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1. INTRODUCTION 

 
1.1.Why do we need blood substitutes?  
 
Under normal circumstances, donor blood (rbc) is the best replacement for blood (Yang et al 
2017). HOWEVER, as quoted from an editorial (Chang 2017):  
 

• Natural epidemics (e.g. HIV, Ebola etc) or man-made epidemics (terrorism, war, etc) can result 
in contaminated donor blood or disqualified disease contact donors. Unlike rbc, blood substitutes 
can be sterilized. 

• Heart attack and stroke are usually caused by obstruction of arterial blood vessels. Unlike rbc 
particles, blood substitute is a solution and in animal studies it can more easily perfuse through 
obstructed vessels to reach the heart and brain. 

• Severe blood loss from accidents, disasters or war may require urgent blood transfusion that 
cannot wait for transportation to the hospital for blood group testing. Unlike rbc, blood substitutes 
do not have blood groups and can be given on the spot (Fig. 8). 

• Red blood cells have to be stored in refrigeration for up to 42 days thus difficult to transport 
and store in disaster and frontline. Blood substitutes can be stored at room temperature for more 
than 1 year, compared to rbc of 1 day at room temperature. 

• In very severe hemorrhagic shock there is usually a safety window of 60 min for blood 
replacement, beyond which there could be problems related to irreversible shock. Animal study 
shows that one type of blood substitutes with enhanced rbc enzymes can prolong the time. 
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1.2. Why do we need Nanobiotechnology for blood substitutes?    

Hemoglobin, a tetrameric protein, is responsible for the transport of oxygen in red blood cells 
(Perutz, 1980). Attempts to use hemolysate (Amberson, 1937) and stroma-free hemoglobin as 
oxygen carrier (Rabiner, 1967) resulted in nephrotoxicity and cardiovascular adverse effects 
(Savitsky, 1978).  The small tetrameric hemoglobin molecule causes much of the problem and 
is made worse since once infused the tetramer breaks down into even more toxic dimers.  
 

 
 
 

2.COMPLETE ARTIFICAL RED BLOOD 
 
The first artificial red blood cells that contain hemoglobin and red blood cell enzymes (Fig. 1) 
have oxygen dissociation curve similar to red blood cells (Chang, 1957, 1964). Hemoglobin 
stays inside as tetramers and red blood cell enzymes like carbonic anhydrase and catalase 
retain their activities (Chang, 1964, 1972). These artificial red blood cells do not have blood 
group antigens on the membrane (Figure 1) and therefore do no aggregation in the presence 
of blood group antibodies (Chang, 1972). However, the single major problem was the rapid 
removal of these artificial cells from the circulation.  Nanobiotechnology based soluble complex 
was therefore investigated to increase the circulation  
 
 
 
time. 

 
 
 
 
 
 
 
 
 

Figure 1: Left red blood cells Middle Artificial red blood cells schematic. right: Artificial red blood cells of 
microscopic dimensions that can reversibly “crenate” in hypertonic solution.  Updated from Chang (Chang 
1965, 2007) with copyright permission 

 
 
After the first reports of artificial red blood cells in 1957, 1964 (Chang 1957, 1964) people felt that 
blood substitute is a simple matter that could be quickly developed when needed. Thus, blood 
substitute research was put aside and only the other areas of artificial cells were extensively 
developed around the world for other wide-spread uses (Chang 1972, 2005, 2019).  When AIDS 
arrived in 1989 there was no blood substitutes and many patients were infected with H.I.V. 
contaminated donor blood.  It is only then that intense R&D on blood substitutes was belatedly 
carried out around the world. It was found out too late that blood substitute requires the same long-
term research as in any other medical research for cancer and other diseases.  
 
Red blood cells have 3 major functions: (1) transport oxygen from the lung to the tissue, (2) 
remove damaging oxygen radicals and (3) carry carbon dioxide CO2. from the tissue to the lung to 
be removed. The urgency of H.I.V. in donor blood necessitates the development of the simplest 
system in the shortest time in the form of one of the 3 red blood cell functions, oxygen carrier. 

 
 

3. NANOBIOTECHNOLOGY BASED OXYGEN CARRIERS 
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3.1.Basic principle 

 
 

Figure 2   Basic principle of polyhemoglobin and conjugated hemoglobin (Chang 1964, 1965) 
 

The original micro dimension artificial red blood cells are too large to survive in the circulation 
Thus modified hemoglobin was developed. These are based on the Chang’s earlier basic 
principle (Chang 1964,1965,1971) of polyhemoglobin and conjugated hemoglobin (Figure 2). 
 
The four types of most commonly studied first generation hemoglobin based oxygen carriers 
are shown in Figure 3 These are polyhemoglobin, conjugated hemoglobin, intramolecularly 
crosslinked tetrameric hemoglobin and recombinant hemoglobin.  Unlike red blood cells, there 
is no blood group, and thus can be given on the spot, without waiting for typing and cross-
matching in the hospital. They can be sterilized and are thus free from infective agents such as 

HIV, hepatitis C, bacteria, parasites and so on.  Whereas donor blood has to be stored at 4C 
and is only good for 42 days, modified hemoglobin can be stored at room temperature for 
more than one year.   

