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In vitro and in vivo effects of polyhaemoglobin–tyrosinase
on murine B16F10 melanoma
Binglan Yu and Thomas Ming Swi Chang

Melanoma is an increasingly common fatal skin cancer.

Many groups are carrying out research on potential

treatments for melanoma. One of these approaches has

shown that lowering tyrosine can inhibit the growth of

melanoma in cell cultures and of B16BL6 melanoma in

mice. However, humans cannot tolerate tyrosine-restricted

diets for lowering tyrosine because of nausea, vomiting

and weight loss. We report here our preparation and

characterization of a novel soluble polyhaemoglobin–

tyrosinase complex. This preparation prevents native

tyrosinase from having adverse effects and from rapid

removal after injection. The preparation inhibited murine

B16F10 melanoma cell growth in culture and delayed its

growth in a mice model. Intravenous injection of the

preparation lowers the systemic tyrosine level without

causing adverse effects such as vomiting and weight loss

in mice. It is therefore possible that this complex could be

useful in the treatment of human melanoma. Melanoma
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Introduction
Melanoma, a fatal skin cancer, is a common tumour that

accounts for 10% of all malignancies. Melanoma is most

commonly found on the skin, but 10% arise in the eye

[1]. At least 20% of people diagnosed with melanoma

progress to advanced disease and die within 5 years of

diagnosis [2]. At present, despite the use of adjuvant

therapy, chemotherapy, immunotherapy and radiation

therapy, the median survival of patients with metastatic

melanoma is about 6 months [3].

Tyrosine is important in the metabolic cycle of melanoma

[4–6], and malignant melanomas require higher concen-

trations of tyrosine for growth. Research, especially that

of Meadows’ group, has shown that lowering systemic

tyrosine using a tyrosine- and phenylalanine-restricted

diet can inhibit the growth of melanoma in vitro and

in vivo [7–9]. However, low tyrosine diets are not well

tolerated by humans, resulting in weight loss and other

adverse effects [10]. Furthermore, a restricted diet can

only lower the systemic tyrosine level to about 67% of

normal levels [11].

We therefore investigated a new approach of chemically

cross-linking tyrosinase with excess haemoglobin to form

a soluble polyhaemoglobin–tyrosinase (PolyHb–tyrosi-

nase) complex. In this way, after intravenous injection,

tyrosinase is covered and protected by the PolyHb from

causing adverse effects and from rapid removal from the

circulation. PolyHb by itself has already been shown to be

safe and effective as a red blood cell substitute in the

final stages of a phase III clinical trial, with up to 10 l

infused to replace lost blood in trauma surgery [12–15].

We have also successfully prepared PolyHb cross-linked

together with superoxide dismutase and catalase [16,17].

In the present study, we investigated the preparation,

structural and functional properties and the in vitro effect
on the growth of the B16F10 melanoma cell line of this

novel PolyHb–tyrosinase. This was followed by animal

studies in rats and in mice, including a B16F10

melanoma-bearing mice model.

Materials and methods
Materials

Purified bovine haemoglobin was purchased from Biopure

Corporation (Boston, Massachusetts, USA). Glutaralde-

hyde (25%) was obtained from Polysciences (Warrington,

Pennsylvania, USA). L-Lysine monohydrochloride (Sig-

maUltra > 99%), L-tyrosine [98% thin layer chromatogra

(TLC)] and tyrosinase from mushroom (EC 1.14.18.1,

3000 units/mg stated activity) were purchased from

Sigma-Aldrich (Ontario, Canada). All other reagents were

of analytical grade.
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Preparation of PolyHb and PolyHb–tyrosinase

Reaction mixtures were prepared containing haemoglobin

(10 g/dl) and tyrosinase (6000U/ml) in 0.1M potassium

phosphate buffer, pH7.6. In the PolyHb mixtures, an

equivalent volume of buffer replaced the enzyme. Prior to

the start of cross-linking, 1.3M lysine was added at a

molar ratio of 7:1 lysine/haemoglobin. The cross-linking

reaction was started with the addition of glutaraldehyde

(5%) at molar ratio of 16:1 glutaraldehyde/haemoglobin.

Glutaraldehyde was added in four equal aliquots over a

15min period. After 3.5–48 h at 41C under aerobic

conditions with constant stirring, the reaction was

stopped with 2.0M lysine at a molar ratio of 200:1

lysine/haemoglobin. Solutions were dialysed in physiolo-

gical saline solution and passed through a sterile

0.45 mM filter. Aliquots (500 ml) of the 16:1 cross-linked

preparation were concentrated using 100 kDa micro-

concentrators (Amicon, Beverly, Massachusetts, USA).

Samples were centrifuged at 2500 g for 55min at 231C

and the retentate was collected. The haemoglobin

concentration was determined using cyanomethaemoglo-

bin at 540 nm.

Determination of tyrosinase activity

Tyrosinase activity was assessed by measuring the

formation of enzymatic products at 300 nm [18]. The

absorbance at 300 nm was followed continuously for 8–

14min using a Perkin Elmer Lambda 4B spectrophoto-

meter (Norwalk, Connecticut, USA), and changes in

optical density per minute were used to analyse the

activity of the enzyme.

