

1/x X;+---+X,.

Cauchy
a, b

y
a=0
a+bX b=1
'

Std. Cauchy

Std. Normal
p=0,c=1

Chi-Square
v

nX A=1/2

e=00

min(Xy,...,Xn)

Rayleigh

(=4

Weibull

«,

.kUl(ﬂf:(’A ] Nel/l'f”h, Sda ticdical 4

Table 3. Relationships Among Distributions
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- Br=np

. o*=np(1-p) n=1

Rectangular
n
Hypergeom.
n, M, N
Beta-Bin. e
a b, n
Ep:c/b < p=M/N
} n—co L N—wo

X1t Xn

Bernoulli
p
Tsia=f—oo
. Beta
a, B
e a=p=1/2
Gamma Arcsin
ai
a=n
a=g=1
Erlang
B, n
Xyt X
-tmx Std. Uniform

a+{b—a)X

Uniform
a, b




THE NULL HYPOTHESIS

"CIND.OUT WHO SET UP THIS EXPERIMENT. [T SEEMS
THAT HALF OF THE PATIENTS WERE GIVEN A PLACEBO,
AND" THE OTHER HALF WERE GIVEN A DIFFERENT

PLACEBO.”

* American Scientist 1982;70:25.

1
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Inference for a single population mean

Suppose that a single population has true (population) parameters x and o2,
representing, respectively, the true mean value and variance in that popula-
tion for a quantity of interest. Given a random sample from that population
of values, we do not directly observe u and o2, but rather their sample equiv-
alents, T and s2. Schmatically, we have:

Population: u, o2

We would like to test whether this value is equal to some prespecified constant.
That is, we would like to test:

Hy: p = pg versus
Ha: p # po(p>poorp<po)



COMPARING TWO POPULATION MEANS

Population 1: p,, o Population 2: y,, 0,

3

Hy:

> X, 87
Bi = B2
By X By : (or p; > Py OT Wy < p’z)
(two-sided) (one-sided)
Cases

]

Paired or Unpaired?

Assume o = g,> or not?

H



HYPOTHESIS TESTING FOR MEANS

BEFORE AFTER DIFFERENCE
CASE 1 211.000 198.000 ~13.000
CASE 2 180. 000 173.000 ~7.000
CASE 3 171.000 172.000 1.000
CASE 4 214.000 209.000 ~5.000
CASE 5 182.000 179.000 -3.000
CASE 6 194.000 192.000 -2.000
CASE 7 160.000 161.000 1,000
CASE 8 182.000 182.000 0.000
CASE 9 172.000 166.000 -6.000
CASE 10 155.000 154.000 ~1.000
CASE 11 185.000 181.000 -4.000
CASE 12 167.000 164.000 -3.000
CASE 13 203.000 201.000 -2.000
CASE 14 181.000 175.000 -6:000
CASE 15 245000 233.000 -12.000
CASE 16 146.000 142,000 ~4.000

TOTAL OBSERVATIONS: 16

BEFORE AFTER DIFFERENCE

N OF CASES 16 16 16
MINIMUM 146.000 142.000 -13.000
MAX IMUM 245.000 233.000 ~1.000
MEAN % 184.250 180. 125 -4.125
| STANDARD DEV 24.909 | 22.562 4.064

WE WISH TO TEST THE HYPOTHESIS:

DOES THE DIET LEAD TO LOWER WEIGHTS?
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DIAGNOSTIC TEST

True State of Disease

+ - sens = a/ (atc)
Test + a v b fase a+b spec = d/ (b+d)
pos.
Result - C false d v c+d +'ve = a/(ath)
neg.
atc b+d -'ve = d/ (ctd)
a,b,c,d represent individual persons undergoing diagnostic test
HYPOTHESIS TEST
True State of "Nature"
H, H,
+ -
Diet Diet
effective ineffective
Statistical + av b Typel a+b
Test Error ()
Result - C Typell d v c+d
Error (B)
atc b+d

a,b,c,d represent not individuals but counts of tests

P (correct decision | + [nature] ) = a / (a+c)
P (correct decision | - [nature] ) = d / (b+d)

P (correct decision | + [stat] ) = a / (atb)
P (correct decision | - [stat] ) = d / (d+c)
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By convention, type I error () is simply set to 0.05

(most often), and type Il error (B) is then fixed
"automatically" for a given sample size.

TYPE I ERROR . TYPE ﬁ ERROR

000
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The hypothesis on diet may be formally stated as:

Hy (nul hypothesis): The diet does not lead to decreased
weight.

H, (alternative hypothesis): The diet does lead to
decreased weight

If we assume that the weight differences
(AFTER—BEFORE=DIFF) are normally distributed, then we can say
DIFF ~ NE/L.G'Z). where /LL and 0% are unknown.

Then: Ho: AL =0
He pe <0 (one-sided)
[HAZ/AL 50 (two-sided)]

. 2 :
S1nce/LL, and 02 are unknown, we can estimate them using: (n=16)

estimate «— A _ iZI X,

Borrr=Xorrr

Now: If DIFF - N(u, e?), and If Hy is true, then DIFF - N(O,c?)
and X, = N(o ,0%), n=16.



If we wish to be wrong only « = 5% of the time when H; is
true, we should reject H; as reasonable if ?Dm < -1.67 (one-
sided) or | X, | > 2 (two-sided). These are our REJECTION
REGIONS.

Since we observed ;(-m,, = -4.125 which is < -1.67, we fall
into our-rejection region, and hence the conclusion is to REJECT

H, at the a = 5% level.

What is the probability that we are wrong?

We do not know o2, but we have estimated it to be (4.064)2,
so that (approximately)

DIFF ~ N(O, (4.064)%)

Xoire = N(O, (4.064)%/16) (o5 = 1.02)

DIFF

I—F, Hq: =0 is true

HENCE the picture is:

2.5
// //l‘z&xu
2.00
-/L7F /.73
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SUMMARY OF EXAMPLE

1. H,: The diet does not lead to increased weight. (p 2 0)

H,: The diet does lead to increased weight (p < 0)

2. Rejection Region: (Find 5% point under Hg)

rertl] 7

= I’L'L{ 'X_p' '~l¢lb'? . _ Z‘S
Rejection region for & = 9 Rejection region for X =
o/yn (or s/yn) vn

N (0,1) N(0,1.02)

+p0

3. Calculate X, s2?, s¥*/n, s/Jn as required.

— Sz
X =-4.125, =— =1.02
vn

-~

Since =<B < -1.64, ( X< -1.67),

s/vn

4. We can reject H,, or find p-value:

p = PE’X’<—4.125§ - pf Ak, '4'125'05 = p{z<4.04 = 0.0000267.
s/\/ﬁ 1.02
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STATISTICAL SIGNIFICANCE

If the P-value is as small or smaller than a, we say that the data are
statistically significant at level c.

FIXED SIGNIFICANCE LEVEL 2z TESTS FOR A POPULATION
MEAN

To test the hypothesis Hy: 1 = o based on an SRS of size n from a
population with unknown mean p and known standard deviation o,
compute the z test statistic
_ X~ o

a/n

Reject Hj at significance level a against a one-sided alternative

Z

Hyp>po if 222"
Hy:p<py if z£5-2°

where z* is the upper « critical value from Table D. Reject Hy at
significance level & against a two-sided alternative

Hyip# po if |z] >2°

where z* is the upper «/2 critical value from Table D.
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Summary of Testing Procedure

. State Hg and H,. State the o error you think is appropriate for the

problem.

. Find the rejection region.

. From the data, check whether the observed data fall into the rejection

region or not.

. If the data fall into the rejection region, conclusion is that there is

enough evidence to reject the null hypothesis Hy in favour of the alter-
native H4. If the data do not fall into the rejection region, can only
say that there is no evidence to reject the null hyupothesis.

" Example 4.1

A large number of patients with cancer at a particular site, and of a particular clinical
stage, are found to have a mean survival time from diagnosis of 38-3 months with a
standard deviation of 43-3 months. One hundred patients are treated by a new
technique and their mean survival time is 469 months. Is this apparent increase in
mean survival explicable as a random fluctuation?

We test the null hypothesis that the 100 recent results are effectively a random
sample from a population with mean p,=38-3 and standard deviation o, =43-3. Note
that this distribution must be extremely skew, since a deviation of even one standard
deviation below the mean gives a negative value (38:3—43-3 = —5-0), and no survival
times can be negative. However, 100 is a reasonably large sample size, and it would be
safe to use the normal theory for the distribution of the sample mean. Putting n=100
and =469, we have a standardized normal deviate

469-383 86
(4337, /100) 433

This value just exceeds the 5% value of 1-96, and the difference is therefore just
significant at the 5% level (P <0-05).

This significant difference suggests that the increase in mean survival time is rather
unlikely to be due to chance. It would not be safe to assume that the new treatment has
improved survival, since certain characteristics of the patients may have changed since
the earlier data were collected; for example, the disease may be diagnosed earlier. All we
can say is that the difference is not very likely to be a chance phenomenon.

2-0.



38

6.61

You are designing a computerized medical diagnostic program. The
program will scan the results of routine medical tests (pulse rate, blood
pressure, urinalysis, etc.) and either clear the patient or refer the caseto a
doctor. The program will be used as part of a preventive medicine system
to screen many thousands of persons who do not have specific medical
complaints. The program makes a decision about each patient.
(@) What are the two hypotheses and the two types of error that the
program can make? Describe the two types of error in terms of “false
positive” and “false negative” test results.

(b) The program can be adjusted to decrease one error probability, at

the cost of an increase in the other error probability. Which error
probability would you choose to make smaller, and why? (This is a
matter of judgment. There is no single correct answer.)



Probability p Table entry is the
point t* with given
probability p lying
: above it.
o
t distribution critical values
Tail probability p
df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005
1} 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 .765 978  1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 741 941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5598 7.173 8.610
5 727 920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 718 906 1.134 1440 1.943 2447 2612 3.143 3.707 4.317 5.208 5.959
7 711 896  1.119 1415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 .706 .889  1.108 1.397 1.860 2.306 2.449 2896 3.355 3.833 4.501 5.041
9 .703 .883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781
10 .700 -879 1.093 1.372 1.812 2228 2359 2764 3.169 3.581 4.144 4.587
11 .697 .876  1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 .695 873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 .694 870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 .692 868 1.076 1.345 1.761 2.145 2.264 2.624 2977 3.326 3.787 4.140
15] -.691 .866 1.074 1.341 1.753 2.131 2249 2602 2.947 3.286 3.733 4.073
16 .690 865 1.071 1.337 1.746 2.120 2.235 2.583 2921 3.252 3.686 4.015
17 .689 863  1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 .688 © .862 1.067 1.330 1.734 2.101 2214 2.552 2.878 3.197 3.611 3.922
19 .688 861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 687 860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 .686 -859 1.063 1.323 1.721 2.080 2.189 2518 2.831 3.135 3.527 3.819
22 .686 .858 1.06%1 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 .685 858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 .685 .857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 .684 856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 .684 856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 .684 .855 1.057 1.314 1.703 2.052 2.158 2.473 2771 3.057 3.421 3.690
28 .683 855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 683 .854  1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 .683 854 1.055 1.310 1.697 2.042 2,147 2.457 2.750 3.030 3.385 3.646
40 .681 .851 1.050 1.303 1.684 2.021 2.123 2423 2.704 2971 3.307 3.551
50 .679 849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 679 -848  1.045 1.296 1.671 2.000 2.099 2.390 2.660 2915 3.232 3.460
80 678 846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416
100 677 845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 .675 .842  1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300
0 674 841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291
50% 60% 70% 80% 90% 95% 96% 98% 99%  99.5% 99.8% 99.9%

Confidence level C

&9
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Example 4.3

In a small clinical trial to assess the value of a new tranquillizer on psychoneurotic
patients, each patient was given a week’s treatment with the drug and a week’s
treatment with a placebo, the order in which the two sets of treatments were given being
determined at random. At the end of each week the patient had to complete a
questionnaire, on the basis of which he was given an ‘anxiety score’ (with possible
values from 0 to 30), high scores corresponding to states of anxiety. The results are
shown in Table 4.1.

Table 4.1. Anxiety scores recorded for ten patients receiving a new drug
and a placebo in random order

Difference
Anxiety score d;
Patient Drug Placebo (drug-placebo)

1 19 22 -3
2 11 18 -7
3 14 17 -3
4 17 19 -2
5 23 22 1
6 11 12 -1
7 15 14 1
8 19 11 8
9 11 19 -8
10 8 7 1
-13

o /\‘o\q[wo i /’”bau& (DIFF = o)

HF}: /A'PLACQRU 7 /MDK“C» CLIPF*())
Use o paired - tesf:
Xx>(r—‘F =-13

10 — =
S'Z_ = EZ:,(D’PF‘: “XD/FF) - 20.&3

n -t

t- X-0 2+, = L3 -0 = -0.904

133 s/\/—; Af =9 r_—-7-0-68/dﬁ

From ¢ tables, p7 0.0 (Exact value = f’; 0.09§)

P=r.389
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Unpaired, o = o,° assumption.

O N L

Hy: By ¥ B2

2. Ty — Ta ~ tnytng—2 if Ho: p1 = pg is true, s2 = 512) (nl1 + n_12)

2 2
n,-1)s;+(n,-1) s
where s = (my-1) Si+(n,71) 5
n,+n,-2
s2 = "pooled variance”.
<zl
- t¢/2,n1¢nz-2 tn,*nz-z t¢/2,n1¢n2—2

X-%

Reject if | | > ¢

a/2,n,+n,-2

X-%

3. Check if value of falls in rejection region.

4. Draw a conclusion or give a p-value,

X,-X, .
P=P {-—1—5-—2 > observed value | H, is true}.
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Summaery of Testing for Means

One Population

Variance?

Ho Normality? Variance Estimate | Test Statistic | DF
= po Yes known — 2 = 5}—;131 —
B = fo Yes unknown | s%= Z_sns‘}l(:z;_—f_)i : = f—/_j"% n-1l
u=po No known — - ;/—u% —
large n
b= po No unknown | §?= ZJEJTfTI%;E)i ¢ = f/—uz n-1
large n .

The two population

Two Populations

paired case can be reduced to the single population case by treating

the paired differences as a single population. In this case, it then does not matter if the
variances of the original populations are assumed equal or different.

Unpaired Case

Hg Normality? | Variances? Variance Estimate Test Statistic DF
— e - —_ T —Z2—0 ____
pi—po=4 Yes known & z m
equal
- =A Yes - kn & — = oI f—
1731 Ho es own F4 m
different
pi—po=A4A Yes unknown & | s = (-Dsit(a-l)s | 4 — 258 ny + ng — 2
P n1+nz—2 s3/n1+s}/n2
equal
— - 2 2 — _Zj=I2=0 : - .
y1—po=A4 Yes unknown & usual s7 and s t m min(ny-1,n2-1)
different (conservative)
_ = —_ — T, —T2—A _
yll o =A No known & z Yy
arge n equal
p1—po =4 No known & — z=7£:.=T:£_ —
03 /n1+403 /12
large n different
e — 2 _ (ni-1)si+(m-1)s; T -5-A _
pr—po=A No unknown & | s; = o t= oy oy ny+ng—2
large n equal
— —A 2 d 2 t= T1—Z2—0 : -1.m5-1
B — Ho No unknown & usual sy and s3 m min(ni-1,m2-1)
large n different (conservative)
Notes:

1. In most cases, A is taken té be 0.
2. For large n, the ¢ distribution is approximated by the Normal.
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Example 4.5

A suspension of virus particles is prepared at two dilutions. If the experimental
techniques are perfect, Preparation B should have 10 times as high a concentration of
virus particles as Preparation A. Equal volumes from each suspension are inoculated
onto the chorioallantoic membrane of chick embryos. After an appropriate incubation

period the membranes are removed and the number of pocks on each membrane is
counted. The numbers are as follows:

Preparation
Counts

B/' 0
X2
10
13
13
14
19
20
21
26
29

WRRN -0 o >

n,=9 n,=9
x,=12222 x,=18333
s2=09444 s2=0-4100.

oi oy = pra

Ha Ma += pp (fun  sided)

Voriances seesn differedt so-

-1.5%

Y]

_é - Zl"_’zz _ \.?_L—l'g—;
9 =

944 + 40

———

9 A

From t -talles, 00s¢ p < 0.0 C(one S«‘deﬁ))fo
we  Coneluds w8 Canmot rejett Ho (0410 ¢pl.22)
(Exact p= o.55). |



P-VALUE

The probability, computed assuming that Hp is true, that the test
statistic would take a value as extreme or more extreme than that
actually observed is called the P-value of the test. The smaller the
P-value, the stronger the evidence against Hy provided by the data.

SIGNIFICANCE AND TYPE I ERROR

The significance level o of any fixed level test is the probabil}ty ofa
Type 1 error. That is, at is the probability that the test will reject the
null hvpothesis Hy when Hp is in fact true.

CONFIDENCE INTERVALS AND TWO-SIDED TESTS

A level « two-sided significance test rejects a hypothesis Hy: u = g

gxactly when the value pg falls outside a level 1 —a confidence interval
or L.

POWER AND TYPE Il ERROR

The power of a fixed level test against a particular alternative is
1 minus the probability of a Type II error for that alternative.




as
NOTES ON SIGNIFICANT TESTS

1. We- have seen two different "philosophies"” of testing:

a) Decide ¢ in advance, check to see if calculations from

data fall into critical region:

N(o ! :
(1) - re\gecﬂ Ho'/"‘:/uo
re_s“* Re é-
-4 XALL
-2.../,. t o 24/1—
(I11ustration is for o known two-sided H,).
. . X-p
Reject if 2| > 2,
J [ o/ /A | /2

- « is often 0.05, but should be chosen according to

the problem.

b) Calculate XBo  and report the

o/vn

X-
p-value = Pr {Z > Fo | under HOB

‘ o/Vn obse,rVeaL
N(o) l) ; "/LL'O .
.\ G-/Jf
Sz

(E;Eéwkere js p-value (multiply

by 2 if H, is two-sided) .

a) implies a decision must be made, from this data alone. If

not, b) is more informative.
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There is no

0.049 or p = 0.051.

There is nothing magic about « = 0.05.

2.

practical difference if p

Even a very small p-value does not guarantee H, is false.

3.

Repeating the study is usually necessary for further proof,

or to vary the conditions or population.

Statistical significance (small p-value) is not the same as

4.

practical significance.

Must also examine your data

The p-value is not everything.

5.

Remember - all

carefully, data cleaning for outliers, etc.

tests carry assumptions (Normal distribution, simple random

sample from a population, equal variances) which can be

thrown off by outliers.

Reporting a confidence interval for an effect is more

6.

informative than reporting a p-value.

K. Rothman Epidemiology  May 1995, Volume 9 Number 3

When writing for Epidemiology, you can also en-
hance your prospects if you omit tests of statistical sig-
nificance. Despite a widespread belief that many journals
require significance tests for publication, the Uniform
Requirements for Manuscripts Submitted to Biomedical
Journals® discourages them, and every warthwhile jour-
nal will accept papers that omit them entirely. In Epi-
demiology, we do not publish them at all. Not only do
we eschew publishing claims of the presence or absence
of statistical significance, we discourage the use of this
type of thinking in the darta analysis, such as in the use
of stepwise regression. We also would like to see the
interpretation of a study based not on statistical signifi-
cance, or lack of it, for one or more study variables, but
rather on careful quantitative consideration of the data
in light of competing explanations for the findings. For
example, we prefer a researcher to consider whether the
magnitude of an estimated effect could be readily ex-
plained by uncontrolled confounding or selection biases,
rather than simply to offer the uninspired interpretation
that the estimated effect is “significant,” as if neither
chance nor bias cquld then account for the findings.

Many data analysts appear to remain oblivious to the
qualitative nature of significance testing. Although cal-
culations based on mountains of valuable quantitative
information may go into it, statistical significance is
itself only a.dichotomous indicator. As it-has only two
values, “significant” or “not significant,” it cannot con-
vey much useful information. Even worse, those two

* values often signal just the wrong interpretation. These

misleading signals occur when a trivial effect is found to
be “significant,” as often happens in large studies, or
when a strong relation is found “nonsignificant,” as often
happens in small studies. P-values, being more quanti-
tative, are preferable to statements abour statistical sig-
nificance tests, and we do publish P-values on occasion.
We do not publish them as an inequality, such as P <
0.05, but as a number, such as P = 0.13. By giving the
actual value, one avoids the problem of dichotomizing
the continuous P-vatue into a two-valued measure. Nev-
ercheless, P-values still confound effect size wich study
size,? the two components of estimation that we believe
need to be reported separately. Therefore, we prefer that
P-values be omicted altogether, provided that point and
incerval estimates, or some equivalent, are available.

One arena in which P-values are the usual analytic
tool is in the assessment of trends, such as the trend in
rate across dose categories. Even here, we believe that
they should be avoided. Slope estimates are heteer,
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PUBLICATION BIAS

...2 survey of four journals of the American Psychological Association showed
that of 294 articles using statistical tests, only eight (8) did not attain
the 5% significance Jevel.

THIS IS DANGEROUS!

- "Non—signiffcant" results may be "highly significant” if a
common belief is not verified - this should be published.

- IT 20 studies are done to test similar hypotheses, by chance
alone, expect one to be significant. This should (for
obvious reasons) not be the only study of the 20 to be
published.

- Interesting and potentially fruitful ideas may be lost if
the study is small and had low power.

- Publishing all studies helps to carry out meta-analyses
which attempts to summarize data from many experiments.



SEARCHING FOR SIGNIFICANC%/MULTIPLE TESTING

Twenty variables are collected as possible risk factors for heart
disease. Suppose that none are true explanatory variables, but

that each is tested separately by and « = 0.05 level test.

Then:
P {none are significant} = (0.95)% = 36%
Pr {exactly one is significant} = 20!/(1119!) (.95)" (.05)" = 38%

19%

Pr (exactly 2 are significant} = 20!/(2!181) (.95)" (.05)3

Pr (exactly 3 are significant} = 201/(3!171) (.95)" (.05)° = 6%

Pr {at least one is significant} = 1-36% = 64%
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Number of Probability of at least
Tests one type 1 (a) error
(n) 1 - (0.95)"
1 5%
10%
5 23%
10 40%
15 54%
20 64%
50 . 92%
100 | 99% .

Bonferoni: adjustment: Let ¢« = «/n, n = # testis.

Hypothesis Generating
VS.
Hypothesis Verifying

Verifying: Know hypothesis ahead of time, look at data for
verification.

Generating: Let data suggest hypothesis. Cannot test a
hypothesis on data that first suggest hypothesis. -
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Power

7.51 Example 7.11 gives a test of a hypothesis about the SAT scores of California high
school students based on an SRS of 500 students. The hypotheses are:

Hy p=450
H, u> 450

Assume that the population standard deviation is ¢ = 100. The test rejects H, at the
1% level of significance when z , where

yo_ X-450
100/4/500

Is this test sufficiently sensitive to usually detect an increase of 10 points in the
population mean SAT score? Answer this question by calculating the power of the
test against the alternative u = 460.

POWER

Pr {rejecting Hy|p = 460}

- Pr {ﬂ > 2.326 | p=460}

100/,/500
= pr X450 10 o4 10 |J.=460}
how[‘ 100/,/500 100/,/500

- Priz=—%%9 0090 | n=-460
100/,/500

= Pr{Z>0090} = 0464 = 46.4%
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Power and Sample Size

True state of Nature

HA7 + H07 -
+ (Reject Hy) 1-4 o
Test
— (Do not Reject) g -«
a = Pr{ rejecting Hy|H, is true} = type I error
l—a = Pr{not rejecting Hy|Hy is true}

B = Pr{not rejecting Ho|H, is true} = type II error
1—-8 = Pr{rejecting Ho|H, is true} = Power

While one can always work out the power by following the definition (as on
previous page), “plug-in” formulae have been worked out for various special
cases. Let N be the sample size of the experiment (N = total sample size if
there are two groups), let the power be given by 8, and let the type I error
be given by . Then we can derive the power for the following situations:

1. To test Hy : u = po versus a two-sided alternative,

0%(21-q/2 + 21-p)°
(o — pa)?

N =

?

where p4 is the particular alternative under discussion, ¢2 is the as-
sumed known variance in the population, and the z1_,/2 and z;_g are



normal quantiles corresponding to the type I error rate and power, re-
spectively. From this, one can solve for 2;_g, which gives the power.
In particular,
- \/NLUO — pal — o x Z1—a/2

o

Zl_ﬁ

For example, plugging in N = 500, pg = 450, p4 = 460, ¢ = 100, and
Z1—a = 2.326 (one sided test, in this case), gives

/500/10| — 100 x 2.32
= Y0 10| 10000>< 326 _ 5000,

exactly as on the previous page (except for the negative sign, since now
have < rather than >).

. For a two sample test, Hy : u; — p2 = 0 versus a two-sided alternative,

Hy : py — ps # 0, where o2 = o2,

N 4 % 0*(z1-0/2 + 21-p)*
(Ml - #2)2 '

where p; — s is the particular alternative under discussion, and o? is
the assumed equal variance in the populations.

From this, one can solve for z;_g, which gives the power. In particular,

_ VN1 — pa| =2 X 0 X 21_a/2
2Xo0o

21-8

|09
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Example

What size is needed for 80% and 90% power, in the case of equal variances
(02 = 0% = 1, say) for selected values of A = p; — p9? Assume a two-sided
test at the a = 0.05 level.

A N for 80% power N for 90% power

1 — pe Z5 =084 Zp=128
1 3136 4199
2 784 1050
3 348 467
4 196 262
5 125 167
6 87 116
7 64 86
8 49 66
9 39 52
1.0 31 42

Reference: JM Lachin. Introduction to sample size determination and power
analysis for clinical trials. (1981) Controlled Clinical Trials, 2, 93-113.
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Standard Deviation,

Standard Error

George W. Brown, MD

¢ Standard deviation (SD) and standard
error (SE) are quietly but extenslvely used
in blomedical publicatlions. These terms
and notations are used as descriptive sta-
tistics (summarizing numerical data), and
they are used as Inferentlal statistics (estl-
mating population parameters from sam-
ples). I review the use and misuse of SD
and SE in several authorltative medical
journals and make suggestions to help
clarify the usage and meaning of SD and
SE In blomedical reports.

(Am J Dis Chiid 1982;136:937-941)

tandard deviation (SD) and stan-
dard error (SE) have surface simi-
larities; yet, they are conceptually so
different that we must wonder why they
are used almost interchangeably in the
medical literature. Both are usually
preceded by a plus-minus symbol (%),
suggesting that they define a sym-
metric interval or range of some sort.
They both appear almost always with a
mean (average) of a set of measure-
ments or counts of something. The med-
ical literature is replete with statements
like, “The serum cholesterol measure-
ments were distributed with a mean of
180+30 mg/dL (SD).”

In the same journal, perhaps in the
same article, a different statement may
appear: “The weight gains of the sub-
jects averaged 720 (mean)=+32 g/mo
(SE).” Sometimes, as discussed further,
the summary data are presented as the
“mean of 120 mg/dL +12” without the
“12” being defined as SD or SE, or as
some other index of dispersion. Eisen-
hart' warned against this “peril of
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shorthand expression” in 1968; Fein-
stein® later again warned about the
fatuity and confusion contained in any
a+ b statements where b is not defined.
Warnings notwithstanding, a glance
through almost any medical journal will
show examples of this usage.

Medical journals seldom state why
SD or SE is selected to summarize data
in a given report. A search of the three
major pediatric journals for 1981 (Amer-
ican Journal of Diseases of Children,
Journal of Pediatrics, and Pediatrics)
failed to turn up a single article in which
the selection of SD or SE was explained.
There seems to be no uniformity in the
use of SD or SE in these journals or in
The Journal of the American Medical
Association (JAMA), the New England
Journal of Medicine, or Science. The
use of SD and SE in the journals will be
discussed further.

If these respected, well-edited Jjour-
nals do not demand consistent use of
either SD or SE, are there really any
important differences between them?
Yes, they are remarkably different,
despite their superficial similarities.
They are so different in fact that some
authorities have recommended that SE
should rarely or never be used to sum-
marize medical research data. Fein-
stein’ noted the following:

A standard error has nothing to do with
standards, with errors, or with the commu-
nication of scientific data. The concept is an
abstract idea, spawned by the imaginary
world of statistical inference and pertinent
only when certain operations of that imagi-
nary world are met in scientific reality, 2

Glantz* also has made the following rec-
ommendation:

Most medical investigators summarize their
data with the standard error because it is
always smaller than the standard deviation.
It makes their data look better . . . data

should never be summarized with the stan-
dard error of the mean, 2=

A closer look at the source and mean-
ing of SD and SE may clarify why
medical investigators, journal review-
ers, and editors should scrutinize their
usage with considerable care.

DISPERSION

An essential function of “descriptive
statistics” is the presentation of con-
densed, shorthand symbols that epito-
mize the important features of 2 collec-
tion of data. The idea of a central value
is intuitively satisfactory to anyone who
needs to summarizea group of measure-
ments.or counts. The traditional indica-
tors of a central tendency are the mode
(the most frequent value), the median
(the value midway between the lowest
and the highest value), and the mean
(the average). Each has its special uses,
but the mean has great convenience and
flexibility for many purposes.

The dispersion of a collection of values
can be shown in several ways; some are
simple and concise, and others are com-
plex and esoteric. The rangeis a simple,
direct way to indicate the spread of a
collection of values, but it does not tell
how the values are distributed. Knowl-
edge of the mean adds considerably to
the information carried by the range.