 
Figure 3.  The four types of most commonly studied first generation hemoglobin based oxygen carriers 

 
 



3.2.Polyhemoglobin for use as oxygen carrier  
 
The 1971 basic principle of glutaraldehyde crosslinked polyhemoglobin (PolyHb) (Chang 1971) 
(Fig.2,3) has been independently developed most extensively by centers around the world 
(Dudziak & Bonhard, 1980, DeVent0 & Zegna, 1982, Keipert, Minkowitz & Chang, 1982, 
Keipert & Chang, 1987 ,Sehgal et al, 1983, Feola et al 1983, Moss et al 1988, Gould et al, 
1995,. Pearce & Gawryl, 2006, Jahr et al 2008, Greenburg et al 2008 
 
3.3.Glutaraldehyde crosslinked human PolyHb:  
Gould and Moss started the Northfield Laboratory to develop glutaraldehyde crosslinked 
human PolyHb (Sehgal et al, 1983, Moss et al 1988, Gould et al, 1995). Their clinical trial on 
171 patients shows that this product can successfully replace extensive blood loss in trauma 
surgery by maintaining the Hb level at the 8 to 10 g/dl needed for safe surgery with no reported 
side effects (Gould et al 2002).. In 2008 they reported their multicenter randomized clinical trial 
on in pre-hospital ambulance patients. Since no typing and cross-matching is needed and it 
can be used right on the spot. Their result in about 700 hemorrhagic shock patients shows that 
PolyHb can maintain the patients for 12 hours after reaching the hospital. In the saline control 
group, most of the patients need blood transfusion shortly after reaching the hospital (Moore et 
al, 2008).  
 
 3.4.Glutaraldehyde crosslinked bovine PolyHb: 
Bing L. Wong and Carl Rausch were the cofounders of Biopure to start work on Glutaraldehyde 
crosslinked bovine PolyHb. Recent overviews of the development and extensive clinical trials are 
available (Pearce & Gawryl, 2006, Jahr et al 2008, Greenburg et al 2008, Greenburg 2013).  For 
example, they have carried out multicenter, multinational, randomized, single-blind, RBC-controlled 
Phase III clinical trials in patients undergoing elective orthopedic surgery.  A total of 688 patients 
were randomized 1:1 to receive either the polyHb or RBC at the time of the first perioperative RBC 
transfusion decision and 59.4% of the patients receiving polyHb required no RBC transfusion all the 
way to follow up and 96.3% avoided transfusion with RBC on the first postoperative day and up to 
70.3% avoided RBC transfusion up to day 7 after. South Africa and Russia have approved this for 
routine clinical uses in patients. Mer et al (2016) discusses Hemoglobin glutamer-250 (bovine) in 
South Africa consensus usage guidelines from clinician experts who have treated patients.  
 
3.5.Other sources of hemoglobin for PolyHb 
In addition to hemoglobin from outdated human donor blood, bovine Hb, as mentioned above 
is another source (Feola et al 1983). Other sources of hemoglobin have also been used for 
PolyHb. These included, for example, preclinical studies on porcine Hb (Zhu et al 2007, Zhu 
and Chen 2013) and Hb from human placental blood ( Li et al 2006). These two groups have 
carried out extensive laboratory and preclinical studies.  Other possible sources of hemoglobin 
include recombinant hemoglobin (Hoffman et al 1990), marina Hb (Rousselot et al 2006) and 
Bulow others.  
  
3.6.Conjugated hemoglobin 
In the presence of diamine, sebacyl chloride crosslinks hemoglobin with polyamide to form 
conjugated hemoglobin [Chang 1964,1965] (Fig.2). An extension of this is the crosslinking of 
single hemoglobin molecule to soluble polymers like dextran [Wong et al 1988 Tam, 
Blumenstein & Wong, 1976)] or PEG (Abuchowski et al, 1977, Iwashita, 1992, Yabuki et al 
1990, Shorr, Viau & Abuchowski, 1996, Li, Zhang & Liu, 2005, Winslow 2006 , Liu and Xia 
2008, Seetharama et al 2013) (Fig. 3). PEG-Hb shares many of the advantages of PolyHb as 
described above. More details are available in other later chapter.  Clinical  trials have been 
carried on PEG-Hb [Winslow, 2006, Li, Zhang & Liu, 2005, Liu and Xia 2008]. Keipert meeting 
in Montrea Later phases of clinical trials on PEG-Hb have not yet been published. 
 