Effects of intravenous injection of PolyHb–tyrosinase in

rats

Fasted male Sprague-Dawley rats (245–260 g) were

obtained from Charles River Canada (St Constant,

Quebec, Canada). Animals were anaesthetized with an

intraperitoneal injection of 65mg/kg pentobarbitone

(Somnotol, Decton Dickinson, New Jersey, USA). Body

temperature was maintained by a warming blanket.

Incisions were carefully performed in one hindlimb below

the inguinal ligament, and the femoral vessels were

carefully isolated. Polyethylene cannulas (PE-10 and PE-

50, Clay Adams, Becton Dickinson, Sparks, Maryland,

USA) were inserted and secured distal to the superficial

epigastric branches in the femoral artery and vein. Proper

vessel access was tested with a small volume injection of

heparinized saline (50 IU/ml). Blood samples were taken

at the beginning of the experiment, then PolyHb–

tyrosinase was injected through the femoral vein. The

femoral artery cannula was connected to the venous

cannula for blood to circulate thoroughly for a short

interval. Blood samples were then taken from the femoral

artery at different time intervals. The plasma in each

blood sample was separated from the blood and placed in

a 1.5ml plastic tube and stored at – 801C until analysed.

The tyrosine concentration in the plasma was measured

by a fluorometric method using a Perkin Elmer Lumines-

cence Spectrometer LS50B [19].

Tumour cells and culture conditions

B16-F10 murine melanoma cells were obtained from

American Type Tissue Collection (Manassas, Virginia,

USA). The tumour cells were routinely cultured

in Dulbecco’s modified Eagle’s medium (DMEM)

(Life Technologies, Invitrogen, Burlington, Ontario,

Canada) supplemented with 10% fetal bovine serum.

Cells were passaged every 2–3 days. For the experiment,

melanoma cells were cultured in complete DMEM

until they became 30–40% confluent, when one of

the following was added (0.57ml sample per 10ml

medium): (i) saline solution (0.9 g/dl NaCl); (ii) free

tyrosinase solution; (iii) PolyHb solution; or (iv) PolyHb–

tyrosinase solution. The cell viability was then deter-

mined by trypan blue exclusion for up to 4 days [20–22].

Tumour cells were routinely monitored by phase

microscopy. Cell counts were obtained daily with a

haemacytometer.

Intravenous injection of PolyHb–tyrosinase in normal

mice

BD2F1 female mice (C57BL/6� DBA/2F1) aged 57–63

days were purchased from Charles River Canada. Mice

were kept with a 12 h light/dark schedule and fed

conventional food and water ad lib. All animals were

housed and cared for according to the animal care

regulations of McGill University. All mice were acclima-

tized for at least 7 days prior to use in the experiment.

Two groups of mice (five mice per group) were studied.

An intravenous injection of 0.1ml saline (control group)

or 0.1ml PolyHb–tyrosinase solution (test group) was

administered every day, and blood was taken after each

injection in both groups.

B16F10 melanoma-bearing mice model

B16F10 melanoma cells prepared at a concentration of

1� 106 cells in 0.1ml of Hanks’ balanced salt solution

were injected subcutaneously into the shaved lateral

flank of each mouse. The size of the primary tumour was

measured every 2 days using callipers, and the tumour

volume was calculated using the formula V=(A�B2)/2,

where V is the volume (mm3), A is the long diameter

(mm) and B is the short diameter (mm) [23]. When the

tumours reached an average size of 125mm3, three groups

of mice were treated as follows: (i) the sham control

group received no intravenous injections; (ii) the saline

control group received daily intravenous injections of

0.1ml saline; and (iii) the test group received daily

intravenous injections of 0.1ml of PolyHb–tyrosinase

solution. The endpoint of the study was when the tumour

burden in any group of animals reached 10% of the body

weight, based on the regulations of the ethics committee

of the Faculty of Medicine Animal Care Committee of

McGill University.
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Data analysis

Statistical analysis was performed using the Student’s

t-test within analysis of variance and was considered to

be significant at P<0.05.

Results
Molecular weight distribution of PolyHb–tyrosinase and

analysis of tyrosinase activity

We first optimized the cross-linking of tyrosinase to

haemoglobin to form PolyHb–tyrosinase with regard to

the degree of polymerization, molecular weight distri-

bution and enzyme activity. We then prepared the

PolyHb–tyrosinase complex with a cross-linking time of

3.5–48 h for use in the animal studies. The longer

cross-linking time did not decrease enzyme activity

significantly [24]. We also found that increasing the

cross-linking time from 3.5 h to 24 h resulted in an

increasing percentage of the complex in the larger

molecular weight fraction (over 400 kDa) [24]. However,

there was no significant difference in the percentage in

the larger molecular weight fraction (over 400 kDa)

between a cross-linking time of 24 h and 48 h [24]. Thus,

for the present study we used a maximal cross-linking

time of 24 h, giving 74% with a molecular weight over

400 kDa for the preparation of the complex for the

following experiments [24].