Another index of dispersion is pro-
vided by the differences (deviations) of
each value from the mean of the values.
The trouble with this approach is that
some deviations will be positive, and
some will be negative, and their sum
will be zero. We could ignore the sign of
each deviation, ie, use the “absolute
mean deviation,” but mathematicians
tell us that working with absolute num-
bers is extremely difficult and fraught
with technical disadvantages.

A neglected method for summarizing
the dispersion of data is the calculation
of percentiles (or deciles, or quartiles).
Percentiles are used more frequently in
pediatrics than in other branches of
medicine, usually in growth charts or in
other data arrays that are clearly not
symmetric or bell shaped. In the gen-
eral medical literature, percentiles are
sparsely used, apparently because of a
common, but erroneous, assumption
that the mean + SD or SE is satisfactory
for summarizing central tendency and
dispersion of all sorts of data.

Standard Deviation, Standard Error—Brown 837



STANDARD DEVIATION

The generally accepted answer to the
need for a conecise expression for the
dispersion of data is to square the differ-
ence of each value from the group mean,
giving all positive values. When these
squared deviations are added up and
then divided by the number of values in
the group, the result is the variance.

The variance is always a positive num-
ber, but it is in different units than the
mean. The way around this inconve-
nience is to use the square root of the
variance, which is the population stan-
dard deviation (o), which for conve-
nience will be called SD. Thus, the SD is
the square root of the averaged squared
deviations from the mean. The SD is
sometimes called by theshorthand
term, “root-mean-square.”

The SD, calculated in this way, is in
the same units as the original values and
the mean. The SD has additional prop-
erties that make it attractive for sum-
marizing dispersion, especially if the
data are distributed symmetrically
in the revered bell-shaped, gaussian
curve. Although there are an infinite
number of gaussian curves, the one for
the data at hand is described completely
by the mean and SD. For example, the
mean +1.96 SD will enclose 95% of the
values; the mean=2.58 SD will enclose
99% of the values. It is this symmetry
and elegance that contribute to our
admiration of the gaussian curve.

The bad news, especially for biologie
data, is that many collections of mea-
surements or counts are not sym-
metric or bell shaped. Biologic data
tend to be skewed or double humped, J
shaped, U shaped, or flat on top. Re-
gardless of the shape of the distribu-
tion, it is still possible by rote arithme-
tic to calculate an SD although it may
be inappropriate and misleading.

For example, one can imagine
throwing a six-sided die several hun-
dred times and recording the score at
each throw. This would generate a
flattopped, ie, rectangular, distribu-
tion, with about the same number of
counts for each score, 1 through 6. The
mean of the scores would be 3.5 and the
SD would be about 1.7. The trouble is
that the collection of scores is not bell
shaped, so the SD is not a good sum-
mary statement of the true form of the
data. (It is mildly upsetting to some
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X = Mean of Sample
n = Number in Sample

Fig 1.—Standard deviation (SD) of population is shown at left. Estimats of population SD derived

from sample is shown at right.

sp _SD ~ SEM

X
SEM

SO = Estimate of Population SD
n = Sample Size

g = /PU-p _ / pq
P n n

SE of Praportion

P = Proportion Estimated From Sample
q=(1-p)
n = Sample Size

Fig 2.—Standard error of mean (SEM) Is shown atleft. Note that SD is estimate of population SD
(not o, actual SD of population). Sample size used to calculate SEM is n. Standard error of

proportion is shown at right.

that no matter how many times the die
is thrown, it will never show its aver-
age score of 3.5.)

The SD wears two hats. So far, we
have looked at its role as a descriptive
statistic for measurements or counts
that are representative only of them-
selves, ie, the data being summarized
are not a sample representing a larger
(and itself unmeasurable) universe or
population.

The second hat involves the use of SD
from a random sample as an estimate of
the population standard deviation (g).
The formal statistical language says
that the sample statistic, SD, is an
unbiased estimate of a population pa-
rameter, the population standard devia-
tion, o.

This “estimator SD” is calculated dif-
ferently than the SD used to describe
data that represent only themselves.
When a sample is used to make esti-
mates about the population standard
deviation, the ealeulations require two
changes, one in concept and the other in
arithmetic. First, the mean used to

determine the deviations is concep-
tualized as an estimate of the mean, X,
rather than as a true and exact popula-
tion mean (n). Both means are calcn-
lated in the same way, but a population
mean, w, stands for itself and is a pa-
rameter; a sample mean, %, is an esti-
mate of the mean of a larger population
and is a statistic.

The second change in calculation is in
the arithmetic: the sum of the squared
deviations from the (estimated) mean is
divided by n -1, rather than by N. (This
makes sense intuitively when we recall
that a sample would not show as greata
spread of values as the source popula-

tion. Reducing the denominator [by .

one] produces an estimate slightly
larger than the sample SD. This “cor-
rection” has more impact when the sam-
ple is small than when n is large.)
Formulas for the two versions of SD
are shown in Fig 1. The formulas follow
the customary use of Greek letters for
population parameters and English let-
ters for sample statistics. The number
in a sample is indicated by the lowercase
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‘n,” and the number in a population is
indicated by the capital “N.”

The two-faced nature of the SD has
caused tension between medical in-
vestigators on the one hand and statisti-
cians on the other. The investigator may
believe that the subjects or measure-
ments he is summarizing are self-
contained and unique and cannot be
thought of as a random sample. There-

'~ fore, he may decide to use the SD as a

descriptive statement about dispersion
of his data. On the other hand, the
biostatistician has a tendency, because
of his training and widespread statis-
tical practice, to conceive of the SD as an
estimator of a parameter of a popula-
tion. The statistician may hold the view
that any small collection of data is a
stepping-stone to higher things.

The pervasive influence of statisti-
cians is demonstrated in the program
for caleulating the SD that is put into
many handheld calculators; they usu-
ally calculate the estimator SD rather
than the “descriptor SD.”

In essence, the investigator and his
statistical advisor, the journal review-
ers, and the editors all confront a criti-
cal decision whenever they face the
term “standard deviation.” Is it a de-
seriptive statistic about a collection of
(preferably gaussian) data that stand
free and independent of sampling con-
straints, ie, is it. a straightforward
indication of dispersion? Or, is the SD
being used as an estimate of a popula-
tion parameter? Although the SD is
commonly used to summarize medical
information, it is rare that the reports
indicate which version of the SD is
being used.

STANDARD ERROR

In some ways, standard error is
simpler than the SD, but in other
ways, it is much more complex. First,
the simplicities will be discussed. The
SE is always smaller than the SD. This
may account for its frequent use in
medical publicatiohs; it makes the data
look “tighter” than does the SD. In the
previously cited quotation by Glantz,®
the implication is that the SE might be
used in a conscious attempt at distor-
tion or indirection. A more charitable
view is that many researchers and
clinicians simply are not aware of the
important differences between SD and
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SE. At first glance, the SE looks like a
measure of dispersion, just as the SD
does. The trouble is that the dispersion
implied by the SE is different in nature
than that implied by the SD.

The SE is always an estimator of a
population characteristic; it is not a
descriptive statistic—it is an inferen-
tial statistic. The SE is an estimate of
the interval into which a population
parameter will probably fall. The SE
also enables the investigator to choose
the probability that the parameter will
fall within the estimated interval, usu-
ally called the “confidence interval.”

Here is a statement containing the
SE: The mean of the sample was
73 mg/dL, with an SE of the mean of
3 mg/dL. This implies that the mean of
the population from which the sample
was randomly taken will fall, with
96% probability, in the interval of
T3x(1.96%3), which is from 67.12
to 78.88. Technically the statement
should be: 95 out of 100 confidence
intervals calculated in this manner will
include the population parameter. If
99% probability is desired, the confi-
dence interval is 73 +(2.58 X 3), which
is from 65.26 to 80.74.

As Feinstein® notes, the SE has
nothing to do with standards or with
errors; it has to do with predicting
confidence intervals from samples. Up
to this point, I have used SE as though
it meant only the SE of the mean
(SEM). The SE -should not be used
without indicating what parameter in-
terval is being estimated. (I broke that
rule for the sake of clarity in the intro-
duction of the contrast between SD
and SE.)

Every sample statistic can be used
to estimate an SE; there is an SE for
the mean, for the difference between
the means of two samples, for the slope
of a regression line, and for a correla-
tion coefficient. Whenever the SE is
used, it should be accompanied by a
symbol that indicates which of the sev-
eral SEs it represents, eg, SEM for SE
of the mean.

Figure 2 shows the formula for
caleulating the SEM from the sample;
the formula requires the estimator
SD, ie, the SD calculated using n—1,
not N. It is apparent from the formula
for the SEM that the larger the sample
size, the smaller the SEM and, there-

fore, the narrower the confidence in-
terval. Stated differently, if the esti-
mate of a population mean is from a
large sample, the interval that proba-
bly brackets the population mean is
narrower for the same level of confi-
dence (probability). To reduce the con-
fidence interval by half, it is necessary
to increase the sample size by a multi-
ple of four. For readers who know that
the SD is preferred over the SEM as

~an index for describing dispersion of

gaussian data, the formula for the
SEM can be used (in reverse, so to
speak) to calculate the SD, if sample
size is known.

The theoretical meaning of the SEM
is quite engaging, as an example will
show. One can imagine a population
thatistoolarge for every element tobe
measured. A sample is selected ran-
domly, and its mean is calculated, then
the elements are replaced. The selec-
tion and measuring are repeated sev-
eral times, each time with replace-
ment. The collection of means of the
samples will have a distribution, with a
mean and an SD. The mean of the
sample means will be a good estimate
of the population mean, and the SD of
the means will be the SEM. Figure 2
uses the symbol SD, to show that a
collection of sample means (%) has a
SD, and it is the SEM. The interpreta-
tion is that the true population mean
(w) will fall, with 95% probability,
within=1.96 SEM of the mean of the
means.

Here, we see the charm and attrac-
tiveness of the SEM. It enables the
investigator to estimate from a sam-
ple, at whatever level of confidence
(probability) desired, the interval
within which the population mean will
fall. If the user wishes to be very
confident in his interval, he can set the
brackets at=3.5 SEM, which would
“capture” the mean with 99.96% prob-
ability.

Standard errors in general have
other seductive properties. Even
when the sample comes from a popula-
tion that is skewed, U shaped, or flat
on top, most SEs are estimators of
nearly gaussian distributions for the
statistic of interest. For example, for
samples of size 30 or larger, the SEM
and the sample mean, %, define a
nearly gaussian distribution (of sam-
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ple means), regardless of the shape of
the population distribution.

These elegant features of the SEM

are embodied in a statistical principle
called the Central Limit Theorem,
which says, among other things:
The mean of the collection of many sample
means is a good estimate of the mean of the
population, and the distribution of the sam-
ple means (if n=30 or larger) will be nearly
gaussian regardless of the distribution of the
population from which the samples are
taken.

The theorem also says that the collee-
tion of sample means from large sam-
ples will be better in estimating the
population mean than means from small
samples.

Given the symmetry and usefulness
of SEs in inferential statistics, it is no
wonder that some form of the SE,
especially the SEM, is used so fre-
quently in technical publications. A
flaw occurs, however, when a confi-
dence interval based on the SEM is
used to replace the SD as a descriptive
statistic; if a description of data spread
is needed, the SD should be used. As
Feinstein® has observed, the reader of
aresearch report may be interested in

the span or range of the data, but the.

author of the report instead displays
an estimated zone of the mean (SEM).

An absolute prohibition against the
use of the SEM in medical reports is
not desirable. There are situations in
which the investigator is using a truly
random sample for estimation pur-
poses. Random samples of children
have been used, for example, to es-
timate population parameters of
growth. The essential element is that
the investigator (and editor) recognize
when descriptive statisties should be
used, and when inferential (estima-
tion) statistics are required.

SE OF PROPORTION

As mentioned previously, avery sam-
ple statistic has its SE. With every
statistic, there is a confidence interval
that can be estimated. Despite the
widespread use of SE (unspecified) and
of SEM in medical journals and books,
there is a noticeable neglect of one
important SE, the SE of the proportion.

The discussion so far has dealt with
measurement data or counts of ele-
ments. Equally important are data re-
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ported in proportions or percentages,
such as, “Six of the ten patients with
zymurgy syndrome had so-and-so.”
From this, it is an easy step to say,
“Sixty percent of our patients with
Zymurgy syndrome had so-and-so.” The
implication of such a statement may be
that the author wishes to alert other
clinicians, who may encounter samples
from the universe of patients with
zymurgy syndrome that they may see
so-and-so in about 60% of them.

The proportion—six of ten—has an
SE of the proportion. Asshownin Fig 2,
the SE, in this situation is the square
root of (0.6 x 0.4) divided by ten, which
equals 0.155. The true proportion of so-
and-so in the universe of patients with
zymurgy syndrome is in the confidence
interval that falls symmetrically on both
sides of six of ten. To estimate the
interval, we start with 0.6 or 60% as the
midpoint of the interval. At the 95%
level of confidence, the interval is
0.6=1.96 SE,, which is 0.6 =(1.96 x
0.155), or from 0.3 to 0.9.

If the sample shows six of ten, the
95% confidence interval is between 30%
(three of ten) and 90% (nine of ten). This
is not a very narrow interval. The ex-
panse of the interval may explain the
almost total absence of the SE, in medi-
cal reports, even in journals where the
SEM and SD are used abundantly. In-
vestigators may be dismayed by the
dimensions of the confidence interval
when the SE, is calculated from the

small samples available in clinical situa-

tions.

Of course, as in the measurement of
self-contained data, the investigator
may not think of his clinical material asa
sample from a larger universe. But
often, it is clear that the purpose of
publication is to suggest to other in-
vestigators or clinicians that, when they
see patients of a certain type, they
might expect to encounter certain char-
acteristics in some estimated propor-
tion of such patients.

JOURNAL USE OF SD AND SE

To get empiric information about pe-
diatric journal standards on descriptive
statistics, especially the use of SD and
SE, I examined every issue of the three
major pediatric journals published in
1981: American Jowrnal of Diseases of
Children, Jowrnal of Pediatrics, and

NoE

Pediatrics. In a less systematic way, I
perused several issues of JAMA, the
New England Journal of Medicine, and
Science. .

Every issue of the three pediatric
journals had articles, reports, or letters
in which SD was mentioned, without
specification of whether it was the
descriptive SD or the estimate SD. Ev-
ery issue of the Journal of Pediatrics

contained articles using SE (unspec-

ified) and articles using SEM. Pedi-
atrics used SEM in every issue and the
SE in every issue except one. Eight of
the 12 issues of the American Journal of

Diseases of Children used SE or SEM |

or both. All the journals used SE as if
SE and SEM were synonymous.

Every issue of the three journals con-
tained articles that stated the mean and
range, without other indication of
dispersion. Every journal contained re-
ports with a number # (another num-
ber), with no explanation of what the
number after the plus-minus symbol
represented.

Every issue of the pediatric journals
presented proportions of what might be
thought of as samples without indicat-
ing that the SE, (standard error of the
proportion) might be informative.

Inseveral reports, SE or SEM is used
in one place, but SD is used in another
place in the same article, sometimes in
the same paragraph, with no explana-
tion of the reason for each use. The use
of percentiles to describe nongaussian
distributions was infrequent. Similar
examples of stylistic inconsistency were
seen in the haphazard survey of JAMA,
the New England Jowrnal of Medicine,
and Science.

A peculiar graphic device (seen in
several journals) is the use, in illustra-
tions that summarize data, of a point
and vertical bars, with no indication of
what the length of the bars signifies.

A prevalent and unsettling practiceis
the use of the mean=SD for data that
are clearly not gaussian or not sym-
metric. Whenever data are reported
with the SD as large or larger than the
mean, the inference must be that sev-
eral values are zero or negative. The
mean+2 SDs should embrace about
95% of the values in a gaussian distribu-
tion. If the SD is as large as the mean,
then the lower tail of the bell-shaped
curve will go below zero. For many
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biologic data, there can be no negative
values; blood chemicals, serum en-
zymes, and cellular elements cannot
exist in negative amounts.

An article by Fletcher and Fletcher*
entitled “Clinical Research in General
Medical Journals” in a leading publica-
tion demonstrates the problem of +SD
inreal life. The article states that in 1976
certain medical articles had an average
of 4.9 authors +7.3 (SD)! If the author-
ship distribution is gaussian, which is
necessary for *SD to make sense, this
statement means that 95% of the arti-
cles had 4.9+(1.96x7.3) authors, or
from 9.4 to +19.2. Or stated another
way, more than 25% of the articles had
zero or fewer authors.

In such a situation, the SD is not good
as a descriptive statistic. A mean and
range would be better; percentiles
would be logical and meaningful.

Deinard et al® summarized some
mental measurement scores using the
mean * SD and the range. They vividly
showed two dispersions for the same
data. For example, one set of values
was 120.8 +15.2 (SD); the range was 63
to 140. The SD implies gaussian data,
80 99% of the values should be within
+2.58 SDs of the mean or between 81.6
and 160. Which dispersion should we
believe, 63 to 140 or 81.6 to 1607

ADVICE OF AUTHORITIES

There may be a ground swell of inter-
est among research authorities to help
improve statistical use in the medi-
cal literature. Friedman and Phillips®
pointed out the embarrassing uncer-
tainty that pediatric residents have with
P values and correlation coefficients.
Berwick and colleagues,’ using a ques-
tionnaire, reported considerable vague-
ness about statistical concepts among
many physicians in training, in aca-
demic medicine, and in practice. How-
ever, in neither of these reports is
attention given to the interesting but
confusing properties of SD and SE.

In several reports,®® the authors
urge that we be wary when comparative
trials are reported as not statistically
significant. Comparisons are vulnera-
ble to the error of rejecting results that
look negative, especially with small
samples, but may not be. These au-
thorities remind-us of the error of failing
to detect a real difference, eg, between
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controls and treated subjects, when
such a difference exists. This failure is
called the “error of the second kind,” the
Type IT error, or the beta error. In
laboratory language, this error is called
the false-negative result, in which the
test result says “normal” but nature
reveals “abnormal” or “disease pres-
ent.” (The Type I error, the alpha error,
is a more familiar one; it is the error of
saying that two groups differ in some
important way when they do not. The
Type I error is like a false-positive
laboratory test in that the test suggests
that the subject is abnormal, when in
truth he is normal.)

In comparative trials, calculation of
the Type II error requires knowledge of
the SEs, whether the comparisons are
of group means (requiring SEM) or
comparisons of group proportions (re-
quiring SE,). .

At the outset, I mentioned that we
are advised** to describe clinical data
using means and the SD (for bell-shaped
distributions) and to eschew use of the
SE. On the other hand, we are urged to
examine clinical data for interesting
confidence intervals,™= searching for
latent scientific value and avoiding a too
hasty pronouncement of not significant.
To avoid this hasty fall into the Type II
error (the false-negative decision), we
must increase sample sizes; in this way,
a worthwhile treatment or intervention
may be sustained rather than wrongly
discarded.

It may be puzzling that some au-
thorities seem to be urging that the SE
should rarely be used, but others are
urging that more attention be paid to
confidence intervals, which depend on
the SE. This polarity is more apparent
than real. If the investigators aim is
description of data, he should aveid the
use of the SE; if his aim is to estimate
population parameters or to test hy-
potheses, ie, inferential statistics, then
some version of the SE is required.

WHO IS RESPONSIBLE?

It is not clear who should be held
responsible for data displays and sum-
mary methods in medical reports.
Does the responsibility lie at the door
of the investigator-author and his sta-
tistical advisors, with the journal ref-
erees and reviewers, or with the edi-
tors? When I ask authors about their

statistical style, the reply often is,
“The editors made me do it.”

An articulate defender of good sta-
tistical practice and usage is Feins-
tein,? who has regularly and effectively
urged the appropriate application of
biostatistics, including SD and SE. In
his book, Clinical Biostatistics, he
devotes an entire chapter (chap 23, )Js)
335-352) to “problems in the summary
and display of statistical data.” He
offers some advice to readers who wish
to improve the statistics seen in medi-
cal publications: “And the best person
to help re-orient the editors is you,
dear reader, you. Make yourself a one-
person vigilante committee. ™

Either the vigilantes are busy in
other enterprises or the editors are
not listening, because we continue to
see the kind of inconsistent and
confusing statistical practices that
Eisenhart' and Feinstein? have been
warning about for many years. I can
only echo what others have said: When
one sees medical publications with in-
appropriate, confusing, or wrong sta-
tistical presentation, one should write
to the editors. Editors are, after all,
the assigned defenders of the elegance
and accuracy of our medical archives.
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The end of the p value?

STEPHEN ] W EVANS,* PETER MILLS, JANEDAWSON

From the Departments of Clinical Epidemiology and Cardiology, The London Hospital; and the Brirish

Journal

The application of statistical methods to medical data
has been undergoing a sca-change. This is.of par-
ticular importance in cardiology because the current
methods that statisticians recommend express the
resules of studies in terms that are directly relevant to
the clinical use to which they may be put. In March
1086 the British Medical Journal nailed its colours
firmly to the mast, telling readers that “authors . . .
will be expected to calculate confidence intervals
whenever the data warrant this approach™ ? and the
Lancet,>* Annals of Internal Medicine, and American
Journal of Public Health are among other journals
that have endorsed the new orthodoxy. We expect
that studies reported in the British Heart Journal will
increasingly reflect this approach. The nuts and bolts
of calculating the confidence intervals of various
types of data are described in a series of articles in the
British Medical Journal,™ and below we review some
aspects of the approach that are particularly relevant
to papers published in the British Heart Journal.

Towards estimation and away from hypothesis
testing

The null hypothesis generally states that there is no
relation between the variables under study. For
example, when the change in cardiac output before
and after intervention is analysed the null hypothesis
proposes that the average change is zero. It follows
that calculation of the p value, which is based on the
null hypothesis, is frequently an inappropriate statis-
tical method for summarising the analysis of car-
diological data. Many published studies do not
seriously consider the possibility that an intervention
has no effect. When a test intervention has been used
the question usually being asked is “how great is its
effect?”” rather than ‘““does it have an effect?”

*Statistical adviser to the British Heart Journal.

Requests for reprints to Jane Dawson, British Heart Journal, BMA
House, Tavistock Square, London WCIH 9]R.

Heart

This point may be illustrated by comparing car-
diac output before and after administration of an
tnotropic drug. A paired r test with a p value starts
with the hypothesis that the inotrope has no effect. It
is unlikely that the drug would be under investigation
if no effect on cardiac output were really expected.
The questions for the clinician are “on average, how
great is the change produced by the intervention”
and ‘“‘with what precision has the average change
been estimated?”” These questions are answered by
the calculation of confidence intervals, whereas
hypothesis testing can give only the answer “yes” or
“no” to the question “Is there a change?”

Figure 1a is an example of data that arise in such
a study. The paired ¢ test gives a value of r = 3-3
(p = 0:01). It indicates that the rise is statistically
significant but does not indicate the size of the rise.
The appropriate 95°, confidence interval which is
shown in fig la is based on the mean change and two
standard errors on either side of the mean and
suggests the likely interval within which the true
mean lies. Thus the confidence interval centred on
the mean change of 0-6 I/min extends from a mean
change of +0-2 [/min to one of +1-0 I/min. This
implies that the true mean value could lie anywhere
between 0-2 and 1-0 and that the data are unlikely to
be consistent with a mean change of zero. A con-
fidence interval that does not include zero is
equivalent to a test with a statistically significant
p value. When the confidence interval includes zero,
as for example when the interval is from —0-2 /min
o +1-4 l/min then although the mean change
remains the same, at + 0-6 1/min, the possibility must
be considered that the intervention causes a fall
rather than a rise or that it causes no change at all. If
the data arise from a smaller sample (sce fig 1b in
which n = 7 instead of n = 9) or if their standard
deviation is larger (see fig 1¢ in which the standard
deviation has increased by 25°,) the confidence
interval will be wider.

When the confidence interval includes zero the
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result is equivalent to a significance test that gives a
non-significant result. Relying on this feature alone is
no better than the use of p values, but the upper limit
of the confidence interval (+1-4) draws attention to
the possibility that the average increase might be
clinically useful.

The obvious advantage of a confidence interval is
that it expresses results in the units in which the

measurements were made, and so allows the reader to -

consider critically the clinical relevance of the results.
If the sample size is small the confidence interval will
be wide. The clinician must then examine the
extremes of the interval. Do these extremes indicate
that the clinical relevance of the results is consistent
with the conclusions drawn from the analysis? If the
conclusion is drawn that the drug has “no effect”
because p is not statistically significant but the 950,
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Figl Individual values before and after drug
administration with means and 95¢, confidence interval
(Cl) for the change shown. (a) n = 9, (b) n = 7,(c) SD
increased by 25%,.

confidence interval reaches 1-4 |/min (fig 1b) then it is
clear that the drug may well have a positive effect that
has not been demonstrated by this study. The
confidence interval (of say +0-05 to +0-1 1/min) can
also make it clear that a difference which is statis-
tically significant (based on p values) is of no clinical
relevance because the statistical significance of the
result has been produced spuriously by a very large
sample of say about 2000. In such a study even the
upper value of the confidence interval suggests that
such a change is 100 small to be of clinical benefit
despite its statistical significance.

When the effects of two different drugs on cardiac
output are being compared the appropriate test is an
independent samples ¢ test and the equivalent 95°,,
confidence interval may also be calculated. In fig 2,
drug A gives the same results as shown in fig 1a, while

Theend o

Cardine antnot (1/min)

the effec
statistical
test. Th
whether «
the chan

121

3
z

1

Cardiac output (I/min) measured by method 1
5 9 e 8 B e wrow
|

~N
n

L
[¢]
C
Fig3 (a

two metho.
values “in.




Dawson

1
1

.

w

(uruiy)) Indino 2o1pIod Ll 3buby?y

rval

{¢) SD

henitis
fect that
y. The
nin) can
S statis-
clinical
> of the
ry large
ven the
sts that
benefit

cardiac
est is an
nt 95°%,
n fig 2,
a, while

The end of the p value? 179
T
*
*, co9T *!
5
—_—t 0y 0 —
<
‘E 41 —_ -07 S
= +-1
3
- 34
3 1,
1%}
8
g 24 Mean before Mean after Mean before Mean after
(5} drug A drug A drug B drug B
* .
14 Cl for difference between change
on drug A and on drug B
0 T T T 1
Before After Before After

Fig2 Individual and mean values before and after administration of two drugs. The 95°, confidence
interval for difference between the changes with drug A and the changes with drug B is —0-7 to

+0-9 lfmin.

the effect of drug B on cardiac output is ‘“‘not
statistically significant” when assessed by a paired ¢
test. The relevant question is no longer simply
whether each drug alters cardiac output but whether
the change with drug A (86CO,) is importantly
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different from that with drug B (6CO,). The 95°,,
confidence interval for the difference between the
changes with A and with B (8CQO,g)is —0-7to + 091/
min. This shows that although the change with A is
statistically significant (p < 0-05) and that with B is
not statistically significant, there is insufficient
evidence that the change with A is different from the
change with B (because the 95°; confidence interval
for the difference in changes between A and B
includes zero). At the same time confidence intervals
show that potentially clinically important differences
(for example of 0-9 1/min) between the drugs may not
have been detected because the sample sizes were too
small to produce significant p values.

Thus confidence intervals provide all the informa-
tion that significance tests give us and also indicate
the clinical relevance of the information. Confidence
intervals require little more calculation than the
appropriate significance test.

Method comparison and the null hypothesis

Many investigations in cardiology compare two
methods of measuring the same variable—for exam-
ple cardiac output determined by Doppler echocar-
diography and by the Fick principle at cardiac
catheterisation. In the past, such data have been
summarised by correlation or regression coefficients
and calculation of a p value (fig 3a). In both these
methods the null hypothesis is tested. But the null
hypothesis, which states there is no association
between two variables, is not relevant to the
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measurement of the same variable by two different
methods. The magnitude of the correlation
coefficient is strongly influenced by the range of
values under study. In addition, its “significance” is
increased simply by increasing the number of
subjects studied. The apparently stronger correla-
tion between the variables for the data shown in fig 3b
(r = 090 v r = 0-80) is purely the result of the
inclusion of two outliers. The correlation coefficient
gives neither the magnitude of any possible dis-
crepancy between the two methods nor whether such
discrepancy is consistent over the range of values.

Like confidence intervals the method of analysis
advocated by Bland and Altman'® emphasises clinical
relevance, which is determined by understanding the
extent to which the two methods give different
results—not by confirming that they show a little
better than chance agreement when used to measure
cardiac output. So fig 4a shows that method 1 gives
slightly higher values than method 2 (the mean of the
difference is higher than zero) and fig 4b shows that
inclusion of the outlying values reduces the
agreement rather than improves it (the standard
deviation has increased from 1-00 to 1-17).

The key questions are what is the variability of a
single observation (including its measurement error)

Evans, Mills, Dawson

and how much disagreement is there between the two
methods of measurement? It is also important to be
aware of systematic variation in the answers over the
range of interest; for example when the two sets of
measurements are examined does one method yield
high values at the upper end of the range and low
values at the lower end of the range? If it does, are
these discrepant values genuine or are they spurious?
Investigation of the methods together with some
understanding of the possible clinical applications
will be necessary to decide which is the better method
of measurement. Lastly, while the two methods may
agree over a wide range of values including those of
normal individuals, does this degree of agreement
between the techniques extend into the range of
values commonly encountered in discase?