 
 
 
 



3.7.Intramolecularly crosslinked hemoglobin and recombinant hemoglobin   
In addition to glutaraldehyde crosslinked PolyHb and conjugated Hb there are other ways of 
modifying hemoglobin (Fig.3). These include intramolecularly crosslinked tetrameric 
hemoglobin (Walder et al, 1979, Przybelski et al 1966, Burhop & Estep, 2001), recombinant 
human hemoglobin (Looker et al, 1992, Shoemaker et al, 1994). Some have resulted in 
adverse effects like vasoconstriction in clinical trials. This has led to the proposal that the 
intercellular junctions of the endothelial lining of vascular wall allow tetrameric Hb to enter into 
the interstitial space. There, Hb acts as a sink in binding and removing nitric oxide needed for 
maintaining the normal tone of smooth muscles. This results in the constriction of blood 
vessels and other smooth muscles especially those of the esophagus and the GI tract.  
However, this can be avoided if nitric oxide removal is prevented by a specially designed 
recombinant Hb (Doherty et al, 1998) or a modified form of stabilized intramolecularly 
crosslinked Bovine Hb (Wong et al 2011) or by the administration of nitric oxide (Yu et al 2010, 
Zapol 2012) 
 
3.8.Other effects 
Those polyhemoglobin or conjugated Hb that contain high levels of uncrosslinked hemoglobin 
or low molecular weight PolyHb could have adverse effects (Kim and Greenburg 1997, 
Chang,1997, 2007, Bucci, 2011, 2013)(Fig 4 ). There are also other factors including 
pathological characteristics of patients, like endothelial dysfunction (Yu et al 2010). 
Furthermore, the design of preclinical and clinical study is complicated (Greenburg & Kim, 
1992. Zuck, 1994, Fratantoni, 1994, Klein, 2000, Chang, 1997, 2007, Winslow, 2006, 
Greenburg & Kim,1992, Greenburg et al 2008, Greenburg 2013).  As mentioned earlier, 
vasoconstriction can be avoided if nitric oxide removal is prevented by a specially designed 
recombinant Hb (Doherty et al, 1998) or a modified form of stabilized intramolecularly 
crosslinked Bovine Hb (Wong et al 2011) or by the administration of nitric oxide (Yu et al 2010, 
Zapol 2012).  Thus, one cannot attempt to combine the clinical trial results of different types of 
hemoglobin based blood substitutes and different clinical conditions into a single meta-analysis 
as has been done (Natanson et al 2008) 
 
In medicine, nothing can be considered to be a “cure all”. First generation hemoglobin oxygen 
carriers are more suitable for some clinical conditions especially in patients with no endothelial 
dysfunction or no sustained ischemia or elevated tissue pCO2. However, new generations need to 
be developed to complement and supplement the first generation.  On the other hand, there is no 
reason to use a more complicated and more expensive new generation system if the clinical 
conditions can be treated safely and effective using the first-generation ones.  
 

 
4. NANOBIOTECHNOLOGY BASED OXYGEN CARRIERS WITH ANTIOXIDANT 

FUNCTI0NS 
:   
Arterial obstruction can result in stroke and heart attack. Red blood cells, being 7 to 8 microns in 
diameter, have difficulty flowing through partially obstructed vessels to supply the needed oxygen. 
PolyHb, being a solution, can perfuse through to supply the needed oxygen. However, reperfusion 
with an oxygen carrier can release damaging oxygen radicals (Fig. 4). 
D’Agnillo and Chang has prepared a soluble complex of Polyhemoglobin containing antioxidant 

enzymes to remove oxygen radicals (PolyHb-SOD-CAT) (D’Agnillo and Chang 1998). It has the 

dual function of an oxygen carrier that can also remove oxygen radicals (Fig. 4).  In this form the 

SOD and CAT can be enhanced to be much higher than those in red blood cells. 

After 90 min of combined hemorrhagic shock and brain ischemia in rats, reinfusion of PolyHb-

SOD-CAT did not cause brain edema (Fig.4) (Powanda and Chang, 2002)). On the other hand, 

PolyHb or a solution contain free Hb, SOD and CAT causes significant increases in brain edema.  



 
Figure 4.  Upper left PolyHb-SOD-CAT   Upper right: Arterial obstruction can result in stroke and heart 
attack. Red blood cells cannot flow through.   PolyHb, a solution, can perfuse through. (Upper left) PolyHb-
SOD-CAT, a solution can perfuse through to supply oxygen and remove oxygen radicals Lower right: Unlike 
PolyHb, reinfusion of PolyHb-SOD-CAT does not cause brain edema in rat brain ischemia. Lower left: 
Unlike PolyHb, PolyHb-SOD-CAT reperfusion in ischemic small intestine does releases damaging oxygen 
radicals. (from Chang 2007 with copyright permission) 

 
Thus in a rat hemorrhagic shock-cerebral ischemia ratmodel, after 60 minutes of ischemia, 
reperfusion with PolyHb resulted in significant increase in the breakdown of the blood-brain barrier 
and an increase in brain water (brain edema) [Powanda & Chang, 2002]. On the other hand, 
PolyHb-SOD-CAT did not result in these adverse changes [Powanda & Chang, 2002]. (Fig.6).  
Ischemia-reperfusion injury in severe sustained hemorrhagic shock can result in damage to the 
intestine with leakage of E-coli or endotoxin to the systemic circulation resulting in irreversible shock. 
Thus, we studied the perfusion of isolated small intestine. in a rat model of intestinal ischemia 
reperfusion (Razack, D’Agnillo& Chang, 1997). and found that Ischemic small intestine releases 
damaging oxygen radicals when reperfused with PolyHb. However, PolyHb-SOD-CAT reperfusion 
did not increase oxygen radical release (Fig 4 ). This is important during intestinal surgery or organ 
storage for transplantation (Razack, D’Agnillo& Chang, 1997).  
 
