
ISBP AWARD LECTURE 
ARTIFICIAL CELL BIOTECHNOLOGY FOR MEDICAL 

APPLICATIONS  
(published in Blood Purif  18:91-96, 2000. Updated September 2002) 

Thomas Ming Swi Chang, O.C.,M.D.,C.M.,Ph.D.,FRCP(C)                                          
Director, Artificial Cells & Organs Research Centre,                                                       

Director, MSSS-FRSQ Research Group (d’equipe) on blood and blood substitutes in 
transfusion medicine.                                                                                                              

Professor of Physiology, Medicine and Biomedical Engineering                                               
Faculty of Medicine, McGill University,                                                                     

Montreal, Quebec, Canada  

Artcell.med@mcgill.ca    www.artcell.mcgill.ca 

Keywords 

Oral removal uremic metabolites.  Hemoperfusion.  Enzyme therapy. Cell therapy. Gene 
therapy. Blood substitutes.  Bioencapsulation. Artificial Cells 

Abstract: 

Artificial cells are prepared in the laboratory for medical and biotechnological 
applications. The earliest routine clinical use of artificial cells is in the form of coated 
activated charcoal for hemoperfusion. Implantations of encapsulated cells are being 
studied for the treatment of diabetes, liver failure and the use of encapsulated genetically 
engineered cells for gene therapy.  We recently found that daily orally administered 
artificial cell containing a genetically engineered microorganism can lower the elevated 
urea level in uremic rats to normal levels and increase the survival of the animal. 
Furthermore, this can remove potassium, phosphate, uric acid and other waste metabolite 
from uremic plasma.  Blood substitutes based on modified hemoglobin are already in 
Phase III clinical trials in patients with as much as 20 units infused into each patient 
during trauma surgery. Artificial cells containing enzymes are being developed for 
clinical trial in hereditary enzyme deficiency diseases and other diseases.  Artificial cell is 
also being investigated for drug delivery and for use in other uses in biotechnology, 
chemical engineering and medicine.  

Introduction  

Artificial cell evolves from Chang’s attempts to prepare artificial structures for possible 
replacement or supplement of deficient cell functions [1-5]. Like natural cells, 
biologically active materials inside the artificial cells are retained and prevented from 
coming into contact with external materials like leucocytes, antibodies or tryptic 
enzymes. Molecules smaller than protein can equilibrate rapidly across the ultrathin 



membrane with large surface to volume relationship. A number of  potential medical 
applications using artificial cells have been proposed [2-5]. The first of these developed 
successfully for routine clinical use is hemoperfusion [6]. After initial clinical trails in the 
form of coated activated charcoal hemoperfusion for poisoning, kidney failure, and liver 
failure [6], it is now in routine clinical uses [7]. This review will highlight some examples 
of the increasing interests in the biotechnological approaches of artificial cells for clinical 
applications. Some exciting recent developments include research and clinical trials on 
modified hemoglobin for blood substitutes; the use of artificial cells for enzyme therapy, 
cell therapy and gene therapy [8].  The use of oral artificial cells containing genetically 
engineered cells in uremia is a new area of potential interest to nephrologists.   

Artificial cells containing enzymes for inborn errors of metabolism and other 
conditions  

Chang and Poznanksy have earlier implanted artificial cells containing catalase into 
acatalesemic mice, animals with a congenital deficiency in catalase [9].  This replaces the 
deficient enzymes and prevented the animals from the damaging effects of oxidants. The 
artificial cells protect the enclosed enzyme from immunological reactions [10].  Chang 
also showed that artificial cells containing asparaginase implanted into mice with 
lymphosarcoma delayed the onset and growth of lymphosarcoma [11]. The single 
problem preventing the clinical application of enzyme artificial cells is the need to 
repeatedly inject these enzyme artificial cells. To solve this problem, Bourget and Chang 
found that  microencapsulated phenylalanine ammonia lyase given orally can lower the 
elevated phenylalanine levels in phenylketonuria[PKU] rats [12]. This is because of our 
more recent finding of an extensive recycling of amino acids between the body and the 
intestine [13].  This is now being developed for clinical trial in PKU [14]. In addition to 
PKU other examples include the removal of tyrosine in tyrosinemia or melanoma, the 
removal of glutamine or asparagine in other cases. We are encouraged in this oral 
approach because of our preliminary clinical testing of oral microencapsulated xanthine 
oxidase as experimental therapy in Lesch-Nyhan Disease[15]. 

Artificial cells encapsulated cells for cell therapy  

Chang et al reported the encapsulation of biological cells in 1966 based on a drop method 
and proposed that "protected from immunological process, encapsulated endocrine cells 
might survive and maintain an effective supply of hormone" [3,5].     Lim and Sun 
developed this drop-method by using milder physical crosslinking [16]. This resulted in 
alginate-polylysine-alginate [APA] microcapsules containing cells. They show that after 
implantation, the islets inside artificial cells remain viable and continued to secrete 
insulin to control the glucose levels of diabetic rats. Many groups are now developing 
cell encapsulation for cell therapy. This includes artificial cells containing endocrine 
tissues, hepatocytes and other cells for cell therapy [8,17-21]. Implantation of 
microencapsulated genetically engineered cells has been reviewed recently [21]. This has 
been studied for potential applications in amyotrophic lateral sclerosis, Dwarfism, pain 
treatment, IgG1   plasmacytosis, Hemophilia B, Parkinsonism and axotomized septal 
cholinergic neurons. 