For some tine now the Britisk Heart Jowrnal has
been  informally  persuading authors who inap-
propriately  use correlation  and  regression
cocthicients to use the method of Bland and Aluman to
examine agreement between methods. The tuct that,
over many vears, correlation and regression have
been misused 1S no reasann 1O perpetuate d bad
practice. Comparison of the r values obtained in
ditferent studics is meaningless. In addition, the
British Heare Journad also recommends that con-
fidence intervals should be given where relevant tor
studices that assess the effects of interventions, com-
pare the effects of different drugs, or evaluate non-
invasive techniques.
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Coincidencesc

JOHN ALLEN PAULOS

vincidences fascinate us. They seem to

compel a search for their significance.

More often than some people realize,
however, they are to be expected and require
no special explanation. Surely no cosmic
conclusions may be drawn from the fact that
I recently and quite by accident met someone
in Seattle whose father had played on the same
Chicago high-school baseball team as my father
had and whose daughter is the same age and
has the same name as my daughter. As
improbable as this particular event was, that some
event of this vaguely characterized sort should
occasionally occur is very likely.

More precisely it can be shown, for example,
that if two Americans sit next to each other
on an airplane, more than 99 times out of 100
they will be linked in some way by two or fewer,
intermediates. (The linkage with my father’s
classmate was more striking. It was via only one!
intermediate, my father, and contained other|
elements.) Maybe, for example, the cousin of
one of the passengers will know the other’s
dentist. Most of the time people won't discover
these links, since in casual conversation they
can’t run through all their 1,500 or so acquain-
tances as well as all their acquaintances’
acquaintances. (I suppose with laptop computers
becoming more popular they could compare
their own personal databases and even those
of people they know. Perhaps exchanging
databases might soon be as common as leaving
a business card. Electronic networking.
Hellacious.)

There is a tendency, however, to home in
on likely co-acquaintances. Such connections are
thus discovered frequently enough that the
squeals of amazement that commonly accom-
pany their discovery are unwarranted. Similarly
unimpressive is the “prophetic” dream, which
traditionally comes to light after some natural
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disaster has occurred. Given the half-
billion hours of dreaming each night
in this country—two hours a night for
250 million people—we should expect
as much.

Or consider the famous birthday
problem in probability theory. One
must gather together 367 people (one
more than the number of days in a
leap year) in order to ensure that 2
of them share a birthday. But if one
is willing to settle for a 50-50 chance
of this happening, only 23 people need
be gathered. Rephrasing, I note that
if we imagine a school with thousands
of classrooms each of which contains
23 students, then approximately half
of these classrooms will contain 2 stu-
dents who share a birthday. No time
should be wasted trying to explain the
meaning of these or other coinciden-
ces of similar type. They just happen.

One somewhat different example
concerns the publisher of a-stock
newsletter who sends out 64,000
letters extolling his state-of-the-art
database, his inside contacts, and his
sophisticated econometric models. In
32,000 of these letters he predicts a

Summer 1991

rise in some stock index for the
following week, say, and in 32,000 of
them he predicts a decline in that same
index. Whatever happens he sends a
follow-up letter, but only to those
32,000 to whom he’s made the correct
“prediction.” To 16,000 of them he
predicts a rise in that index for the
next week, and to 16,000 a decline.
Again, whatever happens he will have
sent two consecutive correct predic-
tions to 16,000 people. Iterating this
procedure of focusing exclusively on
the winnowed list of people who have
received only correct predictions, he
can create the illusion in them that
he knows what he’s talking about.
After all, the 1,000 or so remaining
people who have received six straight
correct predictions (by coincidence)
have a good reason to cough up the
$1,000 the newsletter publisher
requests: they want to continue to
receive these “oracular” pronounce-
ments.

I repeat that in discussing these and
other coincidences it is useful to
distinguish between generic sorts of
events and particular events. Many
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situations are such that the particular
event that occurs is guaranteed to be
rare—a certain individual winning the
lottery or a specific bridge hand being
dealt-~while the generic outcome—
someone’s winning the lottery or
some bridge hand being dealt—is
unremarkable. Consider the birthday
problem again. If all that we require
is that two people have some birthday
in common rather than any particular
birthday, then 23 people suffice to
make this happen with probability 1/
2. By contrast, 253 people are needed
in order for the probability to be 1/
2 that one of them has a specific
birthdate, say July 4. Particular events
specified beforehand are, of course,
quite difficult to forecast, so it's not
surprising that predictions by tele-
vangelists, quack doctors, and others
are usually vague and amorphous
(that is, until the events in question
have occurred, at which time the
prognosticators like to assert that
these precise outcomes were indeed
foreseen).

This brings me to the so-called
Jeane Dixon effect, whereby the few
correct predictions (by psychics, dis-
reputable stock newsletters, or
whomever) are widely heralded, and
the 9,839 or so false predictions made
annually are convenien Iy ignored.
The phenomenon is quite widespread
and contributes to the tendency we
all have to read more significance into
coincidences than is usually justified.
We forget all the premonitions of
disaster we've had that didn’t predict
the future and remember vividly those
couple that seemed to do so. Instances
of seemingly telepathic thought are
reported to everyone ve know; the
incomparably vaster number of times
this doesnt occur is too banal to
mention,

Evenour biology conspires to make
coincidences appear more meaningful
than they usually are. Since the

natural world of rocks, plants, and
rivers doesn’t seem to offer much
evidence for superfluous coincidences,
primitive man had to be very sensitive
to every conceivable anomaly and
improbability as he slowly developed
science and its progenitor “common
sense.” Coincidences, after all, are
sometimes quite significant. In our
complicated and largely man-made
modern world, however, the plethora
of connections among us appears to
overstimulate many people’s inborn
tendency to note coincidence and
improbability and lead them to pos-
tulate causes and forces where there
are none. People know more names
(not only family members’, but also
those of colleagues and a myriad of
public figures), dates (from news
stories to personal appointments and
schedules), addresses (whether actual
physical ones or telephone numbers,
office numbers, and so on), and
organizations and acronyms (from
the FBI to the IMF, from AIDS to
ASEAN) than ever before. Thus,
although it is a very difficult quantity
to measure, the rate at which coin-
cidences occur has probably risen
over the past century or two. Still,
for most of them it generally makes
little sense to demand an expla-
nation.

In reality, the most astonishingly
incredible coincidence imaginable
would be the complete absence of all
coincidences.

Note

Brief derivations of birthday statements: (1)
The probability of 2 people having different
birthdays is 364/365; of 3 people having
different birthdays, (364/365 x 363/365); of
4 people, (364/365 x 363/365 x 362/365); of
23, (3641365 x 363/365 x 362/365 x . . . x
342365 x 343/365), which product turns out
to equal 1/2. Thus the complementary
probability that at least 2 people share a
birthday is also 1/2 (one minus the above

product). (2) The probability someone does
not have a July 4 birthday is 364/365; the
probability neither of 2 people has a ]gly 4
birthday is 364/365; the probability neither
of 2 people has a July 4 birthday is (364/
365)2;, none of 3, (364/365)3, none of 253,
(364/365)233, which turns out to equal 1/2.
Thus the complementary probability that at
least ane of the 253 people has a July 4
birthday is also 1/2, 1 - (364/365)253.

John Allen Paulos is professor of
mathematics at Temple University and
author of the best-selling Innumeracy
and of the just-published Beyond
Numeracy: The Ruminations of a
Numbers Man (Knopf, April 1991),
from which this is published by
permission.
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Maximum Likelihood Estimation

Suppose that we have a sample z1, 5, ..., z, from a Normally distributed
population, with unknown mean yx, and known variance, o2 = 1. We would
like to estimate p from the data. An obvious answer is to use the sample
mean, Z, but why is this a good choice? The answer is that out of all possi-
ble estimates of u that we could choose, T maximizes the probability of the
observed data, given u. Thus it is a mazimum likelihood estimate.

<

° ]

0.2

0.0

[ X=pn M3
Of all possible choices for y,
which is most likely, given the observed data?

For each data point, the probability density function is given by

1 (z: — u)?

flzilp) = Wors exp(———5——)-

Since the data are independent, from the product rule,

f(xl)z27"')xn|.u‘ H

2 n n z; — 2
\/_exp(_( — 1) ) = (\/%) exp(__z=_1(_2_ﬁi)_
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This function is called the likelihood function, as it gives the likelihod or
probability of the data for each value of p.

We wish to maximize this probability function, i.e., pick the value of u
that gives the highest probability to the observed data. From calculus, we
know that to maximize a function, we take its derivative, and set it equal to
zero. Thus we will solve

df(xly T2, - - 7xn|,u’)
du

=0,
which, using the power rule, rule for exponentials, and the chain rule, becomes

T1,L2,...,Tn " m (s — p)? 1 &
af ( Qdu ) _ (\/_12=7r) exp(____l_(__2_‘lf)_)x|:—522($i_.u)(”l) =0.

Since a constant is never zero, and an exponential is never zero, if the deriva-
tive is to equal zero, it must be that the term

[—% i2($i - #)(—1)} = 0.

=1

i=1

But this means that

Z(xi—u)=zn:zi—zn:u=0,

=1 i=1 i=1
so that
1 n
w=— Z T, =7
"

Thus the MLE is 4t = 7.
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PROPERTIES QF ESTIMATORS

population: p, 02

sample: X, s?

1. Unbiased (Assume Random Sample)
E(X)= u, E(s?) = 0%, unbiased

Y(X;-X)% .  n-1
iyl Il

g2 # g%, biased

2. Consistent

As sample size gets larger,
X-p gets closerand closer

52 - g2

3. Maximum Likelihood

What is "most likely" to have been the mean, given the
observed data? X

Y is maximum likelihood estimate, but s® is not.
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SURVIVAL DATA FROM RADIATION AND

E s

BRAIN CANCER EXPERIMENT

Group 1 Group 2
New Schedule Standard Schedule
SURV 1 SURV 2
CASE 1 10. 17.
CASE 2 9. 15.
CASE 3 21. 16.
CASE 4 7. 5.
CASE 5 28. 24.
CASE 6 13. 10
CASE 7 1. 9.
CASE 8 11. 9.
CASE 9 20. 19.
CASE 10 16. 3.
CASE 11 1. 12.
CASE 12 2. 18.
CASE 13 1. 27.
CASE 14 5. 25.
CASE 15 10. 8.
CASE 16 3. 19.
CASE 17 8. 17.
CASE 18 1. 9.
CASE 19 19. 7.
CASE 20 40. 16.
CASE 21 10. 4.
CASE 22 6. 15.
CASE 23 1. 18.
CASE 24 11. 9.
CASE 25 7. 16.
CASE 26 11. 20.
CASE 27 22. 18.
CASE 28 13. 12.
CASE 29 11. ‘19.
CASE 30 7. 11.

TOTAL OBSERVATIONS:

30




SURVIVAL DATA FROM RADIATION AND

BRAIN CANCER EXPERIMENT

(continued)
SURV 1 SURV 2
N OF CASES 30 30
MINIMUM 1. 3.
MAXIMUM 40. 27.
MEAN 10.80 14.34
STANDARD DEV 8.86 6.18
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_ CONFIDENCE INTERVAL FOR u

X=10.8 X,=14.3
s2=(8.9)2 s:=1(6.2)2
s.d. (X)) =22-16 s.d. (%) =22 =113
V30 /30

What can be said about p,, u,?
°)

_X"N(]J',
v30

(2 = 1.96)

95% of

s will so 45% of
be n => all intervals
*Vus
resicﬂ (j{-ﬂ , 7{+.2_0)
/4 Jn Vés!
{

Sheuwld c,on*aln/‘(.

p-29 o B > B+
ﬁ r 4

mla

(unknown)

If s=0 exactly, then:

Hence: 10.8 £ 2 58.9! 14.3 £+ 2 (6.2)
30 {30

l

(7.55, 14.04)
95% CI for y,

If not, use t table values
e.g., tg g5 = 2.042

l

(12.03, 16.56)
95% CI for p,



123

Interpretation:

"1f we used such a procedure repeatedly to form
confidence intervals for p, then 95% of such intervals

would contain the true value of p".

In practice, we use the procedure once, so that either:

(a) The interval does contain p

(b) The interval does not contain g, i.e., we had one
of the 5% unlucky samples

We never know for any particular calculation of a CI if we
are in situation (a) or (b). However, in the iong run, we will

be in (a) 95% of the time.
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B ad

95% CONFIDENCE INTERVAL FOR p. - u,

— = s? 53
Unpooled: X, -X, xt | —+ .
: n, o
£ =Cag10.025 = 2.045
2 2
14.3-10.8:2.045J (8.9)%,  (6.2)
30 30
V
(-0.55, 7.53)
Pooled 2 2
2 (29)(8.9)2-4-(29)(6.2)2 (n1-1)51+(ﬂz—l)52
. S.= _
i 30+30-2 o, +m,-2
= 58.83 = 5,=/58.83 = 7.66
X - 1 1
X, -X,xtt"s —_+
2 1 D Hl nz
1 1
14.3-10.8+(2.045) (7.66) 4| — +—
30 30

4

(-0.55, 7.55)
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OVERVIEW: C.I.'s FOR MEANS

some measurement
weight in kg of a person from
a particular population

>
i

(e.g.)

Population

N X, = one person’s
weight
X, = another person's

weijght

weight of Canadian
population, aged 25+ yrs.

Basic Question: p = mean = ?

What is average weight?
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In theory: "sample" everybody (census) to get exact values

In Practice: Sample only a few from the population.

N
n
;: X;
}_{=—Jﬁz—12—— = sample mean
n ———
= ;=l =sample variance
n-1

n=sample size

X, X, 0 Xy



12%

Pop Sample Point Estimation
X X
mean n m X used to estimate p
var ¢’ a’/n 52 moo " 0’
SZ/n " " " GZ/n
s.d. g a/fn S A " G
s/m " " " 0/‘/_n—
s/¥n called "standard
error"”
increase AT1 1 a’/n X, s?, s, s°/n, s/im are
n = sample stay the o/Vn become "more accurate’
size same decrease points estimates.

X estimates p, but rarely will X = y exactly.

Question:

How far off can we be?

p in interval (X-?, X+?)
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CONFIDENCE INTERVALS

Sampling theory says if we take

(X-ty/2, n1 s/vn, X+ty/s, s/vyn)

then on average, on repeated use of this procedure, p will fall
in this interval 95% of the time (a = 0.05).




Interpreting Confidence Intervals in Practice

Suppose that you have just ca,lcula.ted a confidence interval for a cer-
tain parameter. There are five possible conclusions that can be drawn,
depending on where the upper and Tower confidence interval limits fall
in relation to the upper and lower limits of the region of clinical equiv-
alence. The region of clinical equivalence, sometimes called the region
of indifference, is the region inside of which both treatments would be
considered to be the same for all practical purposes.

1. The CI includes zero, and both upper and lower CI limits, if they
were the true values, would not be interesting to me clinically.
Therefore, this variable has been shown to have no effect.

2. The CI includes zero, but one or both of the upper or lower CI
limits, if they were the true values, would be interesting to me
clinically. Therefore, the results of this variable in this study is
inconclusive, and further evidence needs to be collected.

3. The CI does not include zero, and all values inside the upper and
lower CI limits, if they were the true values, would be interesting
to me clinically. Therefore, this study shows this variable to be
important.

4. The CI does not include zero, but all values inside the upper and
lower CI limits, if they were the true values, would not be inter-
esting to me clinically. Therefore, this study shows this variable,
while having some small effect, is not clinically important.

5. The CI does not include zero, but only some of the values inside
the upper a;ng lower CI limits, if they were the true values, would
be interesting to me clinically. Therefore, this study shows this
variable has at least a small effect, and may be clinically impor-
tant. Further study is required in order to better estimate the
magnitude of this effect.

Of course, the same thinking applies to credible intervals from Bayesian
analyses. If there is little or no prior information, Bayesian credible
intervals and frequentist confidence intervals usually are very similar.
Futhermore, prior distributions are not very influential for large sample
sizes, where again Bayesian credible sets would likely be very similar
to CI's. However, Bayesian thinking may be helpful in the same kinds
of problems with smaller sample sizes, where prior information may
influence decision making.
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Sample Sizes via Confidence Intervals

As previously discussed, there has been a strong trend away from hypothesis
testing and p-values towards the use of confidence intervals in the reporting
of results from biomedical research. Since the design phase of a study should
be in sync with the analysis that will be eventually performed, sample size
calculations should be carried out on the basis of ensuring adequate numbers
for accurate estimation of important quantities that will be estimated in our
study, rather than by power calculations.

The question of how accurate is “accurate enough” can be addressed by care-
fully considering the results you would expect to get (a bit of a “Catch 22”
situation, since if you knew the results you will get, there would be no need
to carry out the experiment!), and making sure your interval will be small
enough to land in intervals numbered 1, 3, or 4 of the previous page. This is
a non-trivial exercise, not to be taken lightly.

As with power calculaitons for means, there are two different formulae, de-
pending if you are in a single of two-sample situation. These are derived by
solving for the sample size n in the formulae for the confidence intervals.

Single Sample: Let u be the mean that is to be estimated, and assume that
we wish to estimate p to an accuracy of a total CI width of w (so that
the CI will be T+ d, where 2 x d = w). Let o be the standard deviation
in the population.

Then

2 2 2 2
. 2{_aq/0" 4 X 2]_o)90
- d? - w?

Two Sample: Let 4 and g be the means of two populations, and that we
would like an accurate estimate of yu; — us. Again assume a total CI
width of w (so that again 2 x d = w). Let o; and oy be the standard
deviations in each population, respectively.

Then

2_op2(0f + 03) _ 4% ploi+03)
d? B w?

n —=

where now n represents the required sample size for each group. As
usual, 21_q/9 is 1.96 for a 95% confidence interval, etc.

(4 See S%P)z Size cqlcw\d’o{ on home fﬁjg /)



Frequentist versus Bayesian Inference

ExAMPLE: Consider the situation where a group of children are given an intelli-
gence test. Suppose that the data are:

Child # | Score on IQ test
1 105
2 97
3 95
4 100
5 104
6 90
7 116
8 113
9 101
10 109

Then T = 103.0, and s = 65.78.

Let us assume the following;:

1. The standard deviation is known a prior: to be 8 units.

2. The observations come from a Normal distribution, i.e.,

z; ~ N(u,0? =82, fori=1,2,...,10.

[ Note: Neither of these two assumptions are necessary, except that they simplify
the problem to make the comparison of the two paradigms easier. We can remove
the first assumption by using a t-test instead of a test based on the Normal dis-
tribution, and the second can be removed by using the Central Limit Theorem for
large sample sizes, or using a non-parametric or other test.]

Suppose that we wish to test the hypotheses:

Hy: p <100
VS
Hy u>100

Since
z;~ N(p,0%=8%), fori=12,...,10,
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we know that

82

o N
T (1 0

), since N = 10.

Thus, if Hy is correct,

7 — 100

- —— =1.185
8/v10

Looking up 1.185 on Normal tables (one-sided test) gives a p-value of 0.118, which
is usually classified as evidence not to reject Hy.

1.

Comments

u is regarded as a fized but unknown parameter about which we want to make
inference. Since it is fixed, one cannot directly make probability statements
about u.

No use of prior information about the children was used, or even discussed.
If there was any prior information available, it would usually only be used
informally, after looking at the results of the test. For example, if one knew
that the children were from a school for “gifted” children, one might reassess
the p-value 0of 0.118 as “close to significance”, and “in the expected direction”,
but this would remain unquantifiable.

The p-value (0.118) says nothing about the probability that the null or al-
ternative hypotheses are correct. For this, we must refer to the positive or
negative “predictive values” of the test, about which the p-value says nothing.

On the other hand:

1.

Bayesian analysis regards p as a random parameter. Since we do not know
the value of y, we can represent our uncertainty in a probability distribution
that summarizes what we do know. If we did know the value of u exactly,
then our distribution reduces to a single point with probability one. This will
rarely be the case, so in general we consider a range of values, and attach
a probability with each subset within that range. Our goal to deduce that
distribution (or its parameters, if the form is known, e.g., here it will be
Normal). All inference is then based on that distribution.

Prior information (when available) is formally incorporated into the model.

. We can directly calculate the probabilities of the null and alternative hy-

potheses. Note, however, that this comes at the price of having to specify a
prior distribution, which may not always be trivial (or even possible) to do
in practice.



Bayesian Approach

Suppose, as before, that the data follow a normal distribution,
z; ~ N(u,0%) = N(p,8%), fori=1,2...,10.

Suppose further that we have a priori information that the random parameter u
is likely to be in the interval (60,140) according to -

p~ N(6,7%) = N(100,400). (0.1)

Thus we have a “two-stage” procedure: First, a u is selected from N (100, 400).
We do not directly observe this u. Then, we observe the z; ~ N(u,82).

This choice for a prior is based on any information that may be available at the
time of the experiment. In this case, the prior distribution was chosen to have
a very large standard deviation (r = 20) to reflect that we have very little prior
information. The prior is centered around p = 100, so that the prior probabilities
of the null and alternative hypotheses are both equal to one half, i.e.,

Pr{u < 100} = Pr{p > 100} = 0.5.

We now look at the data, summarized by Z=103. This data, together with the prior
distribution, are then combined into a posterior distribution. The combination is
carried out by a version of Bayes Theorem, based on the same principle as what
we have seen before, but modified by the fact that the distribution is continuous.

The idea is to combine the prior information about yp together with the information
provided by the data, represented by the likelihood function, into a final posterior
distribution. Thus we have

prior distribution x likelihood of the data

posterior distribution = —
a normalizing constant

The precise formula is

f(,u'|$1,..,,xn)_ f(#)xf(xl,,g;HM)

= T (W) % Flany- . ealp) dp 02)

In our case, the prior is given by (0.1), and the likelihood function for the data is
based on the Normal distribution, i.e.,

(xi—u)Q) _ ( 1 )”exp(_2?=1(zi—u)2

n
1
T1,T9,...,T = —exp(————
f( 1: 22 n|:U') izl—ll\/é—;a p( 952 9252

vV 2ro?

Using (2), the posterior distribution is given by:

| 3]
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7252
Posterior of p ~ N(AX 8+ B x T, ———)
nr? 4+ o2
where
A= 2l = 0.0157
B = olrm=9843
n = 10
c=28
T =+v400 = 20
# = 100, and
T = 103
Hence p ~ N(102.95,6.30), so the posterior distribution is
0
o
2
n
c
5 _
o
S
o W
w9
o o
a
o |
o L] T 1 i T T
90 95 100 105 110 115

Mean IQ
The mean value depends on both the prior mean, 8, and the observed mean, 7.

Note that this is interpreted as the actual probability density of , so that we can
calculate the probabilities of the null and alternative hypotheses.

Pr{H, is true | the data} = Pr{p <100 | x ~ N(102.95,6.30)}
—102.95 < 100 - 102.95

V630 ~  v6.30 J
= Pr{Z < -1.175}

= P'r{'u
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= 0.12

Similarly,

Pr{Hy is true | the data} = Pr{u > 100 | p ~ N(102.95,6.30)}
—-102.95 100 — 102.95 )

>
V6.30 V6.30 }
= Pr{Z > —1.175}

0.88

= Pr{'u

One can just as easily calculate credible intervals, which are the Bayesian analogues
to frequentist confidence intervals. Using the fact that u ~ N(102.95,6.30), a 95%
posterior credible interval for p is (98.0, 107.9).



Placing Trials in Context
Using Bayesian Analysis
GUSTO Revisited by Reverend Bayes

James M. Brophy, MD, Lawrence Joseph, PhD

Standard statistical analyses of randomized clinical trials fail to provide a direct
assessment of which treatment is superior or the probability of a clinically
meaningful difference. A Bayesian analysis permits the calculation of the prob-
ability that a treatment is superior based on the observed data and prior beliefs.
The subjectivity of prior beliefs in the Bayesian approach is not a liability, but
rather explicitly allows different opinions to be formally expressed and evalu-
ated. The usefulness of this approach is demonstrated using the resuits of the
recent GUSTO study of various thrombolytic strategies in acute myocardial in-
farction. This analysis suggests that the clinical superiority of tissue-type plas-
minogen activator over streptokinase remains uncertain.

BEFORE any clinical trial results are
available, different clinicians will have
different opinions regarding the rela-
tive benefits of the therapies under
study. These opinions will usually range
from skepticism to enthusiasm for a new
therapy compared with a standard
therapy. Regardless of how well it is
conducted, no single clinical trial can
provide absolutely definitive conclusions.
Thus, even after trial results are re-
ported, it is reasonable to expect that a
diversity of opinions will persist, al-
though perhaps with some convergence
toward the observed trial results. The
degree of convergence will depend on
the strength of the trial in terms of
sample size and scientific rigor in its
execution. Therefore, in any medical ex-
periment, clinical researchers must give
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careful consideration to issues of both
design and analysis. Randomized clini-
cal trials are almost universally accepted
as the gold standard design for com-
parative clinical research, since bias and
confounding are minimized. Much atten-
tion has been directed to the scientific
reasoning behind statistical analysis in
the medical and statistical literature.
However, while most clinicians are
aware of the importance of good experi-
mental designs, few are aware of the full
array of statistical methods available.
Some of these methods allow for the
reporting of a range of conclusions cor-
responding to the diversity of prior opin-
ions. They can also answer directly ques-
tions of interest to clinicians.

Classical (frequentist) analysis is the
most prevalent statistical method used,
leading to the ubiquitous P values and
confidence intervals. P values from re-
search trials may be viewed as analogs of
false-positive (1—specificity) diagnostic
tests. Ifneither the disease nor the treat-
ment is malignant, we may well accept
test specificity of 95% (P=.05). However,
before accepting a limb amputation for
osteosarcoma, we would rightly demand
a false-positive value much less than .05.

Generally, we are more interested in
knowing what is the probability of dis-
ease given the test result (analogous to
predictive value), and this cannot be sup-
plied from classical statistical consider-
ations alone. Clinicians routinely inter-
pret diagnostic test results in the “clini-
cal context,” that is, by considering the
background rate of the disease in a given
population. In a similar manner, the in-

‘terpretation of clinical trials should be

considered in the light of preexisting
knowledge.! (The analogy between hy-
pothesis testing and diagnostic testing is
completed by noting that statistical power
corresponds to the sensitivity of a diag-
nostic test.)

In the classical approach, model pa--
rameters such as population means are
fixed (nonrandom) quantities and prob-
ability distributions are considered only
for test statistics (such as the ¢ statistic
In a ¢ test). The randomness of test sta-
tistics arises because frequentists must
consider not only the observed data in a
given experiment, but also other data
that might have occurred had the ex-
periment been repeated. Each of these
hypothetical repetitions leads to a dif-
ferent value of the test statistic, and the
collection of these form a distribution. It
is this distribution that is used to caleu-
late P values and confidence intervals.

Rather than directly addressing de-
sired clinical questions, such as “Which
treatment is superior?” or “What is the
probability of a clinically meaningful
treatment difference?,” classical analy-
sis usually examines the null hypothesis
of no difference between the competing
strategies. P values denote the prob-
ability that a statistic as extreme as or
more extreme than the observed test
statistic would occur on hypothetical re-

Bayesian Analysis of Clinical Trials—Brophy & Joseph 871
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i Table 1.—Data From GUSTO, GISS!-2, and ISIS-3* lems associated with P values and con-

fidence intervals mentioned above and

| No. of No. (%) of No. (%) of Combined . .

. Trial Agent Patients Death Nonfatal Strokes Deaths or Strokes furthermore does not permit the incor-
GUSTOT SK 20173 1473 (7.3) 101 (0.5) 1574 (7.8) poration of prior beliefs."”

§ +PA 10343 652 (6.3) 62 (0.6) 714 (6.9)

| GISSi2 SK 10396 929 (8.9) 56 (0.5) 985 (9.5) METHODS

‘ +PA 10372 993 (9.6) 74 (0.7) 1067 (10.3)

: IS1S-3 SK 13780 1455 (10.6) 75 (0.5) 1596 (11.6) Model parameters _SHCh as the success
: tPA 13746 1418 (10.3) 95 (0.7) 1513 (11.0) rate of a given medical treatment are

*SK indicates streptokinase; and 1-PA, tissue-type plasminogen activator.
+The 10 374 patients who received both SK and t-PA are not included here.

peated trials if the null hypothesis is
exactly true. This raises two problems.
First, it seems counterintuitive to base
statistical inferences on events more ex-
treme than those observed, since these
events did not actually occur.? Second,
one almost never believes that the null
hypothesis of exact equivalence is true,
and it is consequently usually more rel-
evant to test for a range of equivalence.
Such a test is very rarely carried out in
practice. P values do not measure the
true quantity of interest, namely, the
probability that the null or alternative
hypothesis is true. This contributes to
the confusion between the information
P values provide and the information
that is more naturally desired. There-
fore, it is not surprising that P values
are often misinterpreted as the prob-
ability that the null hypothesis is true or
that 1— P represents the probability that
the alternative hypothesis is true. Clas-
sical statistical analysis does not directly
orindirectly provide these probabilities.