Others have used this for pancreatic beta cells in rats (Nadithe & Bae, 2011); for  myocardial 
infarction attenuation in rats (Wang et al 2012) and rat kidney transplantation from Korea (Chang et 
al. 2004). Hsia extended the PolyHb-SOD-CAT approach to prepare a hemoglobin with synthetic 
antioxidant based on the convalently binding of nitroxides (Buehler et al 2004, Ma and Hsia, 2013). 
In another approach, using his background on the subject (Alayash, 2004), a Hb-haptoglobin 
complex can also be used to protect against oxidative stress (Jia and Alayash, 2013). Another one 
is Zal’s Arenicola marina Hb (Rousselot et al 2006) with antioxidant activity. Simoni et al (1997) 
added a pharmacological solution with antioxidant function to their modified Hb.  
 
 
 
 
 

5 NANOBIOTECHNOLOGY BASED OXYGEN CARRIERS WITH ENHANCED CO2 
TRANSPORT AND ENHANCED ANTIOXIDANT FUNCTI0NS 
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Sims et al (2001) used a novel microelectrode to measure tissue pCO2 in animal model of severe 
hemorrhagic shock. And reported that mortality is related to the elevation of tissue pCO2.  
Carbonic anhydrase (CA) in red blood cell is the major means for the transport of tissue CO2 to the 
lung. We therefore use the nanobiotechnological method to assemble CA with hemoglobin and 
antioxidant enzymes to form PolyHb-SOD-CAT-CA (Bian et al 2011, Bian & Chang 2015). (Fig. 5). 
It not only has all 3 rbc functions, but it can have enhancement of all 3 rbc functions by increasing 
the concentrations of rbc enzymes in the complex (Bian & Chang 2015). These rbc enzymes can 
be extracted from bovine rbc inexpensively (Guo, Glynn & Chang 2015). This complex has no 
blood groups. 
 
5.2. Result in a 90 minutes sustained  hemorrhagic shock rat model 
Our result in a 90 minutes hemorrhagic shock animal model with 2/3 blood volume loss (Fig 10) 
shows that it is superior to whole blood in the lowering of elevated intracellular pCO2 , recovery of 
ST elevation, tropronin levels, lowering of elevated lactate, histology of the heart and intestine.  It is 
more efficient than red blood cell in a sustained 60 minutes hemorrhagic shock rat model (Bian et al 
2013). It is even more effective in a 90 minute sustained hemorrhagic sock model (Bian & Chang 
2015) (Fig. 5). 
 

 
Figure 10:  Upper left: Polyhemoglobin-catalase-superoxide dismutase-carbonic anhydrase can have up to 
6 times red blood cell enzyme concentration. In a rat hemorrhagic shock model with 2/3 blood volume loss 
and 90 mins sustained shock the result is as follow: Upper right: significant faster lowering of the elevated 
tissue pCO2 and Lower Right: faster recovery of the ischemic heart Middle right: intestine having better 
histological finding. Lower left: Test for anaphylactic reaction: no significant increase in tryptase nor 
histamine. Above figures from Chang’s group (29,32,36) 

 
 
5.3. Safety and Immunology Long term study of bovine PolyHb-SOD-CAT-CA was carried out in 
rats.  This consisted of 4 weekly 5% blood volume infusion followed by 30% volume exchange 
transfusion (Guo & Chang 2018)). The result showed safety and lack of immunological problems.  
This includes the measurement of histamine and tryptase that show no anaphylactic reaction (Fig. 
5).  Hemoglobin has very low antigenicity. Bovine PolyHb itself shows no immunological problems 
in patients (Kim & Greenburg 2014). For PolyHb-SOD-CAT-CA the small fraction of enzymes are 
nanoencapsulated inside the large excess of hemoglobin molecules (Guo & Chang 2018) (Fig.5) 
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5.4. Stability  
What is the stability of the enzymes in this complex? Unlike PolyHb, the enzyme component may not 
be sufficiently stable with storage especially in room temperature and hot climate. We found that the 
complex can be lyophilized, freeze dried.  Unlike about 1 day for rbc at room temperature, this 
lyophilized preparation can be stored in room temperature for 320 days (Bian, Guo & Chang 2016). 
The freeze-dried powder preparation of PolyHb-SOD-CAT-CA is stable for more than 360 days at 
4C as compared to 40 days for donor blood. . The lyophilized preparation can be heat pasteurized at 
68F for 2 h (Bian, Guo & Chang 2016).  This can be important if there is a need to inactivate H.I.V. 
virus, Ebola virus, COVID-19 and other infective organisms. The freeze-dried powder is much easier 
for storage since it takes up little space also being very light and compact, it is easy for 
transportation. This is especially important for emergency, space travel, disasters or war. 
 