The promising results of implantation of encapsulated cells require further developments 
especially to improve the long term biocompatibility for implantation.  In the meantime, 
several groups are looking into other configurations and other sites of action for more 
immediately clinical applications.   For example, Aebischer et al’s ingenious use of 
capillary fiber to encapsulate cells has allowed his group to implant cells followed by 
retrieval and re-implantation in clinical trials [22].  In those conditions where larger 
amount of cells are needed, e.g. islets and hepatocytes, other approaches have been 
developed. Thus, Humes’ group uses “encapsulated” renal tubule cells with capillary 
fibres for a “bioartificial kidney”[19].  Dimetrious et al [19] are testing hepatocytes 
“encapsulated” in a capillary fiber device [19] in series with a encapsulated charcoal 
hemoperfusion device for liver failure patients [19].  Because of long-term blood 
compatibility problems, both of these can only be used in acute conditions. Another 
approach is using oral administration as described below 

Does orally administered artificial cells containing genetically engineered cells have 
a role in uremia therapy? 

Advances in molecular biology have resulted in the availability of nonpathogenic 
genetically engineered microorganisms that can effectively use uremic metabolites for 
cell growth.  Prakash and Chang therefore studied the oral use of microencapsulated 
genetically engineered nonpathogenic E.coli DH5 cells containing Klebsiella aerogenes 
urease gene in renal failure rats [23-25].  

Red Blood Cell Substitutes                                                                                      
Polyhemoglobin as blood substitutes: Native hemoglobin [tetramer], breaks down into 
half molecules [dimers] after infusion causing renal toxicity and other adverse effects.  
Chang has extended his original approach of artificial cells containing hemoglobin and 
enzymes[1,2] to form polyhemoglobin – a molecular version of artificial cells. This is 
based on the use of bifunctional agents like diacid [2,4] or glutaraldehyde [35] to 
crosslink hemoglobin molecules into polyhemoglobin.  This gluataradehyde crosslinked 
polyhemoglonin approach has been extensively developed more recently [36-41].  
Polyhemoglobin consisting of 4 to 5 hemoglobin molecules stays longer in the circulation 
and they do not breakdown into dimers.  One example is the recent report by Gould et al 
on their ongoing clinical trials using pyridoxalated glutaraldehyde human 
polyhemoglobin in trauma surgery. They show that this can successfully replace blood 
loss by maintaining the hemoglobin level with no reported side effects[37,38].  More 
recently, they have infused up to 20 units into individual trauma surgery patients. (2002 
Sept update: Gould et al has published their Phase III clinical trial results for trauma 
surgery in the 2002 July issue of J. American College of Surgeons. Biopure's 
glutaraldehyde crosslinked bovine hemoglobin has been approved for human use in 
South Africa in April 2001)   An o-raffinose polyhemoglobin has also been developed.  

Polyhemoglobin containing catalase and superoxide disumutase: The present 
polyhemoglobin shows promise especially for perioperative uses as in hemodilution, 
replacement of extensive surgical blood loss and other conditions with no potentials for 
ischemia-reperfusion injuries[40]. However, polyhemoglobins do not contain red blood 



cell antioxidant enzymes like catalase and superoxide dismutase. Thus, for the 
resuscitation of sustained severe hemorrhagic shock or in reperfusion of ischemic organs 
as in stroke or in organ trasnplantation, the use of polyhemoglobin may result in 
ischemia-reperfusion injuries [43].  D’Agnillo and Chang have therefore studied the 
crosslinking of superoxide dismutase and catalase with polyhemoglobin to form PolyHb-
SOD-CAT [44]. We found that when compared to polyhemoglobin, PolyHb-SOD-CAT, 
significantly decrease the release of heme and iron from hemoglobin and also effectively 
removes oxygen radicals [44,45]. Reperfusion studies in a rat model of intestinal 
ischemia, shows that PolyHb-SOD-CAT resulted in negligible increase in oxygen 
radicals, unlike the high level that resulted from reperfusion using polyhemoglobin [46].   

Recombinant human hemoglobin: Although polyhemoglobin is in the most advance 
stages of clinical trial, there are other modified hemoglobins [40,41, 47-49].  Unlike 
polyhemoglobin these are single tetrameric hemoglobin formed by intramolecular cross-
linkage [50,51] or recombinant human hemoglobin [52,53]. Clinical trials on these show 
vasoactivities and other effects of nitrate oxide removal [51,53]. Lemon’s group [54] has 
therefore developed a new recombinant human tetrameric hemoglobin with markedly 
decrease affinity for nitric oxide [54]. When infused into experimental animals, this did 
not cause vasoactivity.       

Other new generations of modified hemoglobin blood substitutes: Polyhemoglobin stays 
in the circulation with a half-time of only up to 27 hours.  In order to increase this 
circulation time, Chang’s original idea of a complete artificial red blood cell [1,2] is now 
being developed as third generation blood substitute. Thus submicron lipid membrane 
microencapsulated hemoglobin [55] is being explored especially more recently by the 
group of Tsuchida in Japan [49] and Rudolph in the U.S.A.[48].  The U.S. group has 
modified the surface properties to result in a circulation half-time of about 50 hours [56].  
Chang and Yu are developing a new system based on biodegradable polymer and 
nanotechnology resulting in polylactide membrane hemoglobin nanocapsules of about 
150 nanometre diameter [57-61].  This is smaller than the lipid-vesicles and contains 
negligible amounts of lipids.  We have included superoxide dismutase, catalase and also 
multienzyme systems to prevent the accumulation of methemoglobin. The circulation 
time is double that of polyhemoglobin    

General: 

The above review contains a very brief overview of this rather large area. For more 
specific details, please refer to the references given including those published recently 
from here (62-65).  Artificial Cells Biotechnology is a rapidly evolving area and rapidly 
updating can be found at our McGill University website: www.artcell.mcgill.ca  
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