Another inherent limitation of P val-
ues derives from their dependence on
sample size. Basically, any difference,
no matter how small, can reach statis-
tical significance if the sample size is
large enough. For example, an observed
difference of only one tenth of a stan-
dard deviation will become statistically
significant at the .05 level if each group
in the trial includes at least 768 subjects
and will be nonsignificant otherwise. On
the other hand, it is well known that the
low power accompanying small trials
may lead to P values greater than .05
even when clinically meaningful effects
are observed in the trial.*

All of these limitations of P values
have prompted an increased use of con-
fidence intervals. Many clinicians do not
appreciate that a 95% confidence inter-
val only means that with unlimited re-
peated experiments, 95% of all the con-
fidence interval limits derived using simi-
lar procedures in different studies would
contain the true parameter. While this
may provide some comfort in the long
run, little can be said about the likeli-
hood that, for example, a given treat-
ment is superior or that the true value

872 JAMA, March 15, 1995—Vol 273, No. 11

of the parameter under current study
lies in any particular interval.

The shortcomings of classical statis-
tics may obscure the interpretation of
even a well-designed and well-executed
trial. For example, the recent GUSTO
trial (Global Utilization of Streptokinase
and Tissue Plasminogen Activatorin Oc-
cluded Arteries) was a multicenter, ran-
domized study comparing different
thrombolytic regimens for the treatment
of acute myocardial infarction.’ This trial
is of particular interest since there con-
tinues to be controversy over the clini-
cal importance of any treatment differ-
ences. In addition, there have been other
randomized trials involving large num-
bers of patients that examine the same
question, namely, is tissue-type plas-
minogen activator (t-PA) superior to
streptokinase (SK) in the treatment of
acute myocardial infarction.” The ques-
tion of therapeutic superiority is of con-
siderable public health importance, since
myocardial infarction is a frequent oc-
currence and t-PA is approximately 10
times more expensive than SK. While
many critiques of the GUSTO trial have
been published,!! these have mostly cen-
tered on design issues and the interpre-
tation of the clinical relevance of the
observed mortality differences. This ar-
ticle raises further questions while high-
lighting some advantages of an alterna-
tive (Bayesian) statistical approach.
Bayesian analysis has often been dis-
missed due to its “subjectivity” and be-
cause of computational difficulties. While
Bayesian analysis can be computation-
ally complex, computer algorithms now
exist that make this hurdle more his-
torical than contemporary. As will be
seen, Bayesian subjectivity is an asset
that can provide an ideal forum for de-
bate, since prior beliefs, including clini-
cal experience, must be formally speci-
fied, and one can directly observe how
the beliefs are updated in the light of
new data. This procedure permits the
appreciation of the logic for various a
posteriori opinions, which should tend
to converge as data accumulate. This
process is different from classical meta-
analysis, which suffers from all the prob-

generally unknown, and therefore ex-
periments are designed to provide in-
formation about their values. In virtu-
ally any well-designed experiment, more
is known about these values after the
experiment than before, although at least
some information usually exists preex-
perimentally. A Bayesian statistical
analysis is designed to represent this
learning process.

The first step in any Bayesian analysis
is to obtain a prior distribution over all
model parameters. The prior distribu-
tion summarizes the preexperimental be-
liefs about the parameter values. This
can be accomplished by using past data,
if available, by drawing on expert knowl-
edge, or by a combination of both. This
step is nontrivial and can take consider-
able time and effort. Furthermore, many
prior distributions are not unique; clini-
cians are free to summarize their beliefs
into their own prior distribution. Because
Bayesian methods can incorporate clini-
cal opinion, they are often labeled “sub-
jective.” The experimental data are then
used to update the prior distribution to
a posterior distribution using Bayes’ theo-
rem. This is done through the likelihood
function, which provides the probability
of obtaining the observed data as a fune-
tion of the unknown model parameter.
This is analogous to using a likelihood
ratio (sensitivity/[1—specificity]) to up-
date background probabilities after ob-
serving results from a diagnostic test.
The posterior distribution represents the
postexperimental beliefs about the pa-
rameter values, given the new data and
the previously stated prior distribution.
The two main quantities of interest,
namely, the probability that a given treat-
ment is superior and the probability of a
clinically meaningful effect, are both di-
rectly available from the posterior dis-
tribution. Unlike the standard approach,
noreferences todatasets other than those
observed are required, since all of the
information contained in the data is sum-
marized by the likelihood function.

No one prior distribution is likely to
be sufficient to represent the diversity
of clinical opinions that exists before a
trial is carried out. Indeed, this diver-
sity is usually a prerequisite for ethical
randomization. Therefore, trial results
should usually be reported starting from
a range of prior distributions.” The cor-
responding set of posterior distributions

Bayesian Analysis of Clinical Trials—Brophy & Joseph
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Figure 1.—~Plot of the prior distributions for the difference in mortality rates be-
tween tissue-type plasminogen activator (t-PA) and streptokinase (SK) using
weights of 100%, 50%, and 10% of the GISSI-2 and ISIS-3 data, representing
a range in prior beliefs in the relevance of these trials to the GUSTO trial. The
area under the curve between any two points on the x-axis is the posterior
probability that the difference in mortality rates lies between those limits. Num-

bers to the right of zero indicate the superiority of SK, while those to the left of
zero indicate the superiority of -PA.
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Figure 3.—Plot of the posterior distribution for the difference in mortality, non-
fatal stroke, and combined stroke and mortality rates between tissue-type plas-
minogen activator (t-PA) and streptokinase (SK), using data from the GUSTO
trial, with 50% prior use of data from the GISSI-2 and 1SIS-3 trials. The area
under the curve between any two points on the x-axis is the posterior probabil-
ity that the difference in rates lies between those limits. Numbers to the right of
zero indicate the superiority of SK, while those to the left of zero indicate the
supetiority of t-PA.

then summarizes the range of posttrial
beliefs. If this latter set of distributions
includes only a sufficiently narrow range
of possible effects, conclusions could be

JAMA, March 15, 1995-—Vol 273, No. 11

drawn with which most clinicians should
agree regardless of their initial opin-
ions. Otherwise, the debate continues
and further research is indicated.
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Figure 2.—Plot of the posterior distribution for the difference in mortality, nonfatal
stroke, and combined stroke and mortality rates between tissue-type plasmino-
gen activator (t-PA) and streptokinase (SK), using data from the GUSTO trial, with
full prior use of data from the GISSI-2 and ISIS-3 trials. The area under the curve
between any two points on the x-axis is the posterior probability that the differ-
ence in rates lies between those limits. Numbers to the right of zero indicate the
superiority of SK, while those to the left of zero indicate the superiority of t-PA.
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Figure 4.—Plot of the posterior distribution for the difference in mortality, non-
fatal stroke, and combined stroke and mortality rates between tissue-type plas-
minogen activator (t-PA) and streptokinase (SK), using data from the GUSTO
trial only. The area under the curve between any two points on the x-axis is the
posterior probability that the difference in rates lies between those limits. Num-
bers to the right of zero indicate the superiority of SK, while those to the left of
zero indicate the superiority of t-PA.

These methods and their interpreta-
tion are illustrated below. Other stud-
ies'®314 provide fuller descriptions of
the use of Bayesian analysis in the con-
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Table 2.—Probability of t-PA Superiority as a Function of Prior Belief in GISSI-2 and ISIS-3 Data After

Consideration of the GUSTO Data*

Probability of Probability of Probability of t-PA Net
t-PA Mortality t-PA Net Clinical Clinical Benefit Greater
Prior Belief in Higher Than Benefit Greater Than SK Benefit
GISSI-2 and ISIS-3, % SK Mortality Than SK Benefit by at Least 1%
100 A7 .05 . <.001
50 .44 24 <.001
10 .98 .94 .03
0 999 .998 .36

rate.

text of elinical trials. In this study, pos-
terior distributions for the difference in
survival rates between groups of pa-
tients receiving two different thrombo-
lytic regimens following acute myocar-
dial infarction are derived and graphi-
cally displayed. (Mathematical equations
used to derive the Figures are available
from the authors on request.)

The GUSTO trial randomized 41 021
patients to four different thrombolytic
strategies involving SK, t-PA, or a com-
bination of the two for the treatment of
acute myocardial infarction. Compared
with SK, the strategy of “front-loaded”
or “accelerated” t-PA showed a statis-
tically significant lowered mortality
(6.3% vs 7.3%, respectively; P=.001) and
combined end point of 30-day mortality
or disabling stroke (6.9% vs 7.8%, re-
spectively; P<.006) (Table 1). The in-
terpretation of a P value of .001 is that
if the two agents had exactly equivalent
mortality rates, then data as extreme as
or more extreme than the observed mor-
tality rates would occur once in every
1000 hypothetical repeated trials.

This well-executed clinical trial pos-
sesses many of the desirable attributes
of a well-done study. The sample size
was very large and was designed tohave
at least 80% power to detect a 15% re-
duction in mortality or an absolute de-
crease of 1% between experimental
groups. This value has been (somewhat
arbitrarily) defined by the GUSTO in-
vestigators as the clinically important
difference between the two agents. Eco-
nomic analyses that incorporate patient
utilities and health care expenditures
may be required to further investigate
what difference is clinically meaningful.
In this article, we will accept a 1% de-
crease as the clinically meaningful dif-
ference. Potential confounding and bias
were minimized by the randomization
process. Most clinicians would aceept
the frequentist analysis of this study as
being conclusive (or almost conclusive)
proof of the superiority of t-PA, that is,
the mortality rate for t-PA was less than
that for SK. But is this an adequate
summary of the available evidence?

Two previous randomized clinical tri-
als have directly compared SK with t-PA
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*See footnote to Table 1 for expansions of abbreviations. Net clinical benefit is the combined death and stroke

in 48000 patients. The GISSI-2¢ trial
(Gruppo Italiano per lo Studio della
Streptochinasi nell’Infarto Miocardico)
compared t-PA (alteplase) and SK both
with and without subcutaneous heparin
beginning 12 hours after the start of
therapy. The 35-day total mortality and
nonfatal stroke data are summarized in
Table 1. The ISIS-37 trial (Third Inter-
national Study of Infarct Survival) com-
pared t-PA (duteplase) and SKboth with
and without subeutaneous heparin in a
similar factorial design but began hep-
arin 4 hours after the start of therapy.
The 85-day mortality and morbidity data
are also shown in Table 1.

Although all the trials were random-
ized with uniform entry criteria and drug
dosages, reservations have been ex-
pressed about the relevance of any com-
parisons between these studies. The ma-
jor sources of controversy are as follows:

o The t-PA used in ISIS-3 was of a
slightly different form (although the

clinical difference is not believed to be |

significant).

o Adjunctive therapy accompanying
t-PA in GUSTO included more aggres-
sive use of intravenous heparin.

e In GUSTO t-PA was administered
in an accelerated fashion.

While there is an abundance of prior
information comparing these two agents,
thereislittle consensus as to which agent
is superior. Clinicians may vary in their
weighting of the importance of the simi-
larities and differences between the tri-
als. This only enhances the utility of a
Bayesian analysis, because their uncer-
tainty can be explicitly considered by
employing a range of prior beliefs.’%!

Figure 1 shows the probability den-
sity for the difference in mortality be-
tween t-PA and SK as determined from
the data of GISSI-2 and ISIS-3. (The
area under the probability density curve
between two given points on the x-axis
represents the probability that a value
will fall between the two points.) The
difference in mortality rates between
t-PA and SK appears along the x-axis
(0.01=1% and so forth), and the height of
the probability density for this differ-
ence is given by the y-axis. The mean of
these curves is close to zero (0.0013),
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suggesting no difference between the
two agents. Fully accepting the results
of these two trials would suggest almost
no possibility of t-PA’s being clinically
superior to SK (a decrease in the mor-
tality rate with t-PA =1%is represented
by the area to the left of —0.01, and this
area is essentially zero in the case using
100% of the prior data). This leads to a
very skeptical prior distribution as to
the superiority of t-PA. On the other
hand, a clinician who believes that the
difference in trial protocols cannot be
ignored might elect to only partially con-
sider the earlier results. For example,
one could arbitrarily treat the value of
each observation in the previous trials
as worth only 50% or even 10% of each
observation in the GUSTO data. Prior
distributions based on these weights also
appear in Figure 1. A more extreme
position would be that the trials are too
dissimilar to be combined and that con-
sequently all previous research should
be ignored, thereby assuming that noth-
ing is known about the potential differ-
ence in mortality between the two agents
(in statistical parlance, this implies a
noninformative or uniform prior distri-
bution). Other prior distributions are
also possible and are not necessarily de-
rived by a weighting of previous data.
Most of these would fall in between the
above-mentioned extremes. As the be-
lief in the utility of the prior studies
decreases, so increases the possibility
that t-PA is a clinically superior agent
(widening of the curves and increasing
area to the left of —0.01).

RESULTS

The data from Table 1 may be used to
derive posterior distributions for stroke,
death, and net clinical benefit (death and
nonfatal stroke) using Bayes’ theorem
(the solved equation is available from
the authors on request). Figure 2 con-
siders the skeptical prior belief that as-
signs equal weight to each observation
from GISSI-2, ISIS-3, and GUSTO and
shows that the mean difference in mor-
tality between t-PA and SK is 0.20%
(0.002 in favor of SK), and the final (pos-
terior) probability of t-PA’s being su-
perior to SK is only about 17% (area
under the curve to the left of 0). Figure
2 also demonstrates that there are 0.15%
more nonfatal strokes with t-PA and
that the probability that the rate of non-
fatal stroke is greater with t-PA ex-
ceeds 99.5% (the area to the left of the
curve <.005). A similar interpretation
of the combined curve suggests that the
probability that t-PA is superior to SK
is 5.1% with an almost zero probability
of exceeding the clinically signficant dif-
ference of 1% (area to the left, on the
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combined curve of 0 and —0.01, respec-
tively).

Figure 3, which considers observa-
tions from the previous randomized clini-
cal trials to have 50% the value of each
observation in GUSTO (a more inter-
mediate prior belief), shows that the
probability that t-PA is superior to SK
for mortality alone is about 44% (again
refer to the area to the left of 0 for the
appropriate curve). Further, accepting
that a difference of 1% mortality is the
minimum clinically significant value, the
probability that t-PA is clinically supe-
rior remains negligible. The probability
of increased stroke with t-PA remains
high at almost 98%.

Finally, Figure 4 shows the scenario
where all prior data from GISSI-2 and
ISIS-8 are considered irrelevant and are
ignored. In this case, t-PA is virtually
certain to have a lower death rate than
SK (99.95%), but the probability that t-PA
exceeds the defined clinical superiority is
only 48%. The probability of a net clinical
benefit exceeding 1% is only 36%, and the
probability of increased stroke with t-PA
is 86%. The salient elements of Figures 2
through 4 are displayed in Table 2.

COMMENT

The current study demonstrates sev-
eral advantages of a Bayesian analysis.
The most apparent is that the analysis
permits the direct answer as to the prob-
ability that t-PA is superior to SK. It also
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For Debate

The statistical basis of public policy: a paradigm shift is overdue

R J Lilford, D Braunholtz

The recent controversy over the increased risk of
venous thrombosis with third generation oral con-
traceptives illustrates the public policy dilemma
that can be created by relying on conventional sta-
tistical tests and estimates: case-control studies
showed a significant increase in risk and forced a
decision either to warn or not to warn. Conven-
tional statistical tests are an improper basis for
such decisions because they dichotomise results
according to whether they are or are not
significant and do not allow decision makers to
take explicit account of additional evidence—for
example, of biological plausibility or of biases in
the studies. A Bayesian approach overcomes both
these problems. A Bayesian analysis starts with a
“prior” probability distribution for the value of
interest (for example, a true relative risk)—based
on previous knowledge—and adds the new
evidence (via a model) to produce a “posterior”
probability distribution. Because different experts
will have different prior beliefs sensitivity analyses
are important to assess the effects on the posterior
distributions of these differences. Sensitivity
analyses should also examine the effects of differ-
ent assumptions about biases and about the model
which links the data with the value of interest. One
advantage of this method is that it allows such
assumptions to be handled openly and explicitly.
Data presented as a series of posterior probability
distributions would be a much better guide to
policy, reflecting the reality that degrees of belief
are often continuous, not dichotomous, and often
vary from one person to another in the face of
inconclusive evidence.

Every five to 10 years a “pill scare” hits the headlines.
Imagine that you are the chairperson of the Committee
on Safety of Medicines. You have been sent the galley
proofs of four case-control studies showing that the
leading brands of oral contraceptive, which have been
widely used for some five years, are associated with a
doubling of the risk of venous thromboembolism. You
are surprised; you seem to remember that these new
brands contain an “improved” progesterone which has
been shown to have no adverse effects on clottng
factors—indeed the widespread acceptance of this
treatment was predicated on the favourable metabolic
effects of the new compound. A literature search and
telephone call to local experts confirms your memory.
You are aware that case-control studies are often biased.
What do you do?

On the one hand you do not wish to over-react. After
all, even if the newer brands do carry a higher risk of
thrombosis, the risk arising from pregnancy is higher
still. Thus widespread alarm may precipitate contracep-
tive withdrawal in mid-cycle and hence do more harm
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than good. On the other hand, if you fail to issue a state-
ment advising the profession that a statistically
significant doubling of the risk of deep vein thrombosis
has been measured then you lay yourself (and others)
open to public criticism when, sooner or later, reports of
a serious medical mishap are brought to public
atrention. “Why did you not warn the public so that
individuals could make an informed choice® After all,
there was a ‘statistically significant’ doubling of throm-
bosis rates in the study.”

The scenario painted here has an obvious similarity
to the recent controversy surrounding oral contracep-
tives containing new. third generation gestagens. Four
case-control studies (one nested in a cohort study) have
recently been reviewed by McPherson.: Taken together
they show a statistically significant doubling in the risk
of venous thromboembolism. We are not experts in this
subject and do not want to add to this particular debare:
we want 10 make a general point about the inter-
pretation of new data in the context of a treatment (or
prophylaxis) of which the clinical community has had
considerable experience and about which other data exist.

Our thesis is that conventional statistical tests and
estimates are an improper basis for public policy for two
reasons. Firstly, they dichotomise results according to
whether or not they are “significant,” thereby tending to
produce an offfon response by decision makers.
Secondly, they do not take account of additional
evidence (generated outside or within the index study)
in an explicit way. Such evidence must then be handled
implicitly, and this makes it much less useful in defend-
ing decisions. The statistically significant result seems
“hard” and is explicit, while the notion that our conclu-
sions should be tempered by knowledge of the
biochemistry and plausible biases seems “soft” and that
knowledge is handled in an implicit manner. Since the
statistical analysis does not incorporate these additional
factors, they cannot impact explicitly on the conclu-
sions. The chairperson of the Committee on Safety of
Medicines is placed on the defensive: she may be seen to
be “explaining away” the observed effect if she does not
act decisively in the direction predicated by the statisti-
cally significant result.

Confronting the difficulty: the Bayesian
alternative

But is there another way to proceed: how else can sta-
tistics be used to guide policy on an issue of private and
public concern? Clearly, if clear cut answers are
available then an unambiguous official statement should
follow. The effects of the sun’s rays on skin cancer and
of posture on sudden infant death may be examples
where epidemiology has produced sufficiently clear cut
answers to provoke specific recommendations. When
the situation is less clear cut, however, as in the case of
third generation oral contraceptives, conventonal
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Bayesian statistics

The key difference between Bayesian and conven-
tional (or frequentist) statistics is the view of what prob~
ability is. Frequentists view probability as a relative
frequency, or proportion. Thus the probability P of a fair
coin landing heads up is 0.5 because in a long series of
tosses it lands heads up half the time. Frequentists
should not therefore estimate probabilities for one off
events—Ilike the probability of President Clinton
winning a second term. Strictly, of course, all events are
one off, but many events are similar enough to satisfy
frequentists’ requirements. Bayesians, on the other hand,
view probability as a degree of personal belief. Personal
belief changes as evidence (data) accrues, but no data at
all are necessary. A Bayesian might judge the value of P
to be close to 0.5, without the need for any previous
experience of coin tossing—on the basis of the physics
involved. In fact he or she would want to give a probabil-
ity distribution for the true value of P. This would be a
prior distribution for P, which could then be updated via
coin tossing (by means of Bayes’s law) to produce a pos-
terior distribution of probabilities. .

Bayes’s law in itself is uncontentious and is used by
frequentists as well as Bayesians, but frequentists use itin
much more restricted circumstances. The classic
examples are Mendelian genetics and computerised
diagnosis, such as that popularised in the UK by the
late professor Tim deDombal. Bayes’s law as used by
Bayesians simply states that the posterior probability dis-

tribution is formed by weighting the prior probability
distribution by the likelihood.

One practical advantage of the Bayesian approach is
that it provides probability distributions for
parameters—which is exactly what is needed to inform
decisions. As we show in this paper, it also makes the
synthesis of new data, and other kinds of evidence, rela-
tively straightforward. Frequentists would argue that the
disadvantage is that prior beliefs, being personal, can
vary—and conclusions may therefore differ from person
to person. Bayesians would respond that that is what real
life is like. Also, by carefully doing sensitivity analyses,
researchers can assess how robust conclusions are t
changes in prior probability distributions, or indeed to
changes in the model used to create the likelihood.

Other than in very simple cases (such as that
presented here) calculating the posterior probability dis-
tribution becomes impossible analytically, and it has to
be approximated—for instance, using “Monte-Carlo”
methods on computers. This involves generating a large,
random, sample from the posterior probability distribu-
tion (each number generated may involve substantial com-
putations), and the propertes of the posterior probabil-
ity distribution are “discovered” by analysing this sample.

The advent of fast, cheap computers now makes this .
feasible for almost anyone, and programs such as BUGS
(available from ftp.mrc-bsu.cam.ac.uk) are making it
easier to do.

statistics may drive decision makers into a corner
(resulting in either false reassurance or excessive
caution) and produce sudden, large (and hence
potentially harmful) changes in prescribing. The
problem does not lie with any of the individual decision
makers, but with the very philosophical basis of scientific
inference. We propose that conventional statistics should
not be used in such cases and that the Bayesian approach
is both epistemologically and practically superior.”

Here we start with prior belief, which is measured
and made explicit. We then incorporate the new data
but in so doing we may adjust for the likely extent of
bias. We then combine the prior with the adjusted data
to obtain a “posterior” probability distribution, using
the mathematical theorem associated with the name of
the eighteenth century clergyman, Thomas Bayes (see
box). Lastly, we carry out a sensitivity analysis, to see
what effects different prior beliefs and different
assumptions about possible bias might have. Given the
data, almost everyone will now have a stronger belief
thar third generation pills cause clots in the venous sys-
tem than they had before, but everybody does not have
1o believe the same thing. Even without considering
possible beneficial effects on the risk of heart attack, the
health care system can respond incrementally and not
precipitate a large scale shift in prescribing practice.
There would be little reason for a scare story causing a
surge in demand for consultations and in unwanted
pregnancies. The principles of Bayesian inference are
described in more detail in the box.

Bayesian inference: how it works

We give a worked example, based on McPherson’s
summary, which shows an odds ratio of 2 for the risk of
deep venous thrombosis when the third generation pills
were compared with others. Since the risks are small, we
can think of the odds ratio as a relative risk. The 95%
confidence interval ranges from a relative risk of 1.4 to
2.7. Clearly the 95% confidence interval excludes 1 and
the results are therefore significant at the usual P<0.05
level. P here is the proportion of times that an effect of
this size (or greater) would be measured in an infinite
repetition of studies if the true effect was 1—thar is,
both third generation and older pills were associated
with e rame riek

However, decision makers want to know the
probabilities of thrombosis for the next patient who is
eligible for either treatment. A decision maker might
ask: “What is the probability that the third generation pills
increase the risk when compared to the others; what is the
probability that they at least double the risk-—as measured
in the case-control study; and what is the ‘median
estimate’ (as likely to be too small as too large)?”

The calculations require a prior probability distribu-
tion for the true effect. We could obtain this by measur-
ing the collective prior belief of experts. We could
contact, say, 25 randomly selected members of the Fac-
ulty of Family Planning, probably before they knew
about the new data. We would interrogate them to see
what their thoughts were on: (a) the best estimate of the
true relative risk—the effect of the third generation pills
on the risk of clotting when compared with the standard
pills; (b) what values they thought were unlikely for the
true relative risk-—such that an effect of that size or
more extreme would have a chance of being true of less
than 0.025. The answers are those that respondents
would give if they were forced to set odds and accept
any bets while wishing to minimise their losses. For
example, they might set odds of 19:1 that the true rela-
tive risk would lie within the interval specified at (b)
above. Imagine that our average respondent thinks that
the true relative risk is as likely to be above as below 0.8
(corresponding to a 20 percentage point reduction in
risk (relative risk=0.8)) and that a relative risk of 1.6 or
greater, or of 0.40 or less, are unlikely to be true. In that
case, their prior distribution of probability estimates
could be represented on a log relative risk scale as a
normal curve— prior distribution 1 in fig 1.

Bayes’s theorem allows us to update this prior distri-
bution to take account of McPherson’s data, which are
converted into a likelihood—likelihood A in fig 2. This
updating of the prior disuibution by the likelthood
would give us the posterior distribution of probabilities
referred to as posterior 1A in fig 1. The middle of the
posterior distribution corresponds to a relative risk of
about 1.69 and the 95% interval (now referred to as a
credible interval rather than a confidence interval) for the
relative risk ranges from 1.3 to 2.3. If asked to state the
most likely effect an observer with prior 1 would give a
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of the mathematical point made in the legend to fig 1).
For the mathematically minded, likelihood is discussed
in more detail in the box below.

Taking into account different beliefs and likely
bias: sensitivity analysis

The above figures represent the probabilities for an
observer who agrees with the prior distribution of prob-
abilities. We discussed these prior probability distribu-
tions with two eminent Leeds gynaecologists with an
interest in family planning. Dr Nicholas Johnson agreed
with these probability estimates and hence with the
posterior probability distributions. Professor James
Drife, however, was more sceptical: he was in absolute
equipoise® before the new data—that is, he thought it
equally likely that the third generation or standard oral
contraceptives had a higher risk of causing deep vein
thrombosis. However, like Johnson, his prior probability
distribution was vague, admitting of an equally wide
range of plausible values, with a 95% probability that
the true relative risk was between 0.5 and 2.0 (curve
prior 2 in fig 1). For Drife, the middle relative risk, when
both the data and prior belief are taken into account, is
1.76 and the 95% credible interval extends from 1.3
to 2.4—posterior 24 in fig 1. The comparison of John-
son (who was cautiously enthusiastic to start
with), Drife (who was sceptical), and yet other experts
who may hold more extreme views constitutes a
sensitivity analysis.

Sensitivity analysis can be extended to take into
account evidence that case-control and other observa-
tional studies are often biased and that in this particular
case we have reasons to suspect that the measured effect
has been overestimated.

Firstly, we could suppose that the particular design
and implementation of the studies contributing to
McPherson’s summary may result in a bias but that this
bias is as likely to be positive as negative. We could fur-
ther suppose that the distribution of this bias was
normal on a log relative risk scale, with a standard
deviation (SD) of 0.2624 (corresponding to a muitiply-
ing, or dividing, factor of 1.3 on the relauve risk scale)
so that the biased relative risk being estimated from
McPherson’s summary would be in the range of 60% to
167% of the true relative risk, with probability 0.95.
This weakening of the evidence provided by the data
results in likelihood B (fig 2) and in a posterior probability
distribution closer to the prior distribution, as illustrated in
fig 3. Posterior 2A is as in fig 1 (no bias), but posterior 1B
and posterior 2B (from Johnson and Drife’s prior
probability distributions respectively) assume a bias in the
included studies distributed as just described.
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Secondly, however, it appear that non-rundomised
studies typically overestimate rro stment effects by about
30%,"’ and in this instance we have reason to suspect
an overestimate. Firstly, third generation pills may have
been given preferentally to higher risk women, and it is
never possible 1o be certain that this has been fully
accounted for by statistical adjustment.” Secondly, more
“modern” general practitioners may both preferentally
prescribe newer brands of pill and be especially vigilant
in investigating symptoms which could result from
venous thromboembolism. Thirdly, women using oral
contraceptives which have been in use for a long time
are biased with respect to those on newer brands,
because many of those with venous thromboembolism
(which typically occurs within a few months of starting
the pill) will have been screened out—the so called
“healthy user effect.”” * If we assume a median bias of
30%, given the above, and make no other new assump-
tions, then the biased relative risk estimated from the
summary would be in the range 78% to 217% of the
true relative risk, with probability 0.95. The evidence
from the data is thus both weakened and shifted—see
likelihood C in fig 2. The resulting posterior probability
distributions are shown in fig 4, where posteriors 1C
and 2C were derived from Johnson’s and Drife’s prior
distributions respectively. The middle of Drife’s
posterior probability distribution now corresponds to a
relative risk of 1.27, while for Johnson a true relative
risk of above or below a central value of only 1.16 is
equally likely. The probabilities that the relative
risks of venous thrombosis are not increased at all
with the third generation pills are 15% for Drife and
27% for Johnson. A reladve risk of 1.27, calculated on
the basis of Drife’s original prior probability distri-
bution (which was both equipoised and fairly vague), the
data, and (arguably) modest assumptons of bias, translate
into 0.4 to 0.8 additional cases of venous thrombo-
embolisms per 10000 women years (assuming a
background risk of between 1.5 and 3 venous thrombo-
embolisms per 10 000 women years on the previous gen-
eration of pills).

Manipulation or simply recognising reality?