 

6. NANODIMENSION COMPLETE ARTIFICIAL RED BLOOD CELLS. 
 

 
6.1. Early artificial red blood cells. 
The first artificial red blood cells (Fig. 1) have all the in vitro function of red blood cells as shown by 
oxygen dissociation curve (Chang, 1957), carbonic anhydrase activity (Chang, 1964) and catalase 
activities (Chang & Poznansky, 1968). These artificial red blood cells do not have blood group 
antigens on the membrane and therefore do no aggregation in the presence of blood group 
antibodies (Chang, 1972). However, the single major problem is the rapid removal of these artificial 
cells from the circulation. Much of the studies since that time are to improve survival in the 
circulation by decreasing uptake by the reticuloendothelial system.  Since removal of sialic acid from 
biological red blood cells resulted in their rapid removal from the circulation (Chang 1965,1972), we 
started to modify the surface properties on artificial red blood cells.  This included synthetic 
polymers, negatively charge polymers, crosslinked protein, lipid-protein, lipid-polymer, addition of 
surface polysaccharides and others (Chang, 1965, 1972). Artificial red blood cells have since been 
extensively explored by many researchers around the world. These include Beissinger, Bian, Chang, 
Farmer, Gao, Hunt, Kobayashi, Lee, Mobed, Nishiyia, Rabinovic ,Rudolph ,Sakai, Schmidt, 
Sinohara, Szebeni, Takeoka, Tsuchida, Takahashi, Usuba and many others.    

 
6.2. Bilayer lipid membrane nano artificial rbc 
Bangham (Bangham et al 1965) reported the preparation of liposomes each consisting of 
microspheres of onion like concentric lipid bilayers for basic membrane research. The multi-
lamellar liposome limits the amount of water-soluble drugs that can be enclosed. Thus, the 
basic principle and method of preparing artificial cells using ether (Chang, 1957, 1964) was 
extended into what they call an “ether evaporation method” to form single bilayer lipid 
membrane liposomes for drug delivery (Deamer and Bangham,1976). This was extended for 
the preparation of submicron lipid membrane artificial rbc (Djordjevich & Miller, 1980, Famer et 
al 1988, Phillips, Rudolph and Klipper, 1992, Rudolph, 1994, Kobayashi et al, 2005, Tsuchida 
et al 2006, Sakai, 2013). The circulation half time has been increased to 36 hours in rats by 
the addition of polyethylene glycol to the lipid membrane (Philips et al, 1999).  These advances 
make it now possible to scale up for detailed preclinical studies towards clinical trial (Tsuchida, 
1998, Kobayashi et al , 2005   Sakai, 2013).   It is possible to replace 90% of the red blood 
cells in rats with these artificial red blood cells and it is also effective in hemorrhagic shock 
(Tsuchida, 1998, Kobayashi et al , 2005   Sakai, 2013). More updates and details will be 
available in later chapters in this book (Sakai 2020).  
 
6.3. Nano-dimension biodegradable polymeric artificial cells  
 
Using a modification of this author’s method of micron dimension biodegradable polymeric 
membrane artificial cells (Chang, 1976) we have prepared nano dimension PLA artificial red blood 
cells (Chang, 1997,2007, Chang et al 2003, Yu & Chang, 1996).  This decreases the amount of lipid 
needed for the nano-artificial cells (Figure 6). Polymer membrane is stronger than bilayer lipid and a 
thinner polymer membrane can be used. Figure 6 compares the amount of membrane material in Hb 



lipid vesicles compared to PLA nano-artificial red blood cells. Furthermore, unlike lipid membranes it 
is permeable to water soluble small and middle range molecules.  
 

 
 

Fig. 6.  Amount of membrane material in Hb lipid vesicles compared to PLA nano rbc’s,. 
(With copyright permission from Chang 2007 Monograph on Artificial Cells) 

Polylactide membrane in PLA nano rbc’s is biodegradable into lactic acid and finally water and 
carbon dioxide and thus is not retained in the reticuloendothelial system.  
These nano artificial RBC of 80 to 150 nanometers contain all the red blood cell enzymes and can 
convert methemoglobin to hemoglobin (Chang et al, 2003) (Fig. 7). The membrane is not permeable 
to large molecules, but freely permeable to small molecules like glucose and reducing agents from 
plasma.  In vitro study shows that when incubated at 37◦C metHb increases quickly (Fig.13). 
Addition of a reducing agent, ascorbic acid prevents the increase in MetHb. Addition of glucose and 
NADH allows the Embden Meyerhof enzyme system in the nano artificial rbc to decrease MetHb 
further.(Fig.7) 
 