Intravenous injection of PolyHb–tyrosinase

Rats were used for this initial study since it is not

possible to obtain the large total volumes of blood

samples needed for analysing the plasma tyrosinase

activity and retention time of the enzyme in mice. After

the injection of 1ml/250 g body weight of PolyHb–

tyrosinase with a cross-linking time of 3.5 h, tyrosinase

activity reached 1303±411U/ml in the first hour,

then decreased rapidly to 61±49U/ml by 6 h (Fig. 1).

Use of PolyHb–tyrosinase with a cross-linking time

of 24 h more than doubled the tyrosinase activity in

the plasma, and the retention time in the circulation

was markedly improved (Fig. 1). Increasing the volume

from 1ml to 2–3ml/250 g body weight only increased

the tyrosinase activity and retention time slightly.

We therefore decided to use a 24 h cross-linked complex

of 1ml/250 g body weight for the subsequent studies

in mice.

Effects of PolyHb–tyrosinase on the growth of cultured

melanoma cells

B16F10 melanoma cells were cultured in DMEM and

treated with saline, free tyrosinase, PolyHb or PolyHb–

tyrosinase. Figure 2 shows that PolyHb by itself did

not have any effect on the growth of B16F10 cells

when compared with saline. The PolyHb–tyrosinase

complex was not significantly different from free

tyrosinase in inhibiting the growth of the melanoma cells

in vitro (Fig. 2).

Intravenous injection of PolyHb–tyrosinase in normal

mice

Daily intravenous injections of PolyHb–tyrosinase in the

test group reduced plasma tyrosine levels rapidly to

0.19±0.09mg/dl on day 2 compared with 1.44±0.16mg/

dl in the control group (Fig. 3a). Since one of the adverse

effects of the use of a tyrosine-restricted diet is nausea,
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vomiting and weight loss, we also followed these effects

in the mice. Daily measurements of body weight showed

no difference between the control group and the test

group (Fig. 3b). Furthermore, no vomiting was observed

in these mice.

Effect of intravenous injection of PolyHb–tyrosinase in

melanoma mice model

B16F10 cells were inoculated subcutaneously into mice

and when the tumour volume reached an average of

125mm3, on day 9, the sham control group received no

intravenous injections, the saline control group received

daily intravenous injections of 0.1ml saline, and the test

group received daily intravenous injections of 0.l ml of

PolyHb–tyrosinase.

There was no significant difference in tumour size

between the control group and the sham control

group (Fig. 4a). However, 4 days after the daily intrave-

nous injections of PolyHb–tyrosinase, the tumour

volume was significantly lower than that in the control

Fig. 3
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group. After 6 days of daily intravenous injections of

PolyHb–tyrosinase, the tumour volume in the test group

was only 53.49±13.91% of that in the control group.

Nineteen days after the inoculation of the B16F10

melanoma cells, the tumour volume of the control

has reached the maximum of 10% of the body weight

allowed by the Animal Care Committee and the

study was terminated. At this time, the tumour size

in the test group was only 45.28±10.09% of that in

the control group (Fig. 4a). Our results suggest that

PolyHb–tyrosinase retards the growth of B16F10

melanoma in mice.

We also followed the body weight of these three groups

of mice. There was no significant difference in weight

gain (Fig. 4b). The growth of tumours in the tumour-

bearing mice contributed to the gain in weight (Fig. 4b)

compared with that observed for the normal mice

(Fig. 3b).

Discussion
The incidence of melanoma, a fatal skin cancer that is the

fifth most common cancer in North America, is increasing

dramatically, doubling every 10 years [25]. Despite

extensive research, at present only adjuvant therapies

are available [1,26,27]. These include immunotherapy,

chemotherapy, autologous bone marrow transplantation,

biochemotherapy and chemoimmunotherapy. Meadows’

group has carried out important studies showing that

lowering the systemic tyrosine can inhibit the growth of

melanoma in mice [7–9,28–31]. Unfortunately, a tyrosine-

restricted diet is not well tolerated in humans and results

in weight loss, nausea and vomiting in patients who are

already severely ill from their melanoma. Thus it has not

been possible to carry out meaningful clinical trials. We

have reported here a possible biotechnological solution to

this problem based on intravenous PolyHb–tyrosinase.

Unlike free tyrosinase [28–33], the tyrosinase in PolyHb–

tyrosinase is covered and protected from being exposed

to the body by PolyHb (with a haemoglobin:tyrosinase

molar ratio of 100:2), which prevents the tyrosinase

from having any adverse effects. PolyHb–tyrosinase

decreases the systemic tyrosine levels in mice to 13% of

the original level without the adverse effects of nausea,

vomiting or weight loss, whereas a tyrosine-restricted diet

lowers the tyrosine levels only to 67% of the original level

but has the adverse effects of nausea, vomiting or weight

loss. In vitro, PolyHb–tyrosinase inhibited the growth of

B16F10 cells. When injected intravenously into B16F10

melanoma-bearing mice, PolyHb–tyrosinase also delayed

the growth of the melanoma when compared with the

control group. These results should prompt further

studies to optimize this approach and to investigate its

combination with other methods for treating malignant

melanoma.
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