Some people will feel very uneasy about these and
other adjustments in a sensitivity analysis: thejudgmen-
tal manipulation of “real” figures may seem wrong.
Wrong that is, until we examine the alternative, which is
uncritically to accept data which we suspect to be less
reliable than, say, the results of a randomised controlled
trial. If there is reason to suspect systematic bias then it
seems inappropriate not to allow for this in the
analysis.” ™ In this case not only is there empirical

Likelihood

When trying to understand the implications of a data-
set researchers usually focus on a few parameters of spe-
cial interest, which in some way summarise the
interesting facets of the data. In this case the parameter
of interest is the relative risk. Note that this is not directly
observable in the data, but is an intangible idea that we
find useful.

Parameters are linked to the data via a model, which
describes the sort of data associated with particular val-
ues of the parameters. In this case the model we have
assumed specifies that the probability distribution for the
“observed” log relative risk will be normal with a mean of
log (true relative risk) and a known standard deviation.
In fact the standard deviation really depends on the sam-
ple size and the value of the true relative risk, but in our
simple analysis we estimate the standard deviation from
the Jdata and then pretend we know it Of course we have
only one dartaset, and we do not know the true parameter
(relative risk) values. We consider all possible true

parameter values, and for each calculate the probability
of getting the data actually obtained. These probabilities
can be plotted on a graph, and, when thought of as pro-
viding information on the likely true value of the param-
eter given the data, this plot is called the likelihood.
Bayesians adhere to the intuitively attractive likelthood
principle, which states that information arising from
studies or experiments should be based only on the
actual data observed. Frequentists often find themselves
in conflict with this—for instance, when calculadng P
values, which take into account the probability of obser-
vations more extreme than the actual observations.
However, in the case of the normal distribution conven-
tional methods in effect use the likelihood to calculate
confidence intervals, and we have used this in converting
McPherson’s summary into a likelihood: the likelihood is
normal on the log (relative risk) scale, centred around
log (2.0), and with a standard deviation such that log
(2.7) - log (1.4) 1s 2% 1.96 SD.
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evidence that observational studies in general may be
biased; there are plausible reasons to suspect bias in a
particular direction. Thus any bias would be replicated
across studies if the confounding factor was typical of
the “treatment” in question. An advantage of explicit
manipulation of the data, before statistical analysis, is
that the process is transparent and hence open to chal-
lenge and recalculation on the basis of different
assumptions.

Data presented as a series of posterior probability
distributions (each based on a respective prior probabil-
ity distribution and assumption of likely bias) would be
a much better guide to policy than results analysed in
the conventional way. They would reflect the reality that
degrees of belief (a) are continuous or incremental, but not
dichotomous, and (b) vary (quite properly) from one
person to another in the face of inconclusive evidence.

On the above scenarios some clinicians might change
prescribing habits, while others would be “sensitised”
(have a new, more cautious, prior distribution) against
the day when yet more data may become available.
Women themselves could see that evidence regarding
venous thromboembolism was moving against the new
pills but would not be alarmed by the notion that harm
was proved by “statistics.” They would understand the
new data (correctly) as merely one more piece of
evidence in a complex array. This would encourage
women to derive their own estimate of likely risk in con-

sultation with their clinician and make any trade .
required by perceptions of countervailing benefit."

In the case of some of the third generation pills there
is reason to believe that the risk of heart atrack i
reduced, in comparison with earlier brands. The newer
pills have more favourable effects on-Blood fats than
their second generation cousins. On the basis of this
information alone, many rational observers may have
formed a prior probability distribution which, while
vague, was shifted in the direction of net benefit—that
is, many may have had a prior distribution with respect
to heart attack similar to that which Johnson had with
respect to venous thromboembolism. One of the studies
quoted by McPherson does, in fact, give results for
heart attacks: the odds ratio is 0.36, suggesting that the
risk is indeed lower with third generation pills, but the
confidence interval is wide (0.1 to 1.2)."> Thus, although
the latter results are not stadsdcally significant, perhaps
because the number of adverse events is still small, they
could be used to update a Bayesian prior probability
distribution. With any reasonable prior belief and assump-
tions about bias the posterior probability distribution will
be centred on a large reduction in relative risk, but will be
widely spread. The uncertainty (corresponding to
non-significance in frequentist terms) is, however, no rea-
son to ignore the effect of the newer pills on heart attacks,
since that is essentially to assume with complete certainty
that there is no effect.

scale,

of

Fig 1—Probability distributions, on a log (relative
nisk}

thromboembolism in third generation contra-
ceptive pills compared with second generation
pills. All prior distributions and likelihoods (and
hence, owing to the mathematics of Bayes's
theorem, posterior distributions) are assumed to
be normally distributed on the log scale.

Priors 1
respectively. Both are fairly wide, indicating
considerable doubts about the value of the true
relative risk. Drife’s prior is centred on log{1.0)
as (before leaming of the new case-control
study data) he believed that third generation
pills were as likely to be better as to be worse
than second generation pills. Johnson was more
optimistic that the new pills would have a lower
risk of venous thromboembolism, his prior
distnbutions being centred on log(0.80). If
McPherson's summary of the various studies is
taken at face value (likelihood A in fig 2) and is
used to update the experts’ prior distributions
via Bayes's theorem, posterior distributions 1A
and 2A result. These are much narrower than
the pror distributions, indicating less doubt
about the value of the true relative risk. The
Cata (with an observed odds ratio of 2.0) has
influenced the posterior distributions morse than
the rather vague prior distributions, with the
result that they are centred on log(1.69) and
log(1.76) respectively, and the probability of the
true relative risk being greater than 1 is more
than 0.999 in both cases.

Note:The most probable value for the true log
(relative risk) is not equal to log (most probable
value of relative risk)—that is. the position of the
highest points of the probability distributions
drawn on log (relative risk) and on relative risk
scales do not correspond. For instance the most
probable valus of log (relative risk) for prior 2 is
l0g(1.0)=0, but the most probable value of
relative risk for prior 2 is 0.89, not 1.0. This is
because the whole of the negative log (relative
risk) axis (and its probability} is “squashed” into
the interval (0.1) on the relative sk scale, while
the positive log relative risk axis is increasingly
stretched out. The centres of distributions are
not affected by this problem and have for this
reasen bsen used in this paper.

Fig 2—Posterior distributions are calculated by
“weighting” the prior distributions by the data
likelihood. The likelihood can be calculated as the
probability of the data given varying true values of the
parameter (in this case log (relative risk)) but is viewed
as the likelihood of the various parameter values given
the data. The likelihoods shown here correspond to
McPherson's summary of the various studies (relative
risk of 2.0, 95% confidence interval 1.4 to 2.7): (A)
taken at face value; (B) assuming the summarised
data may be biased, with bias drawn at random from a

normal distribution on a log (relative risk) scale with
mean zero, and SD of log(1.3); (C) as (B) but with
mean log bias log(1.3). Clearly an assumption that the
data may be biased reduces the information from the
data, and if the mean bias is thought to be non-zero,
the information is also shifted accordingly.

Fig 3—Posterior 2A is as in fig 1, deriving from Drife's
prior distribution and the data taken at face value
(likelihood A). Posterior 28 again derives from Drife’s
prior distribution, this time weighted by likelihood B.

The information conveyed by the data is thus much
reducad, and the posterior distribution correspondingly
wider, and closer to the prior distribution. It is centred
on log(1.48), and the probability that the true relative
risk is less than 1—that is, that the new pills have
reduced risk of venous thromboembolism—is now
much increased (though still small} at 0.048. Posterior
distribution 18 derives from Johnson’s prior distribution
and likelihood B. As would be expscted, it produces a

much higher probability (0.11) that the true relative risk
is less than 1.

Fig 4-Both postarior distributions derive from the data
summary adjusted by the assumption that the studies
which produced the data may have been biased, with
the summary bias (on log relative risk scale) sampled
from a normal distribution with mean log(1.3) and SD
log(1.8)-that is, likelihood C. The informaticn
conveyed by the data is thus reduced and shifted.
Johnson and Drife’s prior distributions, when weighted
by likelihood C, resuit in posterior distributions 1C and
2C respectively centred on log(1.16) and log(1.27).
The probabilities that the trus relative risk is less than
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1-that is, that the new pills actually reduce risk of
venous thromboembolisrn—are further increased, to
0.27 and 0.15, and are now far from negligible in both
cases.
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Thomas Bayes

Bayes was a member of the first secure generation of
English religious non-conformists. His father, Joshua
Bayes FRS, was a respected theologian of dissent; he was
also one of the group of six ministers who were the first
10 be publicly ordained as non-conformists. Privately
educated, Bayes became his father’s assistant ar the pres-
bytery in Holborn, London; his mature life was spent as
minister at the chapel in Tunbridge Wells. Despite his
provincial circumstances, he was a wealthy bachelor with
many friends. The Royal Society of London elected him
a fellow in 1742. He wrote little: Divine Benewvo! nce
(1731) and Introduction to the Docrrine of Fluvions (1736)
are the only works known to have been published during his
lifetime. The latter is a response to Bishop Berkeley's Arna-
lyst, a stinging attack on the logical foundations of Newton'’s
calculus; Bayes® reply was perhaps the soundest retort to
Berkeley then available.

Bayes is remembered for his brief “Essay towards
solving a problem in the doctrine of chances” (1763), the
first attempt to establish a method to calculate a
probability distribution (the probabilities of different
events occurring) given a set of data. In so doing he laid
the foundations for statistical inference.

Before Bayes there was some understanding of how to
reject statistical hypotheses in the light of data, but no
one had shown how to measure the probability of statis-
tical hypotheses in the light of data. Bayes began his
solution of the problem by noting that sometimes the
probability of a statistical hypothesis is given before any
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particular events are observed; he then showed how to
compute the probability of the hypothesis after some
observations are made. Bayes was himself too modest to
claim that he had solved the basis for the whole of statis-
tical inference, and it was left to Richard Price 1o submit
his work to the Royal Society. However, the great
Laplace had no qualms about Bayes’s argument; his
enormous influence made Bayes’s ideas almost unchal-
lengeable until George Boole protested in his Lazos of
Thought (1854). Since then Bayes’s technique has been a
constant subject of controversy. The controversy relates
to deriving the probability of statistical hypotheses (prior
probability distributions), especially before any data of
the type we want to analyse have been observed.

In Foundations of Staristics Leonard J Savage interprets
probability in a personal way, as reflecting a person’s
personal degree of belief; hence, a prior probability
distribution is a person’s beljef before the new
observations become available, and a posterior probabil-
ity distribution is a person’s belief after the observations
are made available. In the past 10 years or so there has
been a sharp revival of interest in Bayes’s work, especially
its application to medical problems. Researchers in the
UK have been in the forefront of this resurgence: they
include David Spiegelhalter at the MRC Biostatistics
Unit Cambridge, Adrian Smith at Imperial College,
London, Deborah Ashby at the University of Liverpool,
and, from a philosophical perspective, Peter Urbach at
the London School of Economics.

A reasonable approach to answer the relevant
question—Are third generation pills preferable to
second generation pills>—needs to deal in absolute risks
and explicit “costs” to women. The absolute risk of
heart attack in users of second generation pills is even
lower than that of venous thromboembolism,'? but a
heart attack is typically more serious—so the overall
mortality and morbidity due to both may be similar.
The combined posterior distribution for the difference
between third and second generation pills in total
mortality may thus be quite spread our, with a substan-
tial proportion of the area—rthat is, probability—on
both sides of the origin. A summary would conclude that,
although it looks fairly probable that venous thromboem-
bolisn occurs somewhat more frequently with third
generation pills, there is stll considerable doubt as to
which is safer overall. Such a statement would not have
been likely to initiate large scale changes in prescribing,
except for women with risk factors for venous thrombo-
embolism. The possibility of collecting more useful data
on the safety of third generation pills would not have been
all but removed, as McPherson suggests it has been in his
editorial.' The importance of collecting more data on the
safety of third generation pills—to tighten up the posterior
distributions—would be emphasised.

Acknowledging imperfections: a better basis for
public policy

Bayesian techniques allow all our current knowledge
to be explicitly represented and synthesised with new
data. If there is littde knowledge this is reflected in vague
prior probability distributions. If explicit costs and ben-
efits can be assigned to outcomes decision analysis'' can
then be used to trade off the best available estimates of
benefit and harm, incorporating preferences for health
in the short over the long term. Conventional statistics
do not include all the evidence within the calculations.
They therefore dichotomise results and tend to result in
sensationalism. Faced with data presented in Bayesian
and decision analysis terms journalists would have to
communicate with the public in a more sophisticated
way to show how probabilities vary according to differ-
ent interpretations of the “starting” information and
that the final decision can take account of personal

trade offs. Practical actions are based on (often
unrecognised) philosophical assumptions. A move from
standard to Bayesian statistics would represent a funda-
mental change in how we think about knowledge and
this in turn would affect policy making.

Health issues are now much more complex and the
amount of disparate evidence that impacts on belief has
increased. Only the Bayesian approach can do justice to
all this information and provide the probabilistic basis
for action when the results of a partcular type of study
have not (yet) reached statistical significance or, indeed,
for not acting when they have. Sheldon and Smith have
advocated this method in the context of environmental
effects on health," and a change in approach is overdue
in this and other areas of public policy.

We thank Professor Zephne Van Der Spuy -and Dr Victoria
Lilford, whose dinner party conversation provided the inspira-
tion for this article, and Professor James Drife and Dr Nicholas
Johnson for the helpful discussions alluded to in the text.
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5.17

A selective college would like to have an entering class of 1200 students.

Because not all students who are offered admission accept, the college

admits more than 1200 students. Past experience shows that about 70%

of the students admitted will accept. The college decides to admit 1500

students. Assuming that students make their decisions independently, the

number who accept has the B(1500, 0.7) distribution. If this number is

less than 1200, the college will admit students from its waiting list.

(a) What are the mean and the standard deviation of the number X of
students who accept?

(b) Use the normal approximation to find the probability that at least
1000 students accept.

(c) The college does not want more than 1200 students. What is the
probability that more than 1200 will accept?

(d) If the college decides to increase the number of admission offers to
1700, what is the probability that more than 1200 will accept?
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Inference for Proportions

[3Y

There is an analogy between inference for proportions and that
already covered for means:

DATA

ESTIMATOR

SD

ClI

PROPORTIONS
{z1,29,...,2z,} ={0,1,...,1}
~ Y,z #Hofls

b= n1 o n

sd = p(1 —p)
ﬁil.%xsfg

Similar analogies hold for other aspects of inferences for pro-
portions, including formule for testing, confidence intervals for
the difference between two proportions, etc.




The confidence interval for a binomial proportion listed on the
previous page is based on the Normal approximation to the
binomial distribution. Exact confidence intervals also exist,
but are difficult to calculate. Tables and charts have appeared
in the literature that list the resulting confidence interval for
a given binomial proportion, depending on the sample size.
These tools are especially useful for small sample sizes, or for
proportions near 0 or 1, where the Normal approximation is
less accurate. Examples of such tables and charts appear on
the next three pages. We can compare the results found there
with those from a Normal approximation to the binomial:

X | N | Exact CI |Normal Aprox. CI

4 | 10 |(0.12,0.74)|  (0.09, 0.71)
8 | 20 |(0.19,0.64)| (0.18, 0.62)

40 | 100 |(0.31,0.51)|  (0.30, 0.50)

400 | 1000 | (0.37, 0.43) | (0.37, 0.43)
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TABLE 23 Confidence limits for percentages

gz
£5 n
8 g
c%
— % o 50 100 200 500 1000
0 95 .00- 5.82 .00- 2.95 .00- 1.49 .00- 0.60 .00- 0.30
99 .00- 8.80 .00~ 4.50 .00- 2.28 .00- 0.92 .00- 0.46
1 95 (.02- 8.88) .02- 5.45 .12- 3.57 32- 2.32 .48- 1.83
99 '(.00-12.02) .00- 7.21 .05- 4.55 22- 2.80 37- 2.13
2 95 .05-10.66 24- 71.04 .55- 5.04 1.06- 3.56 1.29- 3.01
99 .01-13.98 .10- 8.94 34~ 6.17 .87- 4.12 1.13- 3.36
3 95 (.27-12.19) .62- 8.53 1.11- 6.42 1.79- 4.81 2.11- 4.19
99 (.16-15.60) .34-10.57 .78- 7.65 1.52- 5.44 1.88- 4.59
4 95 .49-13.72 1.10- 9.93 1.74- 1.73 2.53- 6.05 2.92- 5.36
99 21-17.21 .68-12.08 1.31- 9.05 2.17- 6.75 2.64- 5.82
5 95 (.88-15.14) 1.64-11.29 2.43- 9.00 3.26- 7.29 3.73- 6.54
99 (.45-18.76) 1.10-13.53 1.89-10.40 2.83- 8.07 3.39- 7.05
6 95 1.26-16.57 2.24-12.60 3.18-10.21 4.11- 8.43 4.63- 7.64
99 .69-20.32 1.56-14.93 2.57-11.66 3.63- 9.24 4,25- 8.18
7 95 (1.74-17.91) 2.86-13.90 3.88-11.47 4.96- 9.56 5.52- 8.73
99 (1.04-21.72) 2.08-16.28 3.17-12.99 4.43-10.42 5.12- 9.31
8 95 2.23-19.25 3.51-15.16 4.70-12.61 5.81-10.70 6.42- 9.83
99 1.38-23.13 2.63-17.61 3.93-14.18 5.23-11.60 5.98-10.43
9 95 (2.78-20.54) 4.20-16.40 5.46-13.82 6.66-11.83 7.32-10.93
99 (1.80-24.46) 3.21-18.92 4.61-15.44 6.04-12.77 6.84-11.56
10 95 3.32-21.82 4.90-17.62 6.22-15.02 7.51-12.97 8.21-12.03
99 2.22-25.80 3.82-20.20 5.29-16.70 6.84-13.95 7.70-12.69
11 95 (3.93-23.06) 5.65-18.80 7.05-16.16 8.41-14.06 9.14-13.10
99 (2.70-27.11) 4.48-21.42 6.06-17.87 7.70-15.07 8.60-13.78
12 95 4.54-24.31 6.40-19.98 7.87-17.30 9.30-15.16 10.06-14.16
99 3.18-28.42 5.15-22.65 6.83-19.05 8.56-16.19 9.51-14.36
13 95 (5.18-27.03) 7.11-21.20 8.70-18.44 10.20-16.25 10.99-15.23
99 (3.72-29.67) 5.77-23.92 7.60-20.23 9.42-17.31 10.41-15.95
14 95 5.82-26.75 7.87-22.37 9.53-19.58 11.09-17.34 11.92-16.30
99 4.25-30.92 6.46-25.13  8.38-21.40 10.28-18.43 11.31-17.04
15 95 (6.50-27.94) 8.64-23.53 10.36-20.72 11.98-18.44 12.84-17.37
99 (4.82-32.14) 7.15-26.33 9.15-22.58 11.14-19.55 12.21-18.13

TABLE 23 Confidence limits for percentages

T
-
=
£E
a2 ¥
%S: 50 100 200 500 1000
16 95 7.17-29.12  9.45-24.66 11.22-21.82 12.90-19.50 13.79-18.42
99 5.40-33.36  7.89-27.49  9.97-23.71 12.03-20.63 13.14-19.19
17 95 (7.88-30.28) 10.25-25.79 12.09-22.92 13.82-20.57 14.73-19.47
99 (6.00-34.54) 8.63-28.65 10.79-24.84 12.92-21.72 14.07-20.25
18 95 8.58-31.44 11.06-26.92 12.96-24.02 14.74-21.64 15.67-20.52
99 6.60-35.73  9.37-29.80 11.61-25.96 13.81-22.81 14.99-21.32
19 95 (9.31-32.58) 11.86-28.06 13.82-25.12 15.66-22.71 16.62-21.57
99 (7.23-36.88) 10.10-30.96 12.43-27.09 14.71-23.90 15.92-22.38
20 95 10.04-33.72 12.66-29.19 14.69-26.22 16.58-23.78 17.56-22.62
99 7.86-38.04 10.84-32.12 13.26-28.22 15.60-24.99 16.84-23.45
21 95 (10.79-34.84) 13.51-30.28 15.58-27.30 17.52-24.83 18.52-23.65
99 (8.53-39.18) 11.63-33.24 14.11-29.31 16.51-26.05 17.78-24.50
22 95 11.54-35.95 14.35-31.37 16.48-28.37 18.45-25.88 19.47-24.69
99 9.20-40.32 12.41-34.35 14.97-30.40 17.43-27.12 18.72-25.55
23 95 | (1230-37.06) 15.19-32.47 17.37-29.45 19.39-26.93 20.43-25.73
99 (9.88-41.44) 13.60-34.82 15.83-31.50 18.34-28.18 19.67-26.59
24 95 13.07-38.17 16.03-33.56 18.27-30.52 20.33-27.99 21.39-26.77
99 10.56-42.56 13.98-36.57 16.68-32.59 19.26-29.25 20.61-27.64
25 95 (13.84-39.27) 16.88-34.66 19.16-31.60 21.26-29.04 22.34-27.81
99 (11.25-43.65) 14.77-37.69 17.54-33.68 20.17-30.31 21.55-28.69
26 95 14.63-40.34 17.75-35.72 20.08-32.65 22.21-30.08 23.31-28.83
99 11.98-44.73 15.59-38.76 18.43-34.75 21.10-31.36 22.50-29.73
27 95 (15.45-41.40) 18.62-36.79 20.99-33.70 23.16-31.11 24.27-29.86
99 (12.71-45.79) 16.42-39.84 19.31-35.81 22.04-32.41 23.46-30.76
-
28 95 16.23-42.48 19.50-37.85 21.91-34.76 24.11-32.15 25.24-30.89
99 13.42-46.88 17.25-40.91 20.20-36.88 22.97-33.46 24.41-31.80
29 95 (17.06-43.54) 20.37-38.92 22.82-35.81 25.06-33.19 26.21-31.92
99 (14.18-47.92) 18.07-41.99 21.08-37.94 23.90-34.51 25.37-32.84
30 95 17.87-44.61 21.24-39.98 23.74-36.87 26.01-34.23 27.17-32.95
99 14.91-48.99 18.90-43.06 21.97-39.01 24.83-35.55 26.32-33.87
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TABLE 23 Confidence limits for percentages

2@
§5 n
E 2}
£5
% S8 50 100 200 500 1000
31 95 (18.71-45.65) 22.14-41.02 24.67-37.90 26.97-35.25 28.15-33.97
99 | (15.68-50.02) 19.76-44.11 22.88.40.05 25.78.36.55 27.29.34.90
32 95 19.55-46.68 23.04-42.06 25.61-38.94 27.93-36.28 29.12-34.99
99 16.46-51.05 20.61-45.15 23.79-41.09 26.73-37.62 28.25-35.92
33 95 (20.38-47.72) 23.93-43.10 26.54-39.97 28.90-37.31 30.09-36.01
99 | (17.23-52.08) 21.4746.19 24.6942.13 27.68-18.65 29.22.36.95 "
34 95 21.22-48.76 24.83-44.15 27.47-41.01 29.86-38.33 31.07-37.03
99 | 1801-53.01 223347.24 25.6043.18 28.62.39.69 30.18.37 97
35 95 (22.06—49.80) 25.73-45.19 -28.41-42.04 30.82-39.36 32.04-38.05
99 (18.78-54.14) 23.19-48.28 26.51-44.22 29.57-40.72 31.14-39.00
36 95 22.93-50.80 26.65-46.20 29.36-43.06 31.79-40.38 33.02-39.06
99 19.60-55.13 24.08-49.30 27.44-45.24 30.53-41.74 32.12-40.02
37 95 (23.80-51.81) 27.57-47.22 30.31-44.08 32.76-41.39 34.00-40.07
99 (20.42-56.12) 24.96-50.31 28.37-46.26 31.49-42.76 33.09-41.03
38 95 24.67-52.81 28.49-48.24 31.25-45.10 33.73-42.41 34.98-41.09
99 . 21.23-57.10 25.85-51.32 29.30-47.29 32.45-43.78 34.07-42.05
39 95 (25.54-53.82) 29.41-49.26 32.20-46.12 34.70-43.43 35.97-42.10
99 (22.05-58.09) 26.74-52.34 30.23-48.31 33.42-44.80 35.04-43.06
40 95 26.41-54.82 30.33-50.28 33.15-47.14 35.68-44.44 36.95-43.11
99 22.87-59.08 27.63-53.35 31.16-49.33 34.38-45.82 36.02-44.08
41 95 (27.31-55.80) 31.27-51.28 34.12-48.15 36.66-45.45 37.93-44.12
99 | (23.72-60.04) 28.54-54.34 32.11-50.33 35.35.46.83 37,0045 09
42 95 28.21-56.78 32.21-52.28 35.08-49.16 37.64-46.46 38.92-45.12
99 | 24.57-60.99 29.45-5533 33.06-51.33 36324783 379845 10
43 95 | (29.10-57.76) 33.15-53.27 36.05-50.16 38.6247.46 39.9146.13
99 (25.42-61.95) 30.37-56.32 34.01-52.34 37.29-48.84 38.96-47.10
44 95 30.00-58.74 34.09-54.27 37.01-51.17 39.60-48.47 40.90-47.14
99 26.27-62.90 31.28-57.31 34.95-53.34 38.27-49.85 39.95-48.11
45 95 (30.90-59.71) 35.03-55.27 37.97-52.17 40.58-49.48 41.89-48.14
99 | (27.12-63.86) 32.19-5830 35.90-5434 39.24.50.86 40.93.49 12
46 95 31.83-60.67 35.99-56.25 38.95-53.17 41.57-50.48 42.88-49.14
99 28.00-64.78 33.13-59.26 36.87-55.33 40.22-51.85 41.92-50.12
47 95 (32.75-61.62) 36.95-57.23 39.93-54.16 42.56-51.48 43.87-50.14
99 | (28.89-65.69) 34.07-60.22 37.84-56.31 4121.52.85 42.91.51.12
48 95 33.68-62.57 37.91-58.21 40.91-55.15 43.55-52.47 44.87-51.14
99 | 29.78-66.61 35.01-61.19 38.80-57.30 42.19.53.85 43.90.52.12
49 95 | (34.61-63.52) 38.87-59.19 41.89-56.14 44.54-53.47 45865214
99 | (30.67-67.53) 35.95-62.15 39.77-58.28 43.15.54.84 43895312
SO 95 | 35.53-64.47 39.83-60.17 42.86-57.14 45.53-54.47 46.85-53.15
99 31.55-68.45 36.89-63.11 40.74-59.26 44.16-55.84 45.89-54.11




LARGE-SAMPLE INFERENCE FOR A POPULATION
PROPORTION

. Draw an SRS of size n from a large population with unknown pro-
portion p of successes. An approximate level C confidence interval
forpis

~ * ﬁ(l—ﬁ)
4+ AN
p=z "

where z* is the upper (1 — C)/2 standard normal critical value. To
test the hypothesis Ho: p = po, compute the z statistic

D—po

1= ——————
[po(1 — po)
n

In terms of a standard normal random variable Z, the approximate
P-value for a test of Ho against

Hiop>po is P(Z2= 2)

Hyp<po is P(Z<72)

Hyp#po is 2P(Z2lz])

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

The level C confidence interval for a proportion p will have margin
of error approximately equal to a specified value m when the sample

size is
YV
e (G-
m

where p* is a guessed value for the true proportion.
The.margin of error will be less than or equal tom if p™ is chosen

to be 0.5. This gives .
. \2

([
()
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SIGNIFICANCE TESTS FOR COMPARING TWO PROPORTIONS

To test the hypothesis
Ho:p1 =p2
compute the z statistic
_b1— D2
Sp
where
(1 1
Sp = \/P(l “P)(n—l + n2>
and
. X1 +X
P=———7T"
ny +ny

In terms of a standard normal random variable Z, the P-value for a
test of Hy against

Hy:pr>ps is P(Z>72)

Hpipi<p, is P(Z<2)

Hppi#p2 is 2P(Z2>|z|)

CONFIDENCE INTERVALS FOR COMPARING TWO
PROPORTIONS

Draw an SRS of size n, from a large population having proportion
p1 of successes and an independent SRS of size n; from another
population having proportion p, of successes. When n; and n, are
large, an approximate level C confidence interval for pP1—p2is

(P1—P2) £<"sp

where

+
n n;

_ \/m(l ~p1) _ pa(1—p2)
Sp = -

and z” is the upper (1 — C)/2 standard normal critical value.
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8.31 A clinical trial examined the effectiveness of aspirin in the treatment
of cerebral ischemia (stroke). Patients were randomized into treatment
and control groups. The study was double-blind in the sense that neither
the patients nor the physicians who evaluated the patients knew which
patients received aspirin and which the placebo tablet. After 6 months of
treatment, the attending physicians evaluated éach patient’s progress as
either favorable or unfavorable. Of the 78 patients in the aspirin group,
63 had favorable outcomes; 43 of the 77 control patients had favorable
outcomes. (From William S. Fields et al., “Controlled trial of aspirin in -
cerebral ischemia,” Stroke, 8 (1977), pp. 301-315.)

(2) Compute the sample proportions of patients having favorable out-
comes in the two groups.

(b) Give a 95% confidence interval for the difference between the
favorable proportions in the treatment and control groups.

(c) The physicians conducting the study had concluded from previous
research that aspirin was likely to increase the chance of a favorable
outcome. Carry out a significance test to confirm this conclusion.
State hypotheses, find the P-value, and write a summary of your
results.