 
 

 
Fig:7   Left: E/M photo of nano-dimension PEG/PLA artificial RBC Middle Biodegradable polymeric 
membrane nano artificial rbc contains hemoglobin and all the enzymes of rbc. The membrane is not 
permeable to larger molecules, but freely permeable to glucose and reducing agents from plasma.  Right: 
When incubated at 37◦C metHb increases quickly. Addition of a reducing agent, ascorbic acid prevents the 
increase in MetHb. Addition of glucose and NADH allows the Embden Meyerhof enzyme system in the nano 
artificial rbc to decrease MetHb further. (With copyright permission from Chang 2007)  

 
Our studies show that using a polyethylene-glycol-polylactide copolymer membrane we are able to 
increase the circulation time to double that of polyhemoglobin (Chang et al, 2003).  The results of 
other groups support these findings (Zhang et al 2008, Sheng et al 2009). We also reported that 
infusion of 1/3 blood volume into rats did not have any adverse effects on the kidney ( Liu & Chan. 
2008a)  or the  liver (Liu & Chang 2008b) on a long term basis. Our more recent study uses PEG-
PLA membrane nano artificial cells containing polyhemoglobin-catalase-superoxide dismutase-
carbonic anhydrase in a hemorrhagic shock rat model with 2/3 of the blood removed. After one hour 
of hemorrhagic shock at 30mmHg, infusion of this preparation effectively resuscitated the animal 
and lowered the elevated tissue PCO2 (Wei, Bian and Chang 2013). More details will be presented 
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in later chapters 
 
6.4. Variations in the membrane of nano artificial rbc  
 
PEG-lipid vesicles are more like the lipid–polymer membrane artificial cells (Chang, 1972) and are 
no longer pure lipid vesicles. Discher’s group (Photos et al., 2003 ) used self-assembling of block 
copolymers.  Poly(ethylene glycol) (PEG) was the hydrophilic block and polyethylene or 
polybutadiene (PB) was the hydrophobic block. This significantly increased strength when compared 
to PEG–lipid membrane artificial cells. This so-call polymersomes are PEG-PB nano artificial rbc 
similar to PEG-PLA nano artificial rbc. Thus, polymeric membrane artificial cells have branched off 
into multilamellar liposome that then has evolved into lipid membrane artificial cells, then polymer-
lipid membrane artificial cells, and finally back to the polymeric membrane artificial cells that are now 
called by different names including polymersomes, nanocapsules, nanoparticles, vesicles and 
others.  
 
 
 
 
6.5. Nonfunctional or functional membrane 
 
Nano dimension artificial red blood cells have a much higher total surface area than red blood 
cells.  This also means that there is much more total membrane material. Thus, both PEG-lipid and 
PEG-polylactide nano red blood cells contain substantial amount of nonfunctional lipid or polymeric 
membrane. On the other hand, for soluble nanobiotherapeutic artificial rbc, PolyHb-SOD-CAT-CA, 
the “membrane” is functional in the form of oxygen carrying hemoglobin (Fig.8).  
 

 
FIG 8.   Left: nano rbc contains substantial amount of nonfunctional lipid or polymer membrane. Right: 
Soluble nano rbc in the form of Hb complexed with enzymes have functional oxygen carrying hemoglobin as 
the “membrane”.   Updated from Chang (2017) with copyright permission  

 
 
 
 
7. NANOBIOTECHNOLOGY BASED OXYGEN CARRIERS WITH PLATELET FUNCTI0NS 

.   
PolyHb can replace the hemoglobin level in very severe hemorrhage, but in very severe blood loss, 
platelets also needs to be replaced since without platelets blood cannot clot. We use 
nanobiotechnology to assmble hemoglobin with fibrinogen to form PolyHb-fibrinogent (Wong and 
Chang, 2007). 
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Figure 8.  Exchange transfusion in rats.  There is clotting problem when more than 80% of blood has been 
exchanged with PolyHb.  There is no problem with clotting when 98% of the blood is replaced with PolyHb-
fibrinogen with platelet-like activity. (From Wong and Chang, 2007)  

 
 
We studied this in a rat model and found that replacing more than 80% of the total blood volume with 
PolyHb leads to defects in blood clotting (Wong and Chang 2007) (Fig. 9).  . Using this, we can 
replace up to 98% of the total blood volume with PolyHb-fibrinogen without causing clotting 
problems (Wong and Chang, 2007) (Fig. 8). More details will be discussed in a later chapter. 
 
 
 
8.  NANOBIOTECHNOLOGY BASED OXYGEN CARRIERS WITH CANCER SUPPRESSION 

FUNCTI0N 
 

Abnormal microcirculation in tumour leads to decrease in perfusion by oxygen carrying red blood 
cells. PolyHb can more easily perfuse the abnormal microcirculation of tumours to supply oxygen 
needed for chemotherapy or radiation therapy (Robinson et al 1995, Teicher, 1995,) (Fig. 9). 
Thus, PEG conjugated hemoglobin has been used this way (Han et al 2012, Shorr, Biau & 
Abuchowski, 1996). PolyHb also decreases the growth of tumour and increases the lifespan in 
a rat model of gliosarcoma brain tumour [Pearce & Gawryl, 1998].  

 
We have crosslinked tyrosinase with hemoglobin to form a soluble PolyHb-tyrosinase complex [Yu 
and Chang, 2004] (Fig. 9). This has the dual function of supplying the needed oxygen and at the 
same time lowering the systemic levels of tyrosine needed for the growth of melanoma. Intravenous 
injections delayed the growth of the melanoma without causing adverse effects in the treated 
animals [Yu & Chang, 2004] (Fig.9). Our more recent study includes the use of PLA and PEG-PLA 
membrane nano artificial cells containing polyHb-tyrosinase (Furstier and Chang, 2012, Wang and 
Chang 2012, 2016) 



 
 Figure 10. PolyHb can better perfused the microcirculation of tumours. This increases the low oxygen tension 
in tumour and thus increases their sensitivity to radiation and chemotherapy. PolyHb-tyrosinase combine this 
effect with the removal of tyrosine needed for the growth of melanoma.  Effects of daily intravenous injection of 
PolyHb-tyrosinase on tumor growth of B16F10 melanoma in mice. (i) sham control: no intravenous injection; 
(ii) saline control: (iii) PolyHb-tyrosinase group. (With copyright permission from Chang 2007)  

 
 

9. STEM CELLS FOR BLOOD SUBSTITUTES  
 
There is much potential for the use of stem cells for the production different types of blood cells. This 
may be most useful for platelets and leucocytes since only small amounts are needed. Even then, 
platelets, unlike nanobiotechnological derived ones, has extremely short storage life.  In the case of 
red blood cells, despite much research, it is still not possible to scale this up sufficiently for the large 
volume of rbc needed (Mazurier et al 2011). When scale up becomes a reality, this will be an 
important source of rbc for many clinical conditions. However, for other uses, (Chang 1964, 1965) 
these rbc will still have many of the same problems of rbc. These include: 

• Even with refrigeration rec blood cells but still have a short storage time at 4C of less than 42 
days. PolyHb can be stored in room temperature for more than 1 year. Freeze-dry powder of 
PolyHb and PolyHb-enzymes have even longer stability.  

• Red blood cells cannot be freeze-dry into powder form.  PolyHb. Conjugated Hb and  PolyHb-
enzymes in the freeze dry form are light and compact with ease of transport and storage for 
emergency, major disaster or war. 

• Unlike red blood cells, HBOCs can better perfuse obstructed microcirculation as in stroke, 
heart attack, ischemic limbs, sickle cell anemia and other conditions.  It can also better perfuse 
disturbed microcirculations as in tumour, hemorrhagic shock and other conditions.  

• Unlike red blood cells, PolyHb-enzymes can be enhanced with higher enzyme levels than red 
blood cells to be more effective against severe ischemia-reperfusion injury, fatal elevation of 
tissue pCO2 and other conditions. 

• Nanobiotechnology can combine Hb with other enzymes and other bioreactants for specially 
designed oxygen therapeutics 
 
 

10 FUTURE PERSPECTIVES.  
10.1. Blood substitutes 
 

GROWTH OF IMPLANTED B16f10 MELANOMA IN MICE 
BL Yu & TMS Chang, J Melanoma Research 2004 
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The first nanobiotechnological blood substitutes were reported in the 1960s (Chang, Science, 
1964,1965,  Bunn & Jandl, 1968).  Most people thought that blood substitute was a simple 
matter that could be quickly developed when needed. Thus, blood substitute research was put 
aside and only the other areas of artificial cells were developed around the world.  When AIDS 
came in 1989 there was no blood substitutes and many patients were infected with H.I.V. 
contaminated donor blood.  It was only then that intense R&D on blood substitutes was 
belatedly carried out around the world. It was found out too late that blood substitute requires 
the same long-term research as in any other medical research for cancer and other diseases. 
Thus, after more than 20 years, only polyhemoglobin has been approved but only for South 
Africa and Russia. Much more research and development is still waiting to be carried out 
(Przybelski et al 1996, Tsuchida 1998, Klein 2000, Kobayashi et al 2005, Winslow 2006, Zuck 
2006, Liu & Xiu 2008, Mozzarelli & Bettati 2011, Zapol 2011, Yang, Liu, Zheng 2013, Chang 
2013, Kim & Greenburg 2014, Weiskopf 2014): 

 