63
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Statistical Power for Experimental Research

Mark W. Lipsey

SAGE PUBLICATIONS

Chi-Square and the Difference between Proportions

When dependent variables in treatment effectiveness research are categori-
cal rather than continuous, the results are usually presented as a contin-
gency table and tested using Chi-square or some test of the difference be-
tween proportions. A typical case, and the only one considered here, is the
2X 2 contingency table in which the degree of association between a di-
chotomous group variable (e.g., treatment vs. control) and a dichotomous
dependent variable (e.g., success vs. failure) is tested. Each cell of that
table contains a frequency value, that is, the number of subjects in the
indicated group with the indicated outcome.

For example, a researcher with 100 subjects evenly divided between
treatment and control group and measured on a dependent variable with a
“success” baserate of 50% would expect the following results under the
null hypothesis:

Success Failure
Treatment 25 25
Control 25 25

A treatment effect that altered the success rate to 70% would produce the
following table:

Success  Failure
Treatment 35 15
Control 25 25

To do statistical power analysis for such a situation using the charts in

.

B
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How to Estimate Statistical Power 87

this chapter, the data from the contingency table should first be converted
to proportions within each experimental group. That is, the treatment
group data should be represented as the proportion in each of the two out-
come categories and the control data should be represented likewise. Thus
the data for the above example would appear as:

Success  Failure
Treatment .70 .30
Control .50 .50

Power relationships for the situation above can be determined to a close
approximation using an effect size index based on the difference between
the “success” proportions of the treatment versus control group (or what-
ever other category of interest is analogous to the success category of the
example here). To compute the appropriate effect size, the relevant propor-
tions must be transformed. Cohen (1977) uses the arcsine transformation
as follows:

Let p, be the success proportion for the treatment group;
let p, be the analogous proportion for the control group;
Let &, be the arcsine transformation 2arcsin(\/p,) and correspondingly, ¢, =

2arcsin(\/p,).

The effect size index for the difference between p, and p, can then be ex-
pressed as follows:

ES, = &, — 9, (1]

Where ES,, is the effect size formulation for the difference between propor-
tions, and &, and ¢, are the arcsine transformations of the success propor-
tions for the treatment and control populations respectively.

Following convention, we assign ES, the absolute value of the &mﬁm
ence for purposes of determining power, then give it a plus sign if the treat-
ment group results arz superior to the control group results, a minus sign if
the control group results are superior. Table 4.1 provides the arcsine trans-

formations for proportions from .01 to .99 in increments of .01.

-

Example. Suppose a medical researcher is considering a study of a new
cancer therapy in which the control group survival rate after two years is
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TABLE 4.1 Arcsine Transformations () for Proportions {p) 5 - 3
P $ p ¢ p $ P $ _ N
.01 .200 .26 . 1.070 51 1.591 .76 2.118 X
.02 .284 27 1.093 .52 1.611 a7 2.141 2
.03 348 28 1.115 .53 1.631 18 2.165 N
.04 403 .29 1.137 .54 1.651 79 2.190 o N N
.05 451 30 1.159 55 1.671 80 2214 Se- -
.06 495 ) 1.181 .56 1.691 .81 2.240 C ¢, A
.07 .536 32 1.203 .57 1.711 .82 2.265 ) \.,, AN
.08 574 33 1.224 .58 1.731 .83 2.292 5 N
.09 .609 34 1.245 .59 1.752 .84 2.319 ay - LY
.10 644 .35 1.266 - .60 1.772 .85 2.346 AN N N \
11 676 .36 1.287 .61 1.793 .86 2.375 N N X,
12 707 37 1.308 " .62 1.813 .87 2.404 : A\ -
13 738 38 1.328 63 1.834 88 2.434 B2 = -
14 767 .39 1.349 .64 1.855 .89 2.465 ,.\.v N N
.15 795 .40 1.369 .65 * 1.875 .90 2.498 /_7 - N -
.16 .823 41 1.390 .66 1.897 91 2.532 N N N
A7 850 42 1.410 .67 1.918 92 2.568 TN ETR ™ ~
18 .876 .43 1.430 .68 1.939 93 2.606 s e+ 0 e S . A O ../‘ ot
19 902 44 1.451 69 1.961 94 2.647 EEEEI=aEIETEMINEELIS
.20 927 45 1.471 .10 1.982 95 2.691 —IN a1 !./,n, S S~y s o <o -,,..lwn
21 .952 .46 1.491 a1 2.004 .96 2.739 A1) ,v,v - 3 Ny NE DL
.22 976 47 1.511 a2 2.026 97 2.793 - AN i St ~+-
.23 1.000 A48 1.531 73 2.049 .98 2.858 T2 AN TINCEED
.24 1.024 .49 1.551 74 2.071 .99 2.941 A= ,,.mv BBl - /h/ N
25 1.047 .50 1.571 5 2.094 [ Wr : - N
SOURCE: Computer generated using Microsoft Basic functions -} sa.mv N N
— /I
. e . . . §§ t // I
anticipated to be 25% and treatment is expected to improve that to 40%. 7s; - N
From Table 4.1, the arcsine transform of .40 is 1.369 and that of .25 is ./-sw.l_m7 b = IJ ]
1.047. The simple difference of these values as per equation [I] above (i.e., S5, el b -~ All/
1.369 — 1,047) gives the effect size, ES, = .32 (rounded). If the researcher A= S e NS n
has available 100 subjects for each experimental group, Figure 4.5 shows e | R T
that at o = . 10 the power for detecting ES = .32 will be about .72. - SRR i e TTTH
8 3 8 8 g 8 8 % R

39404

.20
.10

Figure 4.5



Comparing Two or More Proportions

The generic setup is:

Category 1 | Category 2 | ... | Category ¢
Population 1 n11 n19 e Nic
Population 2 n91 Nog e N9e
Population r Tl N2 .. Npe

Examples:

1. Use of Stroke Unit versus Medical Unit for acute stroke in the elderly
(Taken from Garraway et al, British Medical Journal, 1980).

Patient Independent | Patient Dependent
Stroke Unit 67 34
Medical Unit 46 45

2. Quality of Sleep before elective operation

Bad | Reasonably Good | Very Good
Triazolam | 2 17 12
Placebo 8 15 8

Example 1 can be handled by the methods for two proportions based on the
binomial distribution, which we have already seen. However, it is not possible
to directly extend these methods to the case when there are three (or more)
outcome categories and/or more than two populations. Furthermore, we have
been using the Normal distribution approximation to the binomial, which we
know is only valid for “large enough” sample sizes. What can we do if we
have a table larger than 2 x 2 or if the sample size is “small”?

e



Methods to Compare Two or More Proportions

Suppose we wish to test the null hypothesis that 71 = 7o = ... = 7y, that is,
we have measured the frequency of occurrence of a dichotomous outcome in
N populations, and wish to check if the frequencies are all equal. There are
several candidate tests:

Normal approximation (Z) Test: We have seen this test when N = 2.
The test does not apply when N > 2. Alternative hypothesis can be
one or two-sided. Requires large samples sizes to be accurate. “Large”
is often stated as a criterion like

sample size X min{n, (1 —m)} > 5.
This is somewhat arbitrary, but works reasonably well as a rough guide.

Chi-square (x?) Test: The x? test does apply when N > 2, but the alter-
native hypothesis is always two-sided. Requires large samples sizes to
be accurate. “Large” is often operationalized as “the expected number
of subjects in each cell in the r x ¢ table must -be at least 57. We will
see soon how to calculate these expected cell sizes.

Fisher’s Exact Test: Both the x2 and Z tests require “large” sample sizes
to be accurate, but the Fisher’s Exact is “exact” for any sample size.
The Fisher’s Exact Test also applies when N > 2, but unlike the x?®
test, the alternative hypothesis can be one or two-sided.

While it is common practice to use a x? test for large sample sizes and Fisher’s
Exact Test for smaller sample sizes, a natural question is “Why not just use
Fisher's Exact Test all the time, since it is always applicable?” There are
two possible answers. The first is that, as we will see, it is computational
“expensive” to use Fisher’s Exact Test, compared to a x? test. Second, there
are different assumptions behind each. As will become clear from the exam-
ples on the next few pages, in the Fisher’s Exact Test, all “margins” are held
fixed (“conditioned upon”), while this is not the case for the Z and x? tests.
Thus there is a slightly different inferential philosophy behind each.
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One sample y? Test

Suppose we observe the following table of data:

Success | Failure
- Population z n—z

We would like to test the hypothesis Hy : 7 = mo. For example, we might
observe patient survival rates one month following a particular sugery, and
would lke to test if the survival rate is 80%. We observe the following data:

Success | Failure
Population 60 40

We would like to test the hypothesis Hy : 7 = 0.80, where = represents the
true one month survival rate. )

Procedure: Since we hypothesize = = 0.80, and since we have 100 subjects, we
expect 80 survivors and 20 deaths. Observed dicrepancies from these expected
values are evidence against the null hypothesis. We calculate:

2 (obéerved = expected)’
X = Z expected

all cells

(60 — 80)* (40 — 20)?
80 T 20

400/80 + 400/20 = 25

Comparing the X? = 25 value on x? tables with 1 degree of freedom (1 df), we
find that p < 0.0005, so that we have evidence to reject the null hypothesis.



Table entry

Table G xZ critical values

i
A"

Probability p

for p is the point (X?)° with probability p lying above it.

Tail probability p

df .25 .20 .15 10 - .05 .025 .02 .01 005 .0025 .001 .0005
2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83 12.12

4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82 15.20

6.25 7.81 9.35 9.84 11.34 12.34 14.32 16.27 17.73

1.78 9.49 11.14 11.67 13.28 14.86 16.42 18.47 20.00

9.24 11.07 12.83 13.39 15.09 16.75 18.39 20.51 22.11

_-10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46 24.10

12.02 -14.07 16.01 16.62 18.48 . 20.28 22.04 24.32 26.02

13.36 15.51 17.53 18.17 -20.09 21.95 23.77 26.12 27.87

14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88 29.67

15.99 ~18.31. .. 20.48 . 21.16 23.21 25.19 | 27.11 29.59 31.42

17.28 19.68 21.92 22.62 24.72 26.76 28.73 31.26 33.14

18.55 21.03 23.34 24.05 26.22 28.30 30.32 3291 34.82

19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53 36.48

21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12 38.11

22.31 25.00 27.49 28.26 30.58 32.80 34.95 _37.70 39.72

23.54 26.30 - 28. .63 32 3427 ~ 36.46 7739.25 41.31

2477 . 2159 3572 3795 4079 4288

©25.99 28.87 - . 37.16 .. '39.42 42.31 44.43

. -27.20 30.14 . - =33, . 38.58 ©.40.88 43.82 45.97

© 2841 3141 35. 3 40.00 4234 45.31 47.50

29.62 - 32.67 . . . 41.40 43.78 46.80 49.01

30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27 50.51

32.01 35.17 38.08 38.97 41.64 44,18 46.62 49.73 52.00

33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18 53.48

34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62 54.95

- .0.35.56 L 38.89 Tr41.92° 247,86 ~.45.64 48.29 50.83 54.05 56.41

736.74 - --40.1L 1243.19 “44.14 v 46.96 - 49.64 . 52.22 5548 57.86

."37.92 7 41.34 .. 44.46 48.28 .7 50.99 . 53.59 - 56.89 59.30

. ©.39.09 . 42.56 ~:48.72% . 4959 - '52.34 . 54.97. 58.30 60.73
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Two sample XQ Test

Suppose we observe the following table of data, introduced previously:

Patient Independent | Patient Dependent | Total
Stroke Unit 67 34 101
Medical Unit 46 45 91
Total 113 79 192

We would like to test the hypothesis Hy : m; = mp; that is, the preportion of
independent patients is the same on Medical or Stroke Units.

Procedure: Since we hypothesize 77 = 7o, we ezpect to observe the following
table of data, on average:

i Patient Independent | Patient Dependent | Total
Stroke Unit 59.44 41.56 101
Medical Unit 53.56 37.44 91
Total - 113 79 192

Once again, observed dicrepancies from these expected values are evidence
against the null hypothesis. We calculate:

(observed — expected)?

xX? =
all oells expected
) _ (67—59.44)2 (34 —41.56)> (46 — 53.56)% (45 — 37.44)?
- - 59.44 41.56 53.56 37.44
= 49268

Comparing the X? = 4.9268 value on x? tables with 1 df, we find that 0.025 <
p < 0.05 (by computer the exact value is 0.0264), so that we have evidence
to reject the null hypothesis.



149

The y? Test for 2 x 3 table

Suppose we observe the following table of data, introduced previously:

Bad | Reasonably Good | Very Good | Total
Triazolam | 2. 17 12 31
Placebo 8 15 8 31
Total 10 32 20 62

We would like to test the hypothesis Hy : 7 = w2 = w3; that is, the
preportions of patients that experience bad, reasonably good and very good
outcomes are the same whether they were given the drug or the placebo.

Procedure: Since we hypothesize 7, = w; = w3, we ezpect to observe the
following table of data, on average:

Bad | Reasonably Good | Very Good | Total
Triazolam | 5 16 10 31
Placebo 5 16 10 31
Total 10 32 20 62

As before, observed dicrepancies from these expected values are evidence
against the null hypothesis. We calculate:

X2 = Y (observed — expected)’
B all cells expected
(2—5)2 (8-5) (17-16)>  (15—16)*(8—10)* (12— 10)®
5 T 5 T 15 T 16 0 T 10
= 4.525

Comparing the X? = 4.525 value on x? tables with 2 df, we find that 0.10 <
p < 0.15 (by computer the exact value is 0.104), so that we do not have
sufficient evidence to reject the null hypothesis at either the 0.05 or 0.10
levels. Note that in general for an r x ¢ table, df = (r — 1) x (¢ —1).

Question: We note that the proportion on triazolam increases from 20% to
53% to 60% across outcomes, so it may be a good idea to test for a trend.
See Armitage and Berry, page 403.
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Fisher’s Exact Test

Suppose we observe the following table of data:

Success | Failure | Total
Group A 4 2 6
Group B 1 6 7
Total 5 8 13

As with the Z and x? tests, we would like to test the null hypothesis Hj :
71 = 72. However, since the sample size is so small, there is doubt about the
applicability of these tests to this data set. An “exact” test can be constructed
via the following reasoning:

We have observed a total of 5 successes. If groups A and B receive equally
effective treatments, then the five successes should be eqaully distributed
between the two groups. If the sample sizes were equal, we would expect
2.5 successes in each group, but since the sizes are not equal, we expect the
successes to be divided in a 6:7 ratio (almost but not quite half/half). As
in the previous tests, discrepancies from this “fair split” indicate departures
from the null hypothesis. We calculate:

6 7
ﬁx5—2.31, andﬁx5—2.69

Therefore, approximately 2:3 or 3:2 split is expected, and more extreme splits
are evidence against the null hypothesis. How extreme is too extreme to be
compatible with the null hypothesis? We will calculate the probability of
each possible split:

A |5 1|4 23 3|2 4|1 5|0 6
B [0 7|1 62 5|3 4[4 3|5 2

5 8|5 8|5 8|5 8|5 8|5 8

Prob | 0.005 | 0.082 | 0.326 | 0.408 | 0.163 | 0.016

The tables with probabilities of 0.005 + 0.082 + 0.016 = 0.103 have values
equal to or more extreme than those observed, so by the definition of the
p-value, p = 0.103 by the Fisher’s Exact Test.



Calculating Probabilities for the Fisher’s Exact Test

The probabilities on the previous page were calculated using the hypergeo-
metric distribution. In general, if we observe

A a b a+b
B c d c+d
at+c b+d| N

where N = a + b+ ¢+ d, then the probability of observing that table is:

_ (a + b)!(c+ d)l(a+ ¢)!(b+ d)!

Prob Nlalblcld!

A less simplified equivalent formulae provides a clue as to how the probability
is calculated:

!a+c!! x !b+d!!
11 11
Prob = —el¢! bict

N!
(a+b)!(c+d)!

Consider the A and B labels as random labels. In how many ways can one
choose that all 5 (or 4 or 3 or 2 or 1 or 0) of the A labels happen to end up
as “successes”?



Odds Ratios and Relative Risk

Suppose we observe the following 2 x 2 table of data:

Disease + | Disease — | Total

Risk Factor + a c a+tc

Risk Factor — b d b+d
Total a+b c+d N

Then the observed odds ratio is

-~ ad
¢ - b_C,
and the observed relative risk is
o
Sp _ ot
RR = z
b4+d

Note that if the risks a—+c and 7~ + > are small, then z[; ~ R:R, since a << ¢ and
b<<d.

Confidence interval for Odds Ratios: The distribution of ¢ is some-
what skew, so that the confidence interval is usually based on a Normal
Distribution approximation to logt. In particular,

» 1 1 1 1
va,r(logz/;)z;+g+;+a

so that a 95% CI for log ¢ is given by

. 1 1 1 1 1 1 1
(1og¢—1.96x\/ +3 +d,logz/z+19(3X\/ +'b'+2+2i)
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To convert back to a CI for v, one takes the exponent (to the base e =
2.71828), to get

. 1 1 1 1]
exp 10g¢—1.96x\/—+—+—+— , €Xp
a b ¢ d

R 1 '
log¢+1.96x\/—+l+l+1J).
a b ¢ d

Similarly,

c d

var(logRR) ~ Py + b(b £ d)

so that an approximate 95% CI for a RR is

R ¢ d a c d
1 — 1. 1 1. .
(exp [OgRR 196 \/a(a+c) i b(b+d)J’exp [Ong i \/a(a+c) " b(b+d)J>

Example: The following two tables of data are observed from a study on
the effects of swimming in polluted water:

Otitus + | Otitus — | Total

Swimmers 7 72 79

Non-swimmers 2 39 41

Total 9 111 120

Any symptoms + | Any symptoms — | Total

Swimmers - 45 34 79
Non-swimmers 8 33 41
Total 53 67 120

For otitus, RR = 7/ = 1.816, and ¢ = /22 = 1.896, so the OR is a good
approximation for the RR. A 95% CI for the OR is (.376,9.57), while a 95% CI

for the RR is (0.395,8.349). For all symptoms, however, KR = $AF = 2.92,

and 1/; = %5/% = 5.46, so the OR is not an accurate approximation for the
RR. .
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Mantel-Haenzel Estimates

Suppose we observe the following two 2 x 2 tables of data, the first one
representing the relationship between the risk factor and disease in males,
the second one for females:

Disease + | Disease — | Total

Factor + 160 80 240
Factor — 440 320 760
Total 600 400 1000

Disease + | Disease — | Total

Factor + 240 330 570
Factor — 160 270 430
Total 400 600 1000

Then ¢ = 1.45 in males, and 9 = 1.22 in females. However, if we construct
the combined table,

Disease + | Disease — | Total

Factor + 400 410 810
Factor — 600 590 1290
Total 1000 1000 2000

we find ¢ = 0.95!! This arises because of confounding, so that the Mantel-
Haenzel estimator must be used to combine the tables.
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Calculating Mantel-Haenzel Esfimates

The Mantel-Haenzel estimate is given by:

X(all tables 7) %di/mi
E(a.ll tables 1) bici/n;

YpmH =

where each table is represented by

Disease + | Disease — | Total
Risk Factor + a; ¢
Risk Factor — b; d;
Total n;
For the above data,
- (160 x 320)/1000 + (240 x 270)/1000
YMH = =1.32

"~ (80 x 440)/1000 + (330 x 160)/1000

Note that unlike the 0.95 value for the “straight” combined estimate, the
Mantel Haenzel combined estimate lies in between the separate values for
males and females, which is intuitively what would be expected.

See Armitage and Berry for testing and confidence interval formulae.



Inference for Poisson Counts

Let = A x t be a Poisson parameter. If we observe data z representing a
count, of events in time ¢, how can we best estimate u?

Point estimation: The maximum likelihood estimator of u is simply z, and
the maximum likelihood estimator of A is simply x/t. These are intuitive
estimates, but remember that we can always prove these results by using
calculus as on page 117 for normal means.

Confidence intervals: While exact results are available (see, for example,
Rosner page 180), we will use a normal approximation. A (1—a)% confidence

for u is given by
(CE - Zl—a/2\/5, z+ Z1-a/2\/57_-)

To obtain a confidence interval for A, simply divide the lower and upper
confidence interval limits for u by ¢. These results are not terribly accurate,
but are fine for our purposes here.

Example: A person-year is defined as a person being followed for one year
of time. Suppose that a certain city in the United States has a constant
number, 12,000, of children less than 19 years of age. (In other words, we
assume that the number of 18 year olds turning 19 in any given year is
approximately equal to the number of births, so that the size of the cohort
remains constant.) Suppose that 12 cases of leukemia are seen in this city
over a 10 year period. What is a 95% confidence interval per 100,000 person-
years (a typical way that such data are usually presented)?

Solution: A 95% CI for y is given by

/156

(2 = 21-0/2V/3: 2 + 21-02VZ.) = (12 = 21-02V12, 12+ 21-0/2V/12) = (5.2,18.8)

This would be the CI for the rate per 12,000 x 10 person years, so for 100,000
person-years would be

100,000 100, 000
(5'2 * 120,000 “>® * 120,000

> = (4.3,15.7).

The exact interval is (5.2, 17.5), so we are not too far off using the approxi-
mation (but the exact method is better if you have tables or a program that
implements it).

Note: Bayesian inferences for Poisson parameters typically use the fact that
the Gamma distribution is conjugate to Poisson likelihood functions. See
Gelman et al. (1995), page 48.



Bayesian Inference for Proportions

Suppose that in a given experiment = successes are observed in N independent
Bernoulli trials. Let § denote the true but unknown probability of success, and
suppose that the problem is to find an interval that covers the most likely locations
for 6 given the data.

The Bayesian solution to this problem follows the usual pattern:

1. Write down the likelihood function for the data.
2. Write down the prior distribution for the data.

3. Use Bayes theorem to derive the posterior distribution.
For the case of a single binomial parameter, these steps are realized by:

1. The likelihood is the usual binomial probability formula, the same one used
in the frequentist analysis,

N!

Tl S A

L(8)z) = Pr{z successes in N trials} =

In fact, all one needs to specify is that
L(6|z) = Pr{z successes in N trials} o 8°(1 — §)N—2),

since N—_Nx')—,; is simply a constant that does not involve §. In other words,
inference will be the same whether one uses this constant or ignores it.

2. Although any prior distribution can be used, a convenient prior family is
the Beta family, since it is the conjugate prior distribution for a binomial
experiment. A random variable, 8, has a distribution that belongs to the
Beta family if it has a probability density given by

f(9) = { e (1-0y", 0<0<1, ¢,8>0, and
0,

otherwise,

[ B(a, B) represents the Beta function evaluated at (a, ). It is simply the
normalizing constant that is necessary to make the density integrate to one,
that is, B(a,8) = fg z*~}(1 — z)#~'dz.] The mean of the Beta distribution

is given by
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and the standard deviation is given by

o=\
(@+BPa+B+1)

Therefore, at this step, one needs only to specify o and S values, which
can be done by finding the o and B values that give the correct prior mean
and standard deviation values. This involves solving two equations in two
unknowns. The solution is

_p (e +p’—p)
0-2

a=

and
PNECEYE
o2

3. As always, Bayes Theorem says
posterior distribution « prior distribution x likelihood function.

In this case, it can be shown (by relatively simple algebra which we will omit)
that if the prior distribution is Beta(e, §), and the data is = successes in N
trials, then the posterior distribution is Beta(a + z,8+ N — z).

Example: Suppose that a new diagnostic test for a certain disease is being in-
vestigated. Suppose that 100 persons with confirmed disease are tested, and that
80 of these persons test positively.

(a) What is the posterior distribution of the sensitivity of the test if a Uniform
Beta(a = 1, = 1) prior is used? What is the posterior mean and standard
deviation of this distribution?

(b) What is the posterior distribution of the sensitivity of the test if a Beta(a =
27,8 = 3) prior is used? What is the posterior mean and standard deviation of
this distribution?

(c) Draw a sketch of the prior and posterior distributions from both (a) and (b).

(d) Derive the 95% posterior credible intervals from the two posterior distributions
given above, and compare it to the usual frequentist confidence interval for the
data. Clearly distinguish the two different interpretations given to confidence
intervals and credible intervals.

Solution:

(a) According to the result given above, the posterior distribution is again a Beta,
with parameters ¢ =1+ 80 =81, § =1+ 20 = 21. The mean of this distribution
is 81/(81 + 21) = 0.794, and the standard deviation is 0.0398.



(b) Again the posterior distribution is a Beta, with parameters o = 27 + 80 =
107, B = 3 4+ 20 = 23. The mean of this distribution is 107/(107 + 23) = 0.823,
and the standard deviation is 0.0333.

()

AN

T Beta (07,

=

© Beta(223)
Be=(81,2)

«©

v

N Beta (1, 1)

o |l L7 U

L ¥ v M v

0.0 0.2 0.4 0.6 0.8 1.0

(d) From tables of the beta density (contained in many books of statistical tables)
or software that includes Bayesian analysis, the 95% credible intervals are (0.71,
0.86) from the Beta(81,21) posterior density, and (0.75, 0.88) from the Beta(107,23)
posterior density. The frequentist 95% confidence interval is (0.71, 0.87).

Note that numerically, the frequentist confidence interval is nearly identical to the
Bayesian credible interval starting from a Uniform prior. However, their interpreta-
tions are very different. Credible intervals are interpreted directly as the posterior
probability that # is in the interval, given the data and the prior distribution. No
references to long run frequencies or other experiments are required. On the other
hand, confidence intervals have the interpretation that if such procedures are used
repeatedly, then 100(1 — )% of all such sets would in the long run contain the true
parameter of interest. Notice that there can be nothing said about what happened
in this particular case, the only inference is to the long run. To infer anything
about the particular case from a frequentist analysis involves a “leap of faith.”

156 D
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Why isn’t evervbody a Bavesian?

Historically, before about 1925, everybody was a Bayesian. RA Fisher, and Neyman
and Pearson in the 1920’s and 1930’s developed frequentist methods, motivated
largely by the desire to get away from subjective prior distributions so as to arrive
at “objective” inferences from data. Unfortunately, their methodology also has
subjective biases. These are detailed in the article by Berger and Berry, referenced
in the JAMA article, and relate to problems with defining the sample space for
observations for the “hypothetical repeated trials”. It is also unfortunate that
frequentist methods are unable to directly address questions of interest to clinicians
and other researchers.

So why did frequentist statistics become so popular despite these important defi-
ciencies? There are many reasons, including:

1. Ease of use: To get a p-value, one just needs to plug in data, and software has
become so user friendly that one does not even need to know what a p-value is
to get them. To get a posterior distribution, however, one needs to carefully
assess a prior distribution, an extra step that can be an enormous amount
of work if done carefully. Further, one needs to better understand Bayesian
methodology to apply it, since the software tends to be more difficult to use,
requiring more insight.

2. Misunderstandings about the role of the prior distribution: As explained in
the JAMA article, if one understands things more deeply, the prior distri-
bution can be viewed as a great advantage. For example, it allows different
researchers to compare their final conclusions based on their initial positions
which have been updated by the data. Also, it allows one to assess the im-
portance of the current data set in relation to past data, and come to an
overall conclusion based on both (as real scientists must do before stating
any conclusions). However, superficially, scientists are wary of the subjectiv-
ity implied by having to assess a prior distribution, and worry that others
may not accept their analyses as “scientific”’. (I personally have not found
this to be an issue in any of my submissions to medical journals.)

3. Non-uniqueness of prior and therefore of posterior distributions: By simply
plugging in the data, everyone can agree (usually, there can be exceptions!)
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on what the p-value is. Each scientist, however, will have their own prior dis-
tribution, and therefore posterior distributions are not unique. As explained
above, this can be a great advantage, but this point is not always appreciated.

4. Education: Most medical researchers are far behind current developments in
statistical methodology. Just like it took many years to have journals prefer
confidence intervals to p-values, it will take a while for Bayesian methods to
become commonplace in medical journals. Many medical researchers are still
unaware of Bayesian methodology, but this situation is very rapidly changing.

5. Implementation issues: To a typical medical researcher, Bayesian methods
can be more difficult to implement than frequentist methods. Not only is
there a prior distribution to elicit, but numerical/computational problems
involved with solving the integrals that arise in Bayes Theorem can be diffi-
cult. Off the shelf software is rapidly being developed, but is not currently
widely available. Programs such as SAS have been very, very slow in adding
Bayesian procedures to their programs, perhaps adding to the perception that
the methods are not useful, or are not scientifically sound.

6. Is it “too extreme” a position to say that p-values should never be used? For
simple models, confidence intervals can usually be calculated just as easily
as p-values and provide much more clinically useful information. For more
complex models, it is sometimes difficult to calculate confidence intervals (for
example, confidence intervals for complex regression equations can be difficult
to compute). So one sometimes sees p-values used to assess goodness of fit
or a regression parameter in such situations. However, recently developed
Bayesian Monte Carlo methods such as the Gibbs sampler make the Bayesian
analysis of such complex models easier than a frequentist analysis, and also
avoid serious problems with the way nuisance parameters are handled in such
models. Hence I would say that p-values should never be used, and that this
position is reasonable, and not in any way “extreme”.

So, overall, one generally needs to work much harder to get a Bayesian posterior
distribution than a p-value or a CI. Is the extra effort worth it? In simple problems,
and where there is very little or no prior information, frequentist CI’s (but not p-
values!) provide very similar inferences to Bayesian credible intervals. In that
case, it may not be worth the extra trouble (although in simple problems without
prior information, Bayesian methods tend to be easy to use as well). In all other
situations, where there may be substantial prior information and/or a complex
model (Bayesian methods handle nuisance parameters like normal variances better
than other methods), I would say that not only is the extra trouble worthwhile, it
is crucial to deriving sound conclusions from data.



,» Nonparametric Inference

Thus far, statistical inferences on populations have been made by assuming a
mathematical model for the population (for example, a Normal distribution),
and estimating parameters from that distribution based on a sample. Once
the parameters have been estimated (for example, the mean and/or variance
for a Normal distribution), the distribution is fully specified. This is known
as parametric inference.

Sometimes we may be unwilling to specify in advance the general shape of
the distribution, and prefer to base the inference only on the data, without

a parametric model. In this case, we have distribution free, or nonparametric
methods.

Example: Suppose that a new postsurgical treatment is being compared
with a standard treatment by observing the recovery times of n treatment
subjects and m controls. Suppose that m = n = 9, and that the observed
recovery times (in days) are:

Control: 20 21 24 30 32 36 40 48 54
Treatment: 19 22 25 26 28 29 34 37 38

Assume first that these data were matched. A very naive procedure to com-
pare treatment to control is as follows:

C 20 21 24 30 32 36 40 48 54
T 19 22 25 26 28 29 34 37 38
sign + - - + + + + + +

Thus g- = 78% were better in the treatment group. Is this likely to be
due to chance, or is it “statistically significant”? If the two procedures are
truely equivalent (i.e., under the null hypothesis Hy: There is no difference in
recovery times between the two treatments), then we would expect roughly
equal numbers of +’s and —’s. To test the null hypothesis, we could the
calculate

p—wvalue = Pr{7or 8 or 9+’s| T and C are equivalent}

= 0.089
from binomial tables, with 7 = 0.5, and n = 9. This is called the sign test.



The usual paired t-test gives p = 0.023, using the same data. Which proce-
dure should we use?

Distribution Free denotes that we make no assumptions concerning the under-
lying distribution from which the data arise. However, note that we still used
a distribution (here, the binomial) from which we calculated the p — value.
The main difference between the two procedures is that the t-test requires
the assumption that the data arise from a Normal distribution, while the sign
test did not. In fact, the sign test made no assumptions about an underly-
ing population, nor the shape of any distribution. In using the sign test, we
also did not need to consider degrees of freedom, or whether we had equal
variances or not.

Still, the sign test is very wasteful of information, since it assigns each value
only a “+” or “-”, regardless of the magnitude of the difference. We can take
this into account by using a signed rank test.

C 20 21 24 30 32 36 40 48 54
T 19 22 25 26 28 29 34 37 38
sign + - - + 4+ + + + +

signed difference +1 -1 -1 +4 44 +7 +6 +11 +16
Ordering them and ranking them in order, we have:

+1 -1 -1 44 +4 +6 +7 +11 +16
ranks 1 2 3 4 5 6 7 8 9
ranks with ties 2 2 2 45 45 6 7 8 9

Summing up the Positive ranks, we have Ty = 41, and summing the negative
ranks, we have T_. = 4. If there is no difference in the two groups, then we
would expect Ty and T- to be approximately equal to each other, so that
unequal values indicate departures from the null hypothesis. Significance
levels are given in table A6. Looking up T} = 41, we see that 0.02 < p < 0.05.
This nonparametric test is called the Wilcozon signed rank test.



Suppose that the data were not paired, but instead came from two indepen-
dent samples, as in a clinical trial. We may again order and rank the data:

data 19 20 21 22 24 25 26 28 29 30 32 34 36 37 38 40 48
ranks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
growp T C C T ¢ T T T T € C T C T T C C

Now summing the ranks in the control group gives:

T =2+3+5+10+114+13+16+ 17+ 18 = 95.

On average, if the null hypothesis is true, we would expect a sum of

(m)(m+n+1) _ (9)(9+9+1)

E(Tx) = 5 9

= 85.5

Is the observed number, T, = 95 “significantly” higher than what one would
expect if the null hypothesis is true? This depends on the variance,

n(m 1
var(Ty) = mn(m +n+1) = (9x9) x(9+9+1) = 128.25
12 12

and thus sd(T;) = sqrt(128.25) = 11.32.

If we assume a large enough sample,

T, — E(Ty)
z= -

so that the null hypothesis can be tested using the usual Normal tables.

Here we calculate

_ T.— E(T;) 95-85.5
- sd(Ty) 0 11.32

= 0.83,

so that p = 0.41 from Normal tables. If the sample is too small for the Normal
approximation to hold, one can use table A7.

This nonparametric test is called the Wilcozon rank sum test. The equiv-
alent unpaired t-test for the same data give a p — value of p = 0.26.

o4
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Nonparametric Statistics Summary

paired or matched unpaired or unmatched
N = number of pairs m+n=N
Small Use: Wilcoxon Use Wilcoxon
Sample signed rank rank sum
test test
Statistic: T, or T_ Statistic: T,
Table A6 Table A7
Large E(T,)= —-—-N(JXH) E(T,) = M‘YZL”
Sample | var(T,) = N(N+12)4(2N+1) var(T,) = —————m"’(mgnﬂ)
_ T+—E(Ty) _ T,—E(T,)
2 T STy 2T AT
Use Normal Tables Use Normal Tables
Notes:

e Slightly different formule may be used if there are ties in the data.

e The test does not directly test means,
Hy: There is no treatment effect
H 4: treatment is more/less effective than control

e Nonparametric confidence intervals are also available, see E. Lehmann
(1975): Nonparametrics. Holden Day.
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Table A6. Critical values for the signed rank test in the comparison of
two groups in paired samples (this table gives the values of the sum

of the signed ranks required to achieve statistical significance in a

test of the null hypothesis of no difference in the population)

Significance level for two-tail test

Number of

differences .05 .02 .01
6 0. 21 —_— —_
7 2, 26 0, 28 _—
8 3, 33 1, 35 0. 36
9 5. 40 3, 42 1, 44
10 8. 47 5. 50 3, 52
11 10, 56 7. 59 5. 61
12 13, 65 9. 69 7. 71
13 17, 74 12, 79 9, 82
14 21, 84 15, 90 12, 93
15 25. 95 19. 101 15, 105
16 29, 107 23,113 19,117
17 34, 119 28, 125 23,130
18 40, 131 32,139 27. 144
19 46, 144 37. 153 32,158
20 52,158 43, 167 37,173
21 58,173 49, 182 42, 189
22 66, 187 55,198 48. 205
23 73.203 62,214 54,222
24 81,219 69, 231 61,239
25 89. 236 76. 249 68. 257

Adapted from Tukey [107].



Table A7. Critical values for the rank sum test in the comparison of two groups in
independent samples (this table gives. for the sum of the ranks in the smaller of two
independent samples. the values required to achieve statistical significance

in a test of the null hypothesis of no difference between the populations)

Significance level, two-tail Significance level. two-tail
ny.n .05 .01 .001 ny. ny .05 7 .01 001 |
2. 8 3. 19 4, 9 15. 41 11, 45
2.9 30021 4. 10 15. 45 12, 48
2,10 3. 23 4.11 | 16. 48 12, 52
2,11 4. 24 4. 12 17. 51 13. 55
2,12 4. 26 4.13 18. 54 14, 58 10. 62
2,13 4, 28 4. 14 19. 57 14. 62 10. 66
2. 14 4. 30 4.15 20. 60 15. 65 10. 70
2. 15 4, 32 4. 16 21, 63 15. 69 11. 73
2.16 4. 34 4. 17 21. 67 16. 72 1. 77
2,17 5. 35 4. 18 22, 70 16. 76 11, 81
2.18 5. 37 4. 19 23, 73 17. 79 12, 84
2.19 5. 39 3. 41 4.20 24, 76 18, 82 12, 88
2.20 5. 41 3. 43 4. 21 25. 79 18. 86 12, 9
2,21 6. 42 3. 45 4. .22 26. 82 19. 89 13. 95
2.2 6. 44 3. 47 4,23 27. 85 19. 93 13. 99
2.23 6. 46 3. 49 4. 24 28, 88 20. 96 13,103
2.24 6. 48 3. 51 4.25 28. 92 20. 100 14. 106
2.25 6. 50 3. 53

5.5 17. 38 15. 40

3.5 6. 21 5. 6 18. 42 16. 44

3.6 7. 23 5.7 20. 45 17. 48

3. 7 7. 26 5. 8 21. 49 17. 53
3. 8 8. 28 5. 9 22, 53 18. 57 15. 60
3.9 8. 31 6. 33 5.10 23, 57 19. 61 15. 65
3.10 9. 33 6. 36 5. 11 24, 61 20, 65 16. 69
3. 11 9. 36 6. 39 5.12 26, 64 21. 69 16. 74
3.12 1 10, 38 7. 41 5.13 27. 68 22, 73 17. 78
3.13 | 10, 41 7. 44 5. 14 28. 72 22, 78 17. 83
3.14 | 11, 43 7. 47 5.15 29. 76 23. 82 18. 87
3,15 | 1. 46 8. 49 5.16 31. 79 24, 86 18. 92
3.16 | 12, 48 8. 52 5.17 32. 83 25. 90 19. 96
3.17 | 12, 51 8. 55 5.18 33. 87 26. 94 19. 101
3.18 | 13. 53 8. 58 5.19 34, 91 27, 98 20. 105
3.19 | 13. 56 9. 60 5.20 35. 95 28. 102 20. 110
3.20 § 14. 58 9. 63 5.21 37. 98 29, 106 21,114
3.21 14, 61 9. 66 6. 691 5.22 38. 102 29, 11 21,119
3.22 | 15, 63 10. 68 6. 7215.23 39. 106 30. 115 22,123
3.23 | 15, 66 10, 71 6. 751 5.24 40. 110 31.119 23.127
3.24 | 16. 68 10. 74 6. 781 5.25 42,113 32.123 23,132

3.25 119, 71 11, 76 6. 8!

6 26. 52 23, 55

10. 26 7 27. 57 24, 60
11, 29 8 29. 61 25. 65 21. 69

12, 32 10. 34
13, 35 10. 38
14, 38 11, 41

et ale
- RN VAN
oo

Adapted from White [ 114].
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From a group of nine rats available for a study of the transfer of learning. five were selected
at random and were trained to imitate leader rats in a maze. They were then placed together
with four untrained control rats in a situation where imitation of the leaders enabled them to
avoid receiving an electric shock. The results (the number of trials required to obtain ten correct
responses in ten consecutive trials) were as follows:*

Trained rats: 78 64 .75 45 82
Controls: 110 70 53 51
Find the significance probability of these results when the Wilcoxon test is used.

e —— 0 S e i

e ————— i - - - . i

From Sicgel. Nonparametric Statistics. McGraw-Hill Book Compaay. New York. 1956, p. 119. Original data from
Solomon aad Coles (1954). ~A Casc of Failurc of Generalizaton of Imitation across Drives and across Situations.”
J. Abnorm. Soc. Psychol. 49:7-13.

. e =
i et e

ﬂ/nkf: | Y\:g, m =Y

45,551,553, é‘i,70) 75, 78,82,1/0
T, C, ¢, T,Cc, T, T, T, C
| 2 3 4 5 6 7 & S

gkb&\m T)( f‘)ﬂ

From -L((o/{' A #,r’=7 1,29

” C_‘]’; ('L‘f. =) nole Siﬂh,‘i-(imd'.
( p - value = O0-6341 5on +tle i Letmmﬂ)’
(P_v'a(q,( for  t-tect: 0?3})
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Testing for Differences in Spread

Suppose that we observe two samples:
r, = {7.6,7.2,9.7,6.7,10.0,8.2,5.5,7.9,9.5,9.0}
and
Ty = {11.4,9.8,10.5,5.6,14.1,7.4,7.0,7.1,12.4,5.4}.

Here we have 7; = 8.1, s2 =2.1, s; = 1.4,and T, = 9.1, s5 =9.0, 52 =3.0

Do z, and z, differ in variance? To answer this question, we can use the
Siegal-Tukey test, which is a nonparametric test for equality of spread in a
population.

Again, we begin by ranking the observations, but in a different ordering, as
we wish to track spread.

data 54 5.5 56 6.7 70 7.1 72 74 76 79 82 9.0 95 97 9.8 10.0 105 114 124 14.1
ranks 1 4 5 8 9 12 13 16 17 20 19 18 15 14 11 10 7 6 3 2
group 2 1 2 1 2 2 1 2 1 1 1 1 1 1 2 1 2 2 2 2

10 x 21 10 x 10 x 21

Tz = 72, E(Tz) = = 105, ’UaT‘(T,;) = ——-"‘—‘1'5—‘— =175
72 - 105
=2 % _ 949 p=0.013.
R P

Thus we can conclude that the variances are different.



65

INFERENCE FOR POPULATION SPREAD* ( Pecanatic, From,
' The two most basic descriptive features of a distribution are i%)s'ggir?cefcm / (iﬂ\
and spread. In a normal population, these aspects are measured by the
mean and the standard deviation. We have described procedures for in-
ference about population means for normal populations and found that
these procedures are often useful for nonnormal populations as well. It is
natural to turn next to inference about the standard deviations of normal
populations. Our advice here is short and clear: Don’t do it without expert
advice.

There are indeed inference procedures appropriate for the standard
deviations of normal populations. We will describe the most common such
procedure, the F test for comparing the spread of two normal populations.
Unlike the ¢ procedures for means, the F testand other procedures for stan-
dard deviations are extremely sensitive to nonnormal distributions. This
lack of robustness does not improve in large samples. It is difficult in prac-
tice to tell whether a significant F-value is evidence of unequal population
spreads or simply evidence that the populations are not normal.

The deeper difficulty that underlies the very poor robustness of normal
population procedures for inference about spread already appeared in our
work on describing data. The standard deviation is a natural measure of
spread for normal distributions, but not for distributions in general. In
fact, because skewed distributions have unequally spread tails, no single
numerical measure is adequate to describe the spread of a skewed dis-
tribution. Thus, the standard deviation is not always a useful parameter,
and even when it is (in the normal case), the results of inference are not
trustworthy. Consequently, we do not recommend use of inference about
population standard deviations in basic statistical practice.!?

Sometimes equality of standard deviations is tested as a preliminary
to performing the pooled two-sample ¢ test for equality of two population
means. It is better practice to check the distributions graphically, with
special attention to skewness and outliers. The pooled t test is reasonably

robust against unequal population standard deviations, at least when the

population distributions are roughly symmetric and the two sarr;pl_e siz¢Es
are similar. On the other hand, the test for equal standard deviations is
often misleading because of its extreme sensitivity to departures from

normality. i B

THE F STATISTIC AND F DISTRIBUTIONS

When s? and 53 are sample variances from independent SRSs of sizes
n, and n, drawn from normal populations, the F statistic

has the F distribution withn; —1landn; —1 degrees of freedom
when Hg: oy = 072 is true.

1. Take the test statistic to be
_ largers

2

smaller s2
This amounts to naming the populations so that si is the larger
of the observed sample variances. The resulting F is always 1 or
greater.

2. Compare the value of F with critical values from Table F. Then dou-
ble the significance levels from the table to obtain the significance
level for the two-sided F test.
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Using the data from the previous example,

and

2
Hy: o2# 02

larger s? . ﬂ _ 43

" smaller 2 2.1

From F-tables,
Frni—1ng—1=Fo9g — 2x0.01 <p<2x0.025.

Thus Hy can be rejected. However, we do not know if this rejection is due
to the populations being non-normal, or whether the variances are truely
different.
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Table F F Critical values

Degrees of freedom in the numerator

DFD )4 1 2 3 4 5 6 7 8 9
.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86
.050 161.45 199.50 215.71 224.58 230.16  233.99 236.77 238.88 240.54
1 .025 647.79 799.50 864.16 899.58 921.85  937.11 948.22 956.66 963.28
.010 | 4052.2 4999.5 5403.4 5624.6 5763.6  5859.0 5928.4 5981.1 6022.5

.001 | 405284 500000 540379 562500 576405 585937 592873 598144 602284
.100 8.53 9.00 9.16 9.24 9.29 9.33 . 9.35 9.37 9.38
.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
2 .025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39
010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
.001 998.50 999.00 999.17 999.25 999.30  999.33 999.36 999.37 999.39
.100 5.54 5.46 5.39 5.34 5.31 5.28 - 5.27 5.25 5.24
.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
3 .025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47
.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86
.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
4 .025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90
.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47
.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32
i .050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
g 5 .025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68
8 .010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
g .001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24
2 .100 3.78 -3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
8] 050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
o 6 .025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52
= 010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
g .001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69
g .100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72
g .050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 7 025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82
& 010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
‘e .001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33
§ .100 3.46 3711 2.92 2.81 2.73 2.67 2.62 2.59 2.56
5 .050 5.32 4.46 4.07 3.34 3.69 3.58 3.50 3.44 3.39
A 8 .025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36
010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77
.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44
_ .050 5.12 4.26 3.86 3.63— 3.48 3.37 3.29 3.23 3.18
9- .025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03
.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 3.35
.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11
.100 3.29 292 2.73 2.61 2.52 2.46 2.41 2.38 2.35
.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
10 .025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78
.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96
.100 3.23 2.86 2.66 2.54. 2.45 2.39 2.34 2.30 2.27
.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
11 .025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59
010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12
.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21
.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
12 .025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44
.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
001 18.64 12.97 10.80 9.63 8.89 8.33 8.00 7.71 7.48
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Confidence Intervals for Medians

Step 1: Form all possible pairs of numbers, so if there are n data points,
there will be ﬂ';—ﬂl possible pairs.

Step 2: Take the mean of each of these pairs of numbers (so you should
calculate M;'Q means in this step).

The intuition is that each of these means is an estimate of the median,
although, of course, some will fall above, and some will fall below. Oz-
dering all of the means from low to high values, we then need to remove
the 2.5% that are too small and the 2.5% that are too large, to result
in a 95% confidence interval. How does one know how many to remove
from the top and bottom?

Step 3: Look up Table A6 (on page 161). The first number listed under the
heading 0.05 tell you how many need to be removed from each side. For
example, with n = 15, one would have 105 pairs of means to calculate,
and from Table A6 we would remove the lowest 25 pairs and the highest
25 pairs. The lowest and highest remaining means form the 95% CI
for the median. A good point estimate of the median is the overall
means of all of the pairs.

Example: Calculate a 95% CI for the median using the following set of 7
numbers: 3, 9, 14, 10, 5, 7, 15.

Steps 1 and 2 can be represented as follows (28 pairs):

3 5 7 9 10 14 15
313 4 5 6 6.5 __85 9
95 5 6 7 75 95 10
7 7 8 85 105 11
9 | 9 95 115 12
10 10 12 125
14 14 145
15 14 15

From Table A6, with 7 numbers, we need to throw away the two highest and
two lowest means in the table for a 95% CI. The two highest means are 15
and 14.5, and the two lowest are 3 and 4. After these are removed, a 95% CI
formed from ordering the reming ones and looking at the highest and lowest
values is (5, 14). (You can check that the usual 95% for the mean here is
(4.9, 13.1), agreeing quite closely without result for the median).

Computers are usually used for these calculations, and there are also normal
approximations.
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Correlation and Regression

e Are age and cholesterol related to
each other?

e How can we measure the strength
of such a relationship?

e Given some data, how can we estimate
this measure?

o Can we predict the average choles-
terol of persons aged 50 years old?
How accurately?

e Can we predict an individuals cho-
lesterol, given that his/her age is
50 years old? How accurately?
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(e) Correlation r = 91

(f) Correlation r = .99
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The Ballcon Rules for a Rougn Estimate of the

176

GUY CHATILLON®

By surrounding the sample plot with a kind of birthday
balloon, we can guess the value of Pearson’s correlation
coefficient, r, in a very simple way.

KEY WORDS: Correlation. coefficient; Graphical
guessing; Sample plot.

1. INTRODUCTION

When discussing the value of Pearson’s correlation
coefficient, r, it is important to have an idea of the
shape of the sample piot. Values of r close to =1 or Oare
easy to guess. But is it possible, between these ex-
tremes, to obtain an intuitive idea of the value of r
without calculating it? The aim of this article is to show
that such a possibility exists. Since Pearson’s 7 1s well
known, there is no need to define it here.

2. THE BALLOON IDEA

The basic idea consists of surrounding the sample plot
with a kind of “birthday balloon™ that is in fact an
ellipse. But let us apply this method to an example
taken from a well-known volume by Hoel (1971). The
sample plot from page 189 of Hoel’s book is reproduced
in Figure 1. A

First, we draw the balloon so as to surround all or
most of the points and to fit the plot. Second, we mea-
sure the vertical height of the balloon at its center, h,
and s vertical height a1t the extremes, H. Then we
compute the formula

If the points inside the balloon are. *“well distributed,”
then the resuit of the computation usually gives a fairly
good idea of the value of Pearson’s correlation coeffi-
cient. :

For example, with a desk rule, Imeasuredh =5.4cm
and H =7.4 cm in Figure 1. (Perhaps the scale of this
figure has been changed in the published version.) So 1
had

F=y1-(33) -VI— 73 = 8.

*Guy Chitilion is Professor of Statistics, Department of Mathe-
matics, Université du Québec a Trois-Riviéres, Québec, Canada G9A
SHIT. :

n

Correlation Coefficient

Another way to proceed is by counting the number of
little squares. We have '

h =16.7 squares
H =23 squares

> F=y1-(%]) = .

In fact, the exact value of the correlation coefficient
is r = .6317. So our guess is quite good.

3. THEORETICAL JUSTIFICATION

The formula F = V1 — (h/H }* may be justified on the
basis of two different models.

In the first case, we suppose that the actual sampie
plot is a particular realization of a pair of random vari-
ables (X, Y) whose joint density is the bivariate normal
density. In this case the ellipse tends to be close to a
level curve of the bivariate normal. We can consider the
Jevel curves of the bivariate normal with p, = p, =0 and
g,=0,=1 since correlanons are not affected by
changes in scale or by tramsiation. The level curves of
this bivariate normal are givem by x?—2pxy +y =
K (1 —p?), where K >0 and p is the correlation coeffi-
cient of the model. From this, we cam obtain y = px =
[(X - x?)(1 - p)}'2. If the balioom is one ofthese level
curm,histhcdifferenccbetweentbetwovalucsofy
when x is zero, or h =2{K(1 —p?)}**. The maximum
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Figure 1. Scanter diagram for grade point averages.
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Correlation measures association. But association is not the
same as causation.
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igure 3. Corre\lations based on rates or averages are often too big. The
anel on the left represents income and education for individuals in three
=ographic regions, labeled A, B, C. Each individual is marked by the
.tter showing his region of residence. The correlation is moderate. The
anel on the right shows the averages for each region: the correlation

etween the averages is almost 1.
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Positive Correlation: Large X's with large Y's and small X's with small Y's

Negative Correlation: Large X's with small Y's and small X's with large Y's

No Correlation: Large X's not more likely to be paired with large Y's

than small Y's.

+ ve Correlation Zero Correlation - ve Correlation

y».‘k yﬂ;

-
- @ o
LY -

average > - -

y . 1 . R I DA s

average X

anges from -1 (neg correlation) thru 0 (zero correlation)
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Inferences on p Lusing a sample of n (%4 ¥) pairs]

Naturally, the observed T in any particular sample will not
exactly match the p in the population (i.e. the coefficient
one would get if omne included everybody in a census). The
quantity r would vary from one sample of n to another sample
of n. i.e. Tis subject to sampling fluctuation about p .

The most common question asked of one's data is whether there
is evidence of a non-—zero correlation between 2 variables.

To test this, we can set up & null hypothesis H_ that p in
the population is zero and measure whether our observed r 1is
too discrepant from p=0 to be just sampling fluctuation.

This discrepancy of r from zero is measured as

r/n -2
Y1 - r2

a student's t distribution with n=2 d. of fr.

and should (if Ho is true) follow

[Coiton's table A5 gives the smallest r which would be con-
sidered evidence that p % 0. E.g. if n=2C, d. of fr. = 18
an observed correlation of 0.444 or higher or between -0.444
and -1 would be considered statistically significant at the
p = 0.05 level (2 sided).

_Note: test involves assumption of Bivariate normal distribution.

- Another common question 1is: given that T is based only on a

sample, what confidence interval should I put around T SO that
there is a good chance (say 95%) that the interval will in-
clude the "true" coefficient p .

A related question, which can use the same technique to answer
it is: 1 observe a certain rl ; somebody else observes an-—
other value T). Are the p's in the 2 populations we are study-—
ing comparable?
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ey

The following transformation of r will lead to a statistic

which 1is approximately normal even if P is quite a ways from O:

Z_=_]2._lnl+r

1 - ¢ log to base &

L

I

natural log

Z is. known as Fisher's 'r to Z' transformationjthe calculated

Z should b= compared against a Gaussian distribution with

mean = lg’nE—t‘!‘I
2 1 -9

SD

|

E.Z2. H :p =-%

observe T = 0.4 in sample of size n = 20
To test if Ho is true

1 ln{l.&] 1 M&ﬂ
Compute 7 - mean 2 0.6 2 L0,

SD —_

1
Yy 17

and compare with Gaussian Tables.

Unusually extreme values are evidence against H,.

Confidence Intervals Solve

+

[l 5 cxmireslvlen /3

n-3 l—p— n-3
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Inference for Regression Parameters

Confidence intervals are usually of the form

estimate =+ { 'z }s.d.(estimate)

For example, we have seen

T+ { ’: }S.d.("ﬂf)

or

_x_i{z}sora

t] n

The same basic formulation is followed for in-
ferences for regression parameters, such as «,
B, or even when making predictions for future
observations,

g)z-:&—l—Bxa:z-:a—l-bxxi.

Since we already have point estimates for each
of these items, all we are missing are the stan-
dard deviations, and what values of ¢ or z to
use.



Standard Error (Standard Deviation) Formulae

SE(&) = SE(a) = UJE y

n £y (z —7T)?

A O

SE(B) = SB®) = =2

)2
SE(predicted MEAN at z) = ng i (z —7)

n o I (zi—T)

[95

1 (x —T)?

S E(predicted INDIVIDUAL at z) = 0J1 4+

n o T (zi —T)

Problem: We usually do not know o.

Solution: Estimate o by

Residual sum of squares (RSS)
\ n—2

s2_, (y; — predicted(y;))?

\ n—2

T (Y — [a+ b x i))?

\ n—2
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Confidence Intervals (...and Tests)

Now that we know the standard errors, confi-
dence intervals are easy to compute:

o Cl for a: &+ tl—a/Z,n—Z X SE(CA\{)
o Clfor B: B+t oono x SE(B)

e CI for predicted mean:
gi_—ttl—a/Z,n—Z X SE'(predlcted MEAN at $)

e CI for predicted mean:
Uitt1_a/2n—aXSE(predicted INDIVIDUAL at x)

[Not that we would likely ever want to test af-
ter we know the CI, but for completeness, tests
of hypotheses about o and 8 can be similarly
constructed:]

- To test Hy : a = «ap, use the fact that
a — &

SE(&)

~ tn—27

and similarly for §:

To test Hy : B = By, use the fact that
-0

0
2~ s

SE(B) .




Regression Example

The data on the next page show the caries experience of 7257 children 12-14 years
old in 21 communities according to the fluoride concentration of their public water
supply. DMF denotes “Decayed, Missing or Filled.”

(a) Draw a rough scatter plot to visually examine the association between DMF teeth
and fluoride.

(b) Calculate the regression line of DMF teeth on fluoride concentration.

(c) What is the estimate of o, the residual standard deviation? Calculate a 95%
confidence interval for the slope, 8 of the line calculated in (b).

(d) Give your prediction for the average number of DMF teeth there would be in a
community with a fluoride concentration of 1.8 ppm.

(e) What is the 95% confidence interval around your answer in (d)?

(f) Examin the graph of the residuals. Does a linear regression seem appropriate?
Even if some other model may be more appropriate, has the linear regression been
useful in examining the data?

Community | DMF per 100 | Fluoride Concentration
Number children in ppm
1 236 1.9
2 246 2.6
3 252 1.8
4 258 1.2
5 281 1.2
6 303 1.2
7 323 1.3
8 343 0.9
9 412 0.6
10 444 0.5
11 556 0.4
12 652 0.3
13 673 0.0
14 703 0.2
15 706 0.1
16 722 0.0
17 733 0.2
18 772 - 0.1
19 810 0.0
20 823 0.1
21 1027 0.1

197
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> dmf<—c(236,246,252,258,281,303,323,343,412,444,556,652,673,703,706,722,733,772,

> fl<—c(1.9,2.6,1.8,1.2,1.2,1.2,1.3,0.9,0.6,0.5,0.4,0.3,0.0,0.2,0.1,0.0,0.2,0.1,0

> length (dmf)

[1] 21

> length(fl)

[1] 21

> mean (dmf)

[1] 536.9048

> mean(fl)

[1] 0.7

> fldiff <- f1 - mean(fl)

> dmfdiff <- dmf - mean (dmf)

> betahat <- sum(fldiff*dmfdiff)/(var(fl)*20)

> betahat

[1] -279.1996

> alphahat <- mean(dmf) - betahat * mean(fl)

> alphahat

[1] 732.3445

> regline <- function(fl) {return(732.3445 - 279.1996*f1)}

> sigmahat <- sum((dmf - regline(fl))~2)/19

> sigmahat

[1] 16210.77

> sqgrt (sigmahat)

[1] 127.3215

> sebeta<-sqgrt (sigmahat) /sqgrt (sum(fldiff*2))

> sebeta

[1] 38.18119 .