International progress up to now shows that it is possible to tailor-make blood substitutes ranging from 
simple to complex. It is urgent to have these ready without again waiting until it is too late. We need to 
analyze the specific indications for the different generations of blood substitutes.   If a condition only needs 
an oxygen carrier, then there is no need to use a more complex one. On the other hand, it would be folly not 
to use a more complex one if indicated.  We also need to intensify research on the many important ongoing 
research around the world  These include: develop other novel approaches including novel crosslinkers; 
new sources of material from porcine, bovine, human cord rbc, recombinant, Arenicola marina; basic 
research on nitric oxide, oxidative stress, haptoglobin, rate of oxygen supply; safety and efficacy analysis 
and many other areas. The 2015 XV Int Symposium on Blood Substitute at Lund University (Professor Lief 
Bulow), Lund, Sweden http://isbs2015.lu.se , the 2017 XVI at McGill University (Professor TMS Chang), 
Montreal Canada www.medicine.mcgill.ca/artcell  the 2019 XVII at Nara, Japan (Professor Sakai and 
Professor Yang) and the forthcoming 2021 XIII at Berlin, Germany(Professor Bumler) have been excellent 
opportunities for international exchanges.  
Enormous amount of resources has been placed into basic research and developments on cancer, rare 
genetic diseases, molecular biology, organ failure and other areas.  It is not reasonable to expect that for 
blood substitutes, we should be able to come out with a perfect blood substitute with little or no resources for 
academic and industrial research and development.  Let’s not wait for another crisis before we are again 
forced to do catch-up R & D. 
 
 
10.2. Other areas: 
 

This author predicted in his 1972 monograph on Artificial Cells (Chang 1972) that “Artificial Cell is 

not a specific physical entity. It is an idea involving the preparation of artificial structures of cellular 

dimensions for possible replacement or supplement of deficient cell functions.  It is clear that 

different approaches can be used to demonstrate this idea”.  This prediction is already out of date, 

since the idea of artificial cells has progressed way beyond this 1972 prediction (Chang 2019). 

http://isbs2015.lu.se/
http://www.medicine.mcgill.ca/artcell


 
 

Fig. .10. Upper (from left to right: Basic idea of artificial cells that led to different types of early 
artificial cells. Lower: Present status of artificial cells with unlimited variations in contents, 
membrane material and dimensions.  From Chang 2019 with copyright permission. 
 

 

There are unlimited possibilities in variations for the artificial cell membranes and contents (Fig. 

10). Artificial cells can now be of macro, micro, nano and molecular dimensions. Each of these has 

unlimited variations in configurations. Each configuration resulted in a new terminology that makes 

the field rather confusing to new comers (Fig. 11).  

 

Figure 11: Artificial Cell dimensions: macro, micro, nano and soluble nanobiotechnologic.  Examples of 
variations in configurations with new terminologies for each extension. From Chang 2019 with copyright 
permission 
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Membranes
Polymeric

Biodegradable

Lipid

Xlinked protein

Conjugated

Carriers

Cell membrane

Antigen, antibody
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HEMOGLOBIN

CELLS,STEM CELLS 

GENE, DNA GENOME

MAGNETIC MATERIAL

CYTOSOL, ORGANELLES
METALLIC: SILVER, GOLD, ETC

GENETIC ENGINEERED  CELLS

MICROORGANISM ,VACCINES

BIOTECHNOLOGICS PRODUCTS

HORMONES, PEPTIDES
ADSORBENTS

DRUG

INTRACELLULAR

HEMOGLOBIN 
ENZYMES

CELLS

CELLS 

HEMOGLOBIN 
ENZYMES

VACCINE

COMPARTMENTS

CYTOSOL,ORGANELLES

MAGNETICS
ADSORBENTS 

INSULIN

Chang (1964) SCIENCE
Chang (1966) TASAIO

Chang & Poznansky (1968) NATURE
Chang (1971) NATURE

Chang (1972) Monograph
Chang (1976) J BIOENG

ARTIFICIAL CELL: 
BASIC IDEA

WORLD-WIDE (2019)

Micron:

Nano:

Macro

Soluble
Nanobiotherapeutic

Size

HEMOGLOBIN 

Chang (1958) McGill

Chang (1958) B.Sc. McGill

Chang (1964) SCIENCE

“ARTIFICIAL CELLS” CONFIGURATIONS (2019)

Micron:

Nano:

Nanobiotechnology
(soluble complex)

Dimensions.                                          

Nanoparticles
Nanocapsules
Liposomes
Polymersome
Nanotubule, Etc,

Synthetic cells
Microcapsules
Microparticles
Microspheres
Insert genes into cells
Replicating synthetic cells 

Poly-Proteins
PEG-protein
Nanobiotherapeutics
Nanotherapeutic
Etc, etc

Configurations

Macro

Cell, stem cell & tissue encapsulation
Cell, stem cell & tissue in scaffold 
Membrane coated bioadsorbent for hemoperfusion



 
 

We have only touched the surface of the enormous potential of the extension, innovations and 

uses of artificial cells (Fig.10-11 and table I). More up to date details are available elsewhere 

(Chang 2019).  
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