> betaupper <- betahat + sebeta*qt (0.975,df=19)

> betalower <- betahat - sebeta*qt (0.975,df=19)

> betalower

[1] -359.1138

> betaupper

[1] -199.2855

> resid <- dmf - regline(fl)

> resid

I1] 34.13474 239.57446 22.21478 -139.30498 -116.30498 -94.30498
[7] -46.38502 -138.06486 -152.82474 ~148.74470 -64.66466 3.41538
[13] -=-59.34450 26.49542 1.57546 -10.34450 56.49542 67.57546
[19] 77.65550 118.57546 322.57546

> sepredmean <-_sqrt(sigmahat)*sqrt(1/21 + ((1.8 - mean(fl))"2/sum(fldiff"2)))

>- sepredmean

[1] 50.35756

>-229.7852 + sepredmean * gt (.975,df=19)

[1] 335.184s8

> 229.7852 - sepredmean * qt(.975,df=19)

[1] 124.3856

C alOM.(a,uRa,\g u,&f/j Sriuj

<COM[d also  hew Su.i‘ﬁ +7/>ul data + ore ,3-78./)
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Intuitive Optimal Design for Linear Regression

Suppose we are designing an experiment that will be analysed as a linear
regression between two variables, say  and y. We will choose values of z to
observe (so we “have control” over values of z), and for each value of z we
choose, we will observe the value of y that is associated with it.

Question: What values of  should we choose in order the “most accurate-
ly” estimate the linear regression line?

Points to Consider:

1. Values of z that are further apart from each other tend to produce more
stable estimates. Consider the following graphs:

A A

“

—

Small changes Tame (/\M—ngw

ih 9 values in Y valug
Poduce \arme Produce  smmalles
C\""Mgf’( th C\’! a—r\jeJ (A

f)op(- :(
af‘?—-



Intuitive Optimal Design for Linear Regression

2. As always, a larger sample size leads to more accurate estimation, since
the a and B coefficients will be estimated more accurately.

3. If there is a chance that the relationship is not exactly linear (almost
always the case), then selecting = values spread out along the feasible range
will allow you to explore linearity.

4. Consider taking some repeated measurements at some z values, to allow
for investigation of whether o2 changes with z.

5. Try to measure z and y as accurately as possible, since measuremen-
t error can severly compromise your attemps to accurately determine the
relationship between z and y. Consider the graphs below:
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Comparing Correlation to Linear Regression

1. Both investigate linear relationships between two variables.

2. A scatter plot is useful in interpreting both corrlation values
and regression coefficients.

3. Both can be used descriptively or inferentially.

4. Both try to “explain” the uncertainty of one variable in
terms of another.

5. In correlation, there is no distinction between = and y vari-
ables, while in regression z and y are used differently (one
considers predicting y from z).

One can also define a nonparametric correlation, often called
Spearman’s correlation coefficient. To calculate a Spear-
man’s coefficient from a set of paired data (z1,%1), (2, ¥2); - - - ,(Zn, Yn),
first rank the sets {z1, 79, ...,Z,} and {y1,¥2,---,¥n}, and con-

vert the values of each (z;,y;) pair to the values of the ranks of
each of z; and y;. Then take the usual (Pearson’s) correlation
coefficient of the resulting ranked version of the data.
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Bayesian Inference for Regression Parameters

As you might guess by now, Bayesian inference for simple
linear regression parameters follows the usual pattern:

1. Form a prior distribution over all unknown parame-
ters.

2. Write down the likelihood function of the data.

3. Use Bayes theorem to find the posterior distribution
of all parameters.

e We have applied this generic formulation so far to
problems with binomial distributions, normal means,
and to the Poisson parameter. All of these problems
involved only one parameter at a time.

e What makes regression different is that we have three
unknown parameters, since the intercept and slope
of the line, o and 8 are unknown, and the residual
standard deviation, o is also unknown.

e Hence our Bayesian problem becomes slightly more
complicated, since we are in a multi-parameter situ-
ation.

e Before detailing the steps involved in Bayes Theorem
for regression problems, we need to look at multipa-
rameter problems in general.
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Joint and Marginal Distributions

When we have only one parameter, we speak of its den-
sity. For example, if z ~ N(0, 1), then the graph of the
probability density is:

ol N

When we have two or more parameters, we speak of
a joint probability density. For example, let z and y
be jointly multivariately normally distributed, which is

where



Example: Suppose
x 0 10
Y ~ N ( 0/’\0 1 ))

which is equivalent to two independently normally dis-
tributed variables, with no correlation between them.
Then the picture is:

A S ,9)

Note how the “slices” resemble univariate normal den-
sities in all directions. These “slices” are marginal densi-
ties, which we will define later. In the presence of corre-
lations, for example a correlation of 0.5, we have

(2)~w([5](05 %)

and the picture is:



T sn9)

we have

b

Similarly, with very high correlation of 0.9
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The bivariate normal density formula is:

exp {_2k1—1p%y) [(m;:$)2 — 20zy ($;:z> <y;;y> + (

z,y) =
f@,9) 2mo L0y /1 — Pz,

This is a joint density between two variables, since we
look at the distribution of z and y at the same time, i.e.,
jointly. An example where such a distribution might be
useful would be looking at both age and height together.
(Another example is looking at the joint posterior distri-

bution of o and B, which is where we are heading with
all of this!!)

When one starts with a joint density, it is often of interest
to calculate marginal densities from the joint densities.
Marginal densities look at each variable one at a time, and
can be directly calculated from joint densities through
integration:

f(z) = [ f(z,y)dy, and

fy) = [ f(=,y)da.

In higher dimensions,

f@) = [ fz,y, z)dydz,

and so on.
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Normal marginals are normal

If f(z,y) is a bivariate normal density, for example, it
can be proven that both the marginal densities for  and
y are also normally distributed. For example, if

o)) (o %))
Yy foy Pzy Oy

L~ N(Nmy 0-:%)

then

Summary:

e Joint densities describe multi-dimensional probabil-
ity distributions for two or more variables.

e If one has a joint density, then if it is of interest to
look at each variable separately, one can find marginal
probability distributions by integrating the joint den-
sities. If one wants the marginal distribution of z, for
example, then one would “integrate out” all of the
parameters except x, and so on.

e For multivariate normal distributions, all marginal
densities are again normal distributions, with the
same means and variances as the variables have in
the joint density.



Brief Sketch of Bayesian regression

Recall the three steps: prior — likelihood — posterior.

1. We need a joint prior distribution over «, 3, and o.
We will specify these as three independent priors [which

when multiplied together will produce a joint prior]:

e o ~ uniform[—o0, +00]
e 3 ~ uniform[—o0, +00]

e [0g(o) ~ uniform[—o0, +00]

Notes:

e The need for the log comes from the fact the the vari-
ance must be positive. The prior on ¢ is equivalent
to a density that is proportional to 517

We specify a non-informative prior distribution of
these three parameters. Of course, we can also in-
clude prior information when available, but this is
beyond the scope of this course.

Our priors are in fact “improper” because their densi-
ties do not integrate to one, since the area under these
curves in infinite! In general this is to be avoided
since sometimes it can cause problems with poste-
rior distributions. This is not one of those problem
cases, however, and it is convenient to use a “flat”
prior everywhere, so we will use it (it is also the de-
fault in First Bayes). -

15
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2. Likelihood function in regression:

e As is often the case, the likelihood function used in
a Bayesian analysis is the same as the one used for
the frequentist analysis.

e Recall that we have normally distributed residuals,
e ~ N(0,0?)

e Recall that the mean of the regression line, given that
we know ¢ and fisy=a+ [ X x.

e Putting this together, we have y ~ N(a+8 Xz, c?).

e So for a single patient with observed value z;, we
have y ~ N(a + 8 X z;,0?)
e So for a single patient, the likelihood function is:

1 exp{(yz- —(a+ X fcz-))z}

Qo o?

fly) =

e So for a group of n patients each contributing data
(z;, y;), the likelihood function is given by

I F() = () x F@) x F(wa) % - x f(5)

e So the likelihood function is simply a bunch of normal
densities multiplied together...a multivariate normal
likelihood of dimension n.
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3. Posterior densities in regression

e Bayes theorem now says to multiply the likelihood
function (multivariate normal) with the prior 1 x
1 X .

e So the posterior distribution simply is:

n 1
z'I=Il fyi) x P

e This is a three dimensional posterior involving «, £,
and o2.

e By integrating this posterior density, we can obtain
the marginal densities for each of ¢, 3, and o2

o After integration (tedious details omitted):

—a~ iy

— B ~ 2
— 02 ~ Inverse Chi-Square (so 1/0% ~ Chi-Square)

e Note the similar results given by Bayesian and fre-
quentist approaches for o and £.

e Computations usually done by computer programs.
You will use First Bayes on assignment #5 to com-
pute Bayesian posterior distributions for a regression
problem, and compare the results to frequentist in-
ferences. Of course, as usual, interpretations are dif-
ferent, and one can include prior information in a
Bayesian approach.

e Bayes approach also suggests different ways to assess
goodness of fit and model selection (beyond scope of
course).
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Principles of Inferential Statistics in Medicine

Assignment # 1 EPIB-607, Due: September 25, 2003.

1. A prevalence study indicates that 25% of women over the age of 75 in Canada have
low bone mass (osteoporosis). If 10 women over 75 in Canada are randomly chosen and
tested, what is the probability that at least one of them will have osteoporosis? (You can
assume that the test is perfect, that is, the test is always positive if the patient really has the
disease, and the test is always negative if the patient does not have the disease. In general,
this assumption is unrealistic, as few if any tests are perfectly accurate.)

2. You have a torn tendon and are facing surgery to repair it. The orthopedic surgeon
explains the risks to you: Infection occurs in 6% of such operations, the repair fails in 20%,
and both infection and failure occur together in 2%. What percent of these operations
succeed and are free from infection?

3. In a large population of mice, 15% of individual mice have a certain genetic anomaly. If
a random sample of 10 mice are selected, give the probabilities that:

(a) There are no anomalies at all in the 10 mice.

(b) There is exactly one anomaly.

(c) There are two or less anomalies.

(d) Suppose now that 100 mice are randomly selected from the population. What is the
expected number of mice with genetic anomalies in the sample? '

(e) What is the (approximate) probability that 20 or more mice have anomalies?

4. Suppose that both parents in a family carry genes for blood types A and B. Then the
blood types of their children are independent, and each child has a 1/4 probability of having
blood type A. Let X be the number among the 3 children in the family who have blood type
A. Compute the distribution of X (that is, the probability of each possible value) and draw
a histogram for each possible value.

5. A bone densitometer is a device that measures bone density. A person is considered to
have osteoporosis if their bone density is very low (a positive test), and otherwise not (a
negative test). It is estimated that 25% of women over the age of 75 are osteoporotic, and
that the sensitivity of the test is 80% and the specificity is 50%.

(a) Assuming the above estimates of the prevalence, sensitivity and specificity to be exactly
correct, what is the probability that a woman over 75 who tests positive actually has osteo-
porosis?

(b) Assuming the above estimates of the prevalence, sensitivity and specificity to be ex-
actly correct, what is the probability that a woman over 75 who tests negative actually has
osteoporosis?

6. This is a variance contest. You must choose any 4 numbers from the range 0 to 100, with
repeats allowed.
(a) Choose the numbers that have the smallest possible variance.
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(b) Choose the numbers that have the largest possible variance.
(c) Is more than one choice possible in either (a) or (b)? Explain.

7. Data on the survival times from date of disease onset of 60 persons with lupus are used
to create a boxplot describing the distribution of times to death in the sample. The results
are:

Minimum value: 30 weeks

First quartile (25% point): 50 weeks
Median: 60 weeks

Third quartile (75% point): 100 weeks
Maximum value: 500 weeks

Mean: 75 weeks.

It is later found that one of the values, 500 weeks, should really have been 50 weeks. Explain
how this change would affect

(a) the standard deviation of the sample.
(b) the inter-quartile range of the sample.

8. A person with asthma has a 75% chance of also having allergies. Suppose that the rate
of asthma in a certain population is 20%.

(a) Is it possible to determine the probability that a person has asthma but not allergies in
that population? If yes, give the probability. If not, state what information is missing.

(b) Is it possible to determine the probability that a person has asthma given that they have
allergies in that population? If yes, give the probability. If not, state what information is
missing.

9. Calculate the following probabilities, assuming that X ~ N(u = 10,02 = 225):

(a) Pr{X = —13}
(b) Pr{—-8 < X < +8}
(c) Pr{X <0}

10. The table below contains data on the age, cigarette smoking habits (0=YES, 1=NO),
systolic blood pressure and body mass index for 25 patients with heart disease.

(a) Calculate the means and standard deviations for the age, body mass index, and systolic
blood pressure variables.

(b) Draw a stemplot for the BMI variable, and comment on the shape. Are there any outlier
values?

(c) Draw separate boxplots for systolic blood pressure for smokers and nonsmokers. Using
the boxplots, compare the SBP of smokers and non-smokers by commenting on the relative
locations of their medians. Does one group seem to have more highly spread values compared
to the other?

(Note: If you wish, you may use a computer to help with these exercise, although all can be
done by hand.)



Age | CIGS | SBP | BMI
39 | 1 | 135 | 29
57 | 1 | 120 | 25
44 | 0 | 150 | 27
571 1 | 165 | 26
41 | 1 | 140 | 24
49 | 1 | 150 | 27
2] 0 | 158 | 27
36| 1 | 130 | 29
43 ] 1 | 230 | 28
51| 0 | 200 | 36
37 | 0 | 125 | 25
57 | 0 | 235 | 23
56 | 1 | 160 | 25
57 | 0 | 140 | 30
57 ] 1 | 115 | 23
44 | 0 | 130 | 24
58 | 0 | 215 | 28
38 | 1 | 158 | 27
49 | o | 165 | 31
56 | 1 | 140 | 27
52 | 0 | 130 | 22
49 | 1 | 155 | 22
55 | 1 | 150 | 26
56 | 1 | 148 | 26
43 | 1 | 140 | 31
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Principles of Inferential Statistics in Medicine

Assignment # 2 EPIB-607, Due: October 21, 2003.

1. Describe the effects of increasing the sample size (i.e., the number of subjects in the
experiment) on each of the following:

(a) The width of a confidence interval for the population mean, from a random sample taken
in the population.

(b) The power of a one-sided test for a mean, when Hy is false and all facts about the
population remain unchanged as the sample size increases.

2. A recently developed treatment for gallstones is laparoscopic surgery. One of the factors
thought to be predictive of the rate of successful laparoscopic surgery is the age of the
patient. Suppose that in a recent trial, the average age of the patients on whom the surgery
was successful was 60 years old, while the average among those with unsuccessful surgery
was 70. In each group there were 50 patients, and the standard deviation in each group was
10 years.

(a) Test whether the average age differs in the two groups. State the null and alternative
hypotheses, the p-value, and your conclusion.

(b) Calculate a 95% confidence interval for the difference in mean age of the two groups.
Give the interpretation of this confidence interval.

3. In a two-sided test of a null hypothesis, it is found that the p-value is (p=0.50). State
whether each of the following statements are true or false, and explain why.

(a) The null hypothesis has a 50% chance of being true, i.e., the probability that the null
hypothesis is true is equal to 0.50.

(b) After carrying out this experiment, there is a one in two chance (0.50) of being wrong if
the conclusion is to not reject the null hypothesis.

4. Suppose that the true average value of creatinine clearance in a population of lupus
patients is 1.9 ml/sec, with a true standard deviation of 0.025 mi/sec. An investigator
takes a random sample of 50 patients from this population, and measures their creatinine
clearance.

(a) What is the probability that the sample average of these 50 individuals will be higher
than 1.8 ml/sec?
(b) What assumption was necessary in order to answer part (a) of this question?

5. Whether certain mice are black or brown depends on a pair of genes, each of which is
denoted as either B or b. A mouse is brown only if it has the pair bb, and otherwise, for the
pairs Bb or BB, it is black. The offspring of a pair of mice have two such genes, one from
each parent. If a parent has either BB or bb, the offspring receives the same gene as that
parent. If the parent has the pair Bb, then the offspring is equally likely to inherit a B or a
b from that parent. Suppose that a black mouse results from a mating of a pair of mice each
with Bb genes. Suppose further that this mouse is then mated with a brown mouse, and
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that all seven offspring turn out to be black. What is the probability that the black parent
mouse was BB?

6. Suppose that the weights of a large group of students are normally distributed wth a
mean of 50 Kg and a standard deviation of 15 Kg.

(a) Find the proportion of students with weights between 55 and 80 Kg.
(a) Find the proportion of students with weights greater than 50 Kg.

7. When asked to explain the meaning of “statistically significant at the o = 0.05 level,”
a student says, “This means that there is only probability 0.05 that the null hypothesis is
true.” Is this an essentially correct explanation of statistical significance? Explain your
answer carefully.

8. Using First Bayes, calculate the following probabilities:

(a) For a N(u = 0,02 = 4) distribution, calculate the probability that —4 < X < 2.

(b) For a t distribution with 10 degrees of freedom, calculate the probability that 2 < X < co.
(Hints: Set median = 0, and scale = 1. Also: Since you cannot put oo in as a number,
substitute a very large number (eg 50 or 100) as a near perfect approximation.)

(c) For a binomial distribution with 20 trials and probability of success equal to 30%, what
is the probability of getting exactly 6 (the most likely outcome) successes? What is the
probability of getting 6 or more successes?

You need not print them out, but it may be instructive for you to look at the graphs of these
distributions as you calculate the probabilities.

9. Consider again the example of children given an intelligence test, first presented on page
129 of the class notes. Using First Bayes, carry out the following analyses:

(a) Confirm (repeat) the analyses given in the notes, that is, find the posterior probability
that © < 100 if the prior distribution is such that y ~ N(8 = 100,72 = 400). (Hints:
For this step, you must first enter the data using the file/data menu item, then go to the
analysis/normal sample variance known menu item. Enter the prior on the first sheet, and
when finished, click on quit to go to the analysis page. Load the data, and do not forget to
change the data variance to 8 = 64 in the upper right hand corner.)

(b) Repeat (a), but this time assume that the prior distribution is u ~ N (8 = 100, 72 = 16).
(Hint: You do not have to start over, simply click in the edit prior box to go back to the
prior page.)

(c) Repeat (a) again, but now assume that the prior distribution is u ~ N (8 = 110, 72 = 400).
(d) Repeat (a) once again, but with prior distribution p ~ N(6 = 110, 7% = 16).
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For each of questions (a) through (d), print out the tri-plots (ie, provide a single graph that
has on it the prior distribution, the likelihood of the data, and the posterior distribution).

(e) Based on your four answers, give some general observations about the sensitivity of the
final conclusions to the choice of prior distribution.

10. The table below gives data on blood pressure before and after treatment for two groups
of subjects participating in a clinical trial. One group took a daily calcium supplement,
while the other group received a placebo.

(a) Calculate a 95% confidence interval for the difference in blood pressure changes (before
minus after) between the two groups. Give the interpretation of this confidence interval.
(b) Carry out a t-test of the null hypothesis that there is no difference in blood pressure
changes between the two groups. State the null and alternative hypotheses, calculate the
test statistic, and state your conclusion.

(c) You now must make a decision regarding whether or not to prescribe calcium supplemen-
tation to your patients with mild high blood pressure. In helping you to make this decision,
would your answer to part (a) or (b) provide more useful information? Why?

Calcium Group | Placebo Group

before after before after
107 100 123 124
110 114 109 97
123 105 112 113
129 112 102 105
112 115 98 95
111 116 114 119
107 106 119 114
112 102 112 114
136 125 110 121
102 104 117 118
- - 130 133
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Principles of Inferential Statistics in Medicine

Assignment # 3 EPIB-607, Due November 13, 2003.

1. Suppose that you are planning an experiment to accurately estimate the difference in success rates
between a standard and a new treatment. The standard treatment is expected to have a success rate
of 20%, while the new treatment is estimated to improve this by at least 10%, that is, a success rate of
30% is expected.

(a) A clinical trial planner thinks that a total CI width of 10% (that is, £5%) is reasonable to use in a
sample size calculation for this trial. Do you agree with this assessment? Why or why not?

(b) Assuming that a total CI width of 10% is reasonable, what sample size in each group would be
needed for a 95% confidence interval for the difference in success rates to have this total width?

2. An expert’s best guess for the rate of osteoporosis in women over 75 years old is 25%. Suppose that a
survey is being conducted to estimate the rate of osteoporosis in women over 75 years old. What sample
size would be required to estimate this rate using a 95% confidence interval, such that the interval would
have a total length of 4%?

[You may wish to check your answers to numbers 1 and 2 by using the sample size calculator available
from my homepage.]

3. The following data are observed in an experiment designed to compare a new treatment to a standard
therapy:

Therapy
New Standard
Success 6 3 9
Failure 1 4 5
7 7 14

(a) Test the null hypothesis that there is no difference in success rates between the new and standard
therapies. State the null and alternative hypotheses, and calculate a p-value using a x? test. State your
conclusion. ‘

(b) Repeat part (a), but use a (two-sided) Fisher’s Exact test instead.

(¢) How do the p-values calculated by the two different procedures compare?

4. Suppose that there is a 80% chance for a certain operation to be successful each time it is performed.
Further suppose that Hospital A performed 1000 such operations last year, and Hospital B performed
this operation on 200 patients last year. Without necessarily doing the calculations, state which, if any,
of these two hospitals has a better chance of having an observed 70% success rate for the operation last
year, and explain why.

5. Consider the following data set from an experiment of heavy versus light coffee drinkers:
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Coffee consumption

heavy light
stomach cancer 10 60 70
no stomach cancer 110 800 910
120 860 980

(a) Calculate point estimates of the odds ratio and relative risk.
(b) Calculate an approximate 95% confidence interval for the odds ratio.

6. There exists a test in which pregnant women with a history of polycystic kidney disease can determine
if the child they are carrying is also likely to have the disease. The test has a specificity of 80% and
a sensitivity of 90%. We can assume that only women who truly have the disease take the test. The
genetic pattern of inheritance indicates that the probability of passing the disease on to a child is 50%,
le,

Pr{child will be born with polycystic kidneys | mother has the disease} = 0.50

Assuming the values given above for sensitivity and specificity to be exactly correct, what is the proba-
bility that the child will have the disease given that the mother has the disease, and the test is positive?

7. You have just gone shopping, and received a quarter in change from the cashier.

(a) Assume that your prior probability that the coin will come up heads in any given toss can be
expressed by a beta distribution with appropriately chosen a and B parameters. State your prior
distribution. (Note: There is no “correct” answer, since each individual will have their own prior
distribution. However, you should justify your answer in terms of your prior mean and variance (or
standard deviation), that is, check to ensure that the values of a and B give reasonable means and
variances. You may wish to imagine a 95% probability interval, and consider that the mean is in the
center of that interval, and that four times the standard deviation will equal the length of that interval.
See page 156C of the notes.)

(b) Suppose that the coin is now tossed 5 times, and there are no heads. What is your posterior
probability for the probability of heads for that coin? What is the 95% highest density interval? (Hint:
You will likely wish to use First Bayes for this question. First enter and load a new data set, which simply
consists of the number 0 repeated 5 times. Then go to the analyses menu, and choose binomial sample.
Enter your prior distribution from part (a) in the first screen, and the “quit” to go to the posterior
screen. Load the data set you just entered, and the posterior distribution will then be available.)

(c) If you were using a frequentist approach to analyse the same data (ie, five tails in a row), what
would the exact 95% confidence interval be? (Hint: see page 136 of the notes.)

(d) Provide interpretations of the intervals you calculated in parts (c) and (d). Which of the intervals
given in (c) or (d) do you prefer? Why?



Principles of Inferential Statistics in Medicine

Assignment # 4 EPIB-607, Due November 20, 2003.

1. The table below gives the birth weights (in pounds) of babies categorized by whether their mother smoked or not.

Smokes || Never Smoked
45 691 3.3 6.6
54 6.9 6.6 7.4
56 7.1} 6.6 7.4
58 7.0 | 6.8 7.2
6.1 731 6.9 7.4

Use the appropriate nonparametric test to test whether smoking mothers give birth to babies of different weight than
non-smoking mothers. State the null and alternative hypotheses, calculate the p-value, and state your conclusion.

2. The following are the weights in kg, before and after of ten persons who stayed on a certain reducing diet for four
weeks:

Patient # BEFORE AFTER
1 75 70
2 80 78
3 120 116
4 79 70
5 100 101
6 64 67
7 76 70
8 82 75
9 88 80

10 120 110

Use the appropriate nonparametric test to determine whether the weights before are different from the weights after
the diet. State the null and alternative hypotheses, calculate the p-value, and state your conclusion. Calculate a
95% CI for the median difference.

3. The table below gives the pressures in mmHg of two different heart pumps:

Pump A || Pump B

6 16 1 18
7 16 2 20
9 16 3 26
9 17 4 29

10 17 8 30
11 18 |11 31
11 19 {12 31
1219 || 14 32
12 21 {15 35
13 23 || 16 44
15 24 || 17 45

Use the appropriate nonparametric test to test whether there is a difference in pressure between pumps A and B.
State the null and alternative hypotheses, calculate the p-value, and state your conclusion.

4. Using the same data as in the previous question, test whether there is evidence for a difference in spread between
the two groups. Use the appropriate nonparameteric test.
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Principles of Inferential Statistics in Medicine

Assignment # 5 EPIB-607, Due December 2, 2003.
1. State whether each of the following statements are true or false, and explain why:

(a) A high negative correlation value, for example, p = —0.95, means that the value of the regression
line slope, 3 must be a large negative number.
(b) If a t-test of the hypotheses

H, : p=0
Versus
H, : p#0

Is rejected at the o = 0.05 level, then p cannot be a number very near 0.

2. Assume that the mean diastolic blood pressure of Canadian men in their thirties is 84 with
a standard deviation of 3, and the mean diastolic blood pressure of women in the same age group
is 78, with a standard deviation of 5.

(a) If the correlation coefficient between the diastolic blood pressure of husbands and wives in this
age group is 0.6, what is the slope of the regression line of the husbands diastolic blood pressure
(y) on the wives diastolic blood pressure (z) for marriages in this age group?

(b) Under the same conditions as (a), can you predict the diastolic blood pressure of a man whose
wife has a pressure of 907 If yes, calculate the predicted value.

3. State whether each of the following statements are true or false, and explain why:

(a) If the slope of the regression line between two variables z and yis B =1, then the slope between
z and y/2 (i.e., all y values are divided by two) must be 0.5.

(b) If the intercept of the regression line between two variables z and y is a = 1, then the intercept
between z and y/2 (i.e., all y values are divided by two) must be 0.5.

4. Consider the data in the table below:

Case # | Dosage level | weight gain
1 16.2
11.6
13.5
18.6
7.8
24.5
21.0
13.3
14.3
14.0
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The data come from an experiment on a drug that is supposed to increase weight. We will analyse
the effects of the different dosages on the weights.
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(a) Draw a rough scatter plot (by hand) to visually examine the association between the dosage
(z-axis) and weight gain (y-axis). Does there appear to be a relationship?

(b) Calculate the regression line for this data, that is, provide the best values for the intercept ()
and slope (8) of the least squares line.

(c) Calculate the estimate of the residual standard deviation, o.

(d) Calculate 95% confidence intervals for the intercept and slope values you calculated in part (b).
(e) Suppose the next subject that enters the study is given a dosage of 5. What is your prediction
for the weight gain for this subject?

(f) Give a 95% confidence interval around your answer in (e).

5. In this question we will reanalyse the data in Question 4 using First Bayes. To do this, we first
have to enter the data. Going to the data page, enter two different data sets, one for dosage, and
one for weight. Make sure you keep the same order as in the table above. Save each of them, and
load both for future use. Going to the analysis menu, choose the “regression data” item.

Unlike the analysis of normal and binomial data, this brings you immediately to the posterior page,
rather than a page that first lets you enter prior information. This is because First Bayes always
assumes “weak” or non-informative (uniform or close to uniform) prior distributions. | Note: This
is not because prior information is not usually available in regression situations (it usually is), but
rather because is if difficult to specify prior distributions at an elementary level appropriate to an
introductory course. There are ways to get around this limitation in First Bayes, but this is beyond
the scope of this course.] Because non-informative prior distributions are used, we would expect
to get similar answers to those obtained in Question 1. For example, we expect that the 95% CI’s
calculated above will be similar (but not identical) to 95% HDI’s we will calculate below. Of course,
the interpretations of the intervals are different.

(a) On the posterior page for regression, load the dosage data as the z variable, and the weight
as the y variable. Clicking on ‘scatter” will give you a scatter plot of the data, together with 95%
intervals for future predictions. Print out this plot.

(b) You can examin the posterior distributions for the ¢, 8, and o2 parameters by clicking on the
" icon. The default when you open the screen is 8. Calculate the 95% HDI’s for o and 3. How do
they compare to the confidence intervals you calculated above?

(c) Give the mean and median values for the variance. How do they compare to the point estimate
of the variance you calculated in Question 4(c)? (Hint: Remember to square the latter value, so
you compare a variance to another variance, not a standard deviation). Look at the plot of the
posterior distribution for the variance. Is it symmetric or skewed?

(d) Suppose the next subject that enters the study is given a dosage of 5. What is your mean
prediction for the weight gain for this subject?

(e) Give a 95% confidence interval around your answer in (d). (Hint: To do the latter two parts,
you must click on “Show predictive”, which means that the left hand side of the screen now shows
information about predictions, rather than about «, 3, or ¢2.)

Plot the graph of the residuals. Does a linear regression model seem appropriate for these